1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "intel_gt.h"
7 #include "intel_gt_mcr.h"
8 #include "intel_gt_print.h"
9 #include "intel_gt_regs.h"
10 
11 /**
12  * DOC: GT Multicast/Replicated (MCR) Register Support
13  *
14  * Some GT registers are designed as "multicast" or "replicated" registers:
15  * multiple instances of the same register share a single MMIO offset.  MCR
16  * registers are generally used when the hardware needs to potentially track
17  * independent values of a register per hardware unit (e.g., per-subslice,
18  * per-L3bank, etc.).  The specific types of replication that exist vary
19  * per-platform.
20  *
21  * MMIO accesses to MCR registers are controlled according to the settings
22  * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
23  * registers can be done in either a (i.e., a single write updates all
24  * instances of the register to the same value) or unicast (a write updates only
25  * one specific instance).  Reads of MCR registers always operate in a unicast
26  * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
27  * Selection of a specific MCR instance for unicast operations is referred to
28  * as "steering."
29  *
30  * If MCR register operations are steered toward a hardware unit that is
31  * fused off or currently powered down due to power gating, the MMIO operation
32  * is "terminated" by the hardware.  Terminated read operations will return a
33  * value of zero and terminated unicast write operations will be silently
34  * ignored.
35  */
36 
37 #define HAS_MSLICE_STEERING(i915)	(INTEL_INFO(i915)->has_mslice_steering)
38 
39 static const char * const intel_steering_types[] = {
40 	"L3BANK",
41 	"MSLICE",
42 	"LNCF",
43 	"GAM",
44 	"DSS",
45 	"OADDRM",
46 	"INSTANCE 0",
47 };
48 
49 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
50 	{ 0x00B100, 0x00B3FF },
51 	{},
52 };
53 
54 /*
55  * Although the bspec lists more "MSLICE" ranges than shown here, some of those
56  * are of a "GAM" subclass that has special rules.  Thus we use a separate
57  * GAM table farther down for those.
58  */
59 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
60 	{ 0x00DD00, 0x00DDFF },
61 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
62 	{},
63 };
64 
65 static const struct intel_mmio_range xehpsdv_gam_steering_table[] = {
66 	{ 0x004000, 0x004AFF },
67 	{ 0x00C800, 0x00CFFF },
68 	{},
69 };
70 
71 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
72 	{ 0x00B000, 0x00B0FF },
73 	{ 0x00D800, 0x00D8FF },
74 	{},
75 };
76 
77 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
78 	{ 0x00B000, 0x00B0FF },
79 	{ 0x00D880, 0x00D8FF },
80 	{},
81 };
82 
83 /*
84  * We have several types of MCR registers on PVC where steering to (0,0)
85  * will always provide us with a non-terminated value.  We'll stick them
86  * all in the same table for simplicity.
87  */
88 static const struct intel_mmio_range pvc_instance0_steering_table[] = {
89 	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
90 	{ 0x008800, 0x00887F },		/* CC */
91 	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
92 	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
93 	{ 0x00B100, 0x00B3FF },		/* L3BANK */
94 	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
95 	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
96 	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
97 	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
98 	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
99 	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
100 	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
101 	{},
102 };
103 
104 static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
105 	{ 0x000B00, 0x000BFF },         /* SQIDI */
106 	{ 0x001000, 0x001FFF },         /* SQIDI */
107 	{ 0x004000, 0x0048FF },         /* GAM */
108 	{ 0x008700, 0x0087FF },         /* SQIDI */
109 	{ 0x00B000, 0x00B0FF },         /* NODE */
110 	{ 0x00C800, 0x00CFFF },         /* GAM */
111 	{ 0x00D880, 0x00D8FF },         /* NODE */
112 	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
113 	{},
114 };
115 
116 static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
117 	{ 0x00B100, 0x00B3FF },
118 	{},
119 };
120 
121 /* DSS steering is used for SLICE ranges as well */
122 static const struct intel_mmio_range xelpg_dss_steering_table[] = {
123 	{ 0x005200, 0x0052FF },		/* SLICE */
124 	{ 0x005500, 0x007FFF },		/* SLICE */
125 	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
126 	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
127 	{ 0x009680, 0x0096FF },		/* DSS */
128 	{ 0x00D800, 0x00D87F },		/* SLICE */
129 	{ 0x00DC00, 0x00DCFF },		/* SLICE */
130 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
131 	{},
132 };
133 
134 static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
135 	{ 0x393200, 0x39323F },
136 	{ 0x393400, 0x3934FF },
137 	{},
138 };
139 
140 void intel_gt_mcr_init(struct intel_gt *gt)
141 {
142 	struct drm_i915_private *i915 = gt->i915;
143 	unsigned long fuse;
144 	int i;
145 
146 	spin_lock_init(&gt->mcr_lock);
147 
148 	/*
149 	 * An mslice is unavailable only if both the meml3 for the slice is
150 	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
151 	 */
152 	if (HAS_MSLICE_STEERING(i915)) {
153 		gt->info.mslice_mask =
154 			intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
155 							  GEN_DSS_PER_MSLICE);
156 		gt->info.mslice_mask |=
157 			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
158 			 GEN12_MEML3_EN_MASK);
159 
160 		if (!gt->info.mslice_mask) /* should be impossible! */
161 			gt_warn(gt, "mslice mask all zero!\n");
162 	}
163 
164 	if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
165 		gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
166 	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
167 		/* Wa_14016747170 */
168 		if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
169 		    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
170 			fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK,
171 					     intel_uncore_read(gt->uncore,
172 							       MTL_GT_ACTIVITY_FACTOR));
173 		else
174 			fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
175 					     intel_uncore_read(gt->uncore, XEHP_FUSE4));
176 
177 		/*
178 		 * Despite the register field being named "exclude mask" the
179 		 * bits actually represent enabled banks (two banks per bit).
180 		 */
181 		for_each_set_bit(i, &fuse, 3)
182 			gt->info.l3bank_mask |= 0x3 << 2 * i;
183 
184 		gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
185 		gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
186 		gt->steering_table[DSS] = xelpg_dss_steering_table;
187 	} else if (IS_PONTEVECCHIO(i915)) {
188 		gt->steering_table[INSTANCE0] = pvc_instance0_steering_table;
189 	} else if (IS_DG2(i915)) {
190 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
191 		gt->steering_table[LNCF] = dg2_lncf_steering_table;
192 		/*
193 		 * No need to hook up the GAM table since it has a dedicated
194 		 * steering control register on DG2 and can use implicit
195 		 * steering.
196 		 */
197 	} else if (IS_XEHPSDV(i915)) {
198 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
199 		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
200 		gt->steering_table[GAM] = xehpsdv_gam_steering_table;
201 	} else if (GRAPHICS_VER(i915) >= 11 &&
202 		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
203 		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
204 		gt->info.l3bank_mask =
205 			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
206 			GEN10_L3BANK_MASK;
207 		if (!gt->info.l3bank_mask) /* should be impossible! */
208 			gt_warn(gt, "L3 bank mask is all zero!\n");
209 	} else if (GRAPHICS_VER(i915) >= 11) {
210 		/*
211 		 * We expect all modern platforms to have at least some
212 		 * type of steering that needs to be initialized.
213 		 */
214 		MISSING_CASE(INTEL_INFO(i915)->platform);
215 	}
216 }
217 
218 /*
219  * Although the rest of the driver should use MCR-specific functions to
220  * read/write MCR registers, we still use the regular intel_uncore_* functions
221  * internally to implement those, so we need a way for the functions in this
222  * file to "cast" an i915_mcr_reg_t into an i915_reg_t.
223  */
224 static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
225 {
226 	i915_reg_t r = { .reg = mcr.reg };
227 
228 	return r;
229 }
230 
231 /*
232  * rw_with_mcr_steering_fw - Access a register with specific MCR steering
233  * @gt: GT to read register from
234  * @reg: register being accessed
235  * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
236  * @group: group number (documented as "sliceid" on older platforms)
237  * @instance: instance number (documented as "subsliceid" on older platforms)
238  * @value: register value to be written (ignored for read)
239  *
240  * Context: The caller must hold the MCR lock
241  * Return: 0 for write access. register value for read access.
242  *
243  * Caller needs to make sure the relevant forcewake wells are up.
244  */
245 static u32 rw_with_mcr_steering_fw(struct intel_gt *gt,
246 				   i915_mcr_reg_t reg, u8 rw_flag,
247 				   int group, int instance, u32 value)
248 {
249 	struct intel_uncore *uncore = gt->uncore;
250 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
251 
252 	lockdep_assert_held(&gt->mcr_lock);
253 
254 	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
255 		/*
256 		 * Always leave the hardware in multicast mode when doing reads
257 		 * (see comment about Wa_22013088509 below) and only change it
258 		 * to unicast mode when doing writes of a specific instance.
259 		 *
260 		 * No need to save old steering reg value.
261 		 */
262 		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
263 				      REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
264 				      REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
265 				      (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
266 	} else if (GRAPHICS_VER(uncore->i915) >= 11) {
267 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
268 		mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
269 
270 		/*
271 		 * Wa_22013088509
272 		 *
273 		 * The setting of the multicast/unicast bit usually wouldn't
274 		 * matter for read operations (which always return the value
275 		 * from a single register instance regardless of how that bit
276 		 * is set), but some platforms have a workaround requiring us
277 		 * to remain in multicast mode for reads.  There's no real
278 		 * downside to this, so we'll just go ahead and do so on all
279 		 * platforms; we'll only clear the multicast bit from the mask
280 		 * when exlicitly doing a write operation.
281 		 */
282 		if (rw_flag == FW_REG_WRITE)
283 			mcr_mask |= GEN11_MCR_MULTICAST;
284 
285 		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
286 		old_mcr = mcr;
287 
288 		mcr &= ~mcr_mask;
289 		mcr |= mcr_ss;
290 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
291 	} else {
292 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
293 		mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
294 
295 		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
296 		old_mcr = mcr;
297 
298 		mcr &= ~mcr_mask;
299 		mcr |= mcr_ss;
300 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
301 	}
302 
303 	if (rw_flag == FW_REG_READ)
304 		val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
305 	else
306 		intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
307 
308 	/*
309 	 * For pre-MTL platforms, we need to restore the old value of the
310 	 * steering control register to ensure that implicit steering continues
311 	 * to behave as expected.  For MTL and beyond, we need only reinstate
312 	 * the 'multicast' bit (and only if we did a write that cleared it).
313 	 */
314 	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
315 		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
316 	else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
317 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
318 
319 	return val;
320 }
321 
322 static u32 rw_with_mcr_steering(struct intel_gt *gt,
323 				i915_mcr_reg_t reg, u8 rw_flag,
324 				int group, int instance,
325 				u32 value)
326 {
327 	struct intel_uncore *uncore = gt->uncore;
328 	enum forcewake_domains fw_domains;
329 	unsigned long flags;
330 	u32 val;
331 
332 	fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
333 						    rw_flag);
334 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
335 						     GEN8_MCR_SELECTOR,
336 						     FW_REG_READ | FW_REG_WRITE);
337 
338 	intel_gt_mcr_lock(gt, &flags);
339 	spin_lock(&uncore->lock);
340 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
341 
342 	val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value);
343 
344 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
345 	spin_unlock(&uncore->lock);
346 	intel_gt_mcr_unlock(gt, flags);
347 
348 	return val;
349 }
350 
351 /**
352  * intel_gt_mcr_lock - Acquire MCR steering lock
353  * @gt: GT structure
354  * @flags: storage to save IRQ flags to
355  *
356  * Performs locking to protect the steering for the duration of an MCR
357  * operation.  On MTL and beyond, a hardware lock will also be taken to
358  * serialize access not only for the driver, but also for external hardware and
359  * firmware agents.
360  *
361  * Context: Takes gt->mcr_lock.  uncore->lock should *not* be held when this
362  *          function is called, although it may be acquired after this
363  *          function call.
364  */
365 void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags)
366 	__acquires(&gt->mcr_lock)
367 {
368 	unsigned long __flags;
369 	int err = 0;
370 
371 	lockdep_assert_not_held(&gt->uncore->lock);
372 
373 	/*
374 	 * Starting with MTL, we need to coordinate not only with other
375 	 * driver threads, but also with hardware/firmware agents.  A dedicated
376 	 * locking register is used.
377 	 */
378 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
379 		/*
380 		 * The steering control and semaphore registers are inside an
381 		 * "always on" power domain with respect to RC6.  However there
382 		 * are some issues if higher-level platform sleep states are
383 		 * entering/exiting at the same time these registers are
384 		 * accessed.  Grabbing GT forcewake and holding it over the
385 		 * entire lock/steer/unlock cycle ensures that those sleep
386 		 * states have been fully exited before we access these
387 		 * registers.  This wakeref will be released in the unlock
388 		 * routine.
389 		 *
390 		 * This is expected to become a formally documented/numbered
391 		 * workaround soon.
392 		 */
393 		intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_GT);
394 
395 		err = wait_for(intel_uncore_read_fw(gt->uncore,
396 						    MTL_STEER_SEMAPHORE) == 0x1, 100);
397 	}
398 
399 	/*
400 	 * Even on platforms with a hardware lock, we'll continue to grab
401 	 * a software spinlock too for lockdep purposes.  If the hardware lock
402 	 * was already acquired, there should never be contention on the
403 	 * software lock.
404 	 */
405 	spin_lock_irqsave(&gt->mcr_lock, __flags);
406 
407 	*flags = __flags;
408 
409 	/*
410 	 * In theory we should never fail to acquire the HW semaphore; this
411 	 * would indicate some hardware/firmware is misbehaving and not
412 	 * releasing it properly.
413 	 */
414 	if (err == -ETIMEDOUT) {
415 		gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out");
416 		add_taint_for_CI(gt->i915, TAINT_WARN);  /* CI is now unreliable */
417 	}
418 }
419 
420 /**
421  * intel_gt_mcr_unlock - Release MCR steering lock
422  * @gt: GT structure
423  * @flags: IRQ flags to restore
424  *
425  * Releases the lock acquired by intel_gt_mcr_lock().
426  *
427  * Context: Releases gt->mcr_lock
428  */
429 void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags)
430 	__releases(&gt->mcr_lock)
431 {
432 	spin_unlock_irqrestore(&gt->mcr_lock, flags);
433 
434 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
435 		intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
436 
437 		intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_GT);
438 	}
439 }
440 
441 /**
442  * intel_gt_mcr_read - read a specific instance of an MCR register
443  * @gt: GT structure
444  * @reg: the MCR register to read
445  * @group: the MCR group
446  * @instance: the MCR instance
447  *
448  * Context: Takes and releases gt->mcr_lock
449  *
450  * Returns the value read from an MCR register after steering toward a specific
451  * group/instance.
452  */
453 u32 intel_gt_mcr_read(struct intel_gt *gt,
454 		      i915_mcr_reg_t reg,
455 		      int group, int instance)
456 {
457 	return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0);
458 }
459 
460 /**
461  * intel_gt_mcr_unicast_write - write a specific instance of an MCR register
462  * @gt: GT structure
463  * @reg: the MCR register to write
464  * @value: value to write
465  * @group: the MCR group
466  * @instance: the MCR instance
467  *
468  * Write an MCR register in unicast mode after steering toward a specific
469  * group/instance.
470  *
471  * Context: Calls a function that takes and releases gt->mcr_lock
472  */
473 void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
474 				int group, int instance)
475 {
476 	rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value);
477 }
478 
479 /**
480  * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
481  * @gt: GT structure
482  * @reg: the MCR register to write
483  * @value: value to write
484  *
485  * Write an MCR register in multicast mode to update all instances.
486  *
487  * Context: Takes and releases gt->mcr_lock
488  */
489 void intel_gt_mcr_multicast_write(struct intel_gt *gt,
490 				  i915_mcr_reg_t reg, u32 value)
491 {
492 	unsigned long flags;
493 
494 	intel_gt_mcr_lock(gt, &flags);
495 
496 	/*
497 	 * Ensure we have multicast behavior, just in case some non-i915 agent
498 	 * left the hardware in unicast mode.
499 	 */
500 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
501 		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
502 
503 	intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
504 
505 	intel_gt_mcr_unlock(gt, flags);
506 }
507 
508 /**
509  * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
510  * @gt: GT structure
511  * @reg: the MCR register to write
512  * @value: value to write
513  *
514  * Write an MCR register in multicast mode to update all instances.  This
515  * function assumes the caller is already holding any necessary forcewake
516  * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
517  * be obtained automatically.
518  *
519  * Context: The caller must hold gt->mcr_lock.
520  */
521 void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
522 {
523 	lockdep_assert_held(&gt->mcr_lock);
524 
525 	/*
526 	 * Ensure we have multicast behavior, just in case some non-i915 agent
527 	 * left the hardware in unicast mode.
528 	 */
529 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
530 		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
531 
532 	intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
533 }
534 
535 /**
536  * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
537  * @gt: GT structure
538  * @reg: the MCR register to read and write
539  * @clear: bits to clear during RMW
540  * @set: bits to set during RMW
541  *
542  * Performs a read-modify-write on an MCR register in a multicast manner.
543  * This operation only makes sense on MCR registers where all instances are
544  * expected to have the same value.  The read will target any non-terminated
545  * instance and the write will be applied to all instances.
546  *
547  * This function assumes the caller is already holding any necessary forcewake
548  * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
549  * be obtained automatically.
550  *
551  * Context: Calls functions that take and release gt->mcr_lock
552  *
553  * Returns the old (unmodified) value read.
554  */
555 u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
556 			       u32 clear, u32 set)
557 {
558 	u32 val = intel_gt_mcr_read_any(gt, reg);
559 
560 	intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
561 
562 	return val;
563 }
564 
565 /*
566  * reg_needs_read_steering - determine whether a register read requires
567  *     explicit steering
568  * @gt: GT structure
569  * @reg: the register to check steering requirements for
570  * @type: type of multicast steering to check
571  *
572  * Determines whether @reg needs explicit steering of a specific type for
573  * reads.
574  *
575  * Returns false if @reg does not belong to a register range of the given
576  * steering type, or if the default (subslice-based) steering IDs are suitable
577  * for @type steering too.
578  */
579 static bool reg_needs_read_steering(struct intel_gt *gt,
580 				    i915_mcr_reg_t reg,
581 				    enum intel_steering_type type)
582 {
583 	u32 offset = i915_mmio_reg_offset(reg);
584 	const struct intel_mmio_range *entry;
585 
586 	if (likely(!gt->steering_table[type]))
587 		return false;
588 
589 	if (IS_GSI_REG(offset))
590 		offset += gt->uncore->gsi_offset;
591 
592 	for (entry = gt->steering_table[type]; entry->end; entry++) {
593 		if (offset >= entry->start && offset <= entry->end)
594 			return true;
595 	}
596 
597 	return false;
598 }
599 
600 /*
601  * get_nonterminated_steering - determines valid IDs for a class of MCR steering
602  * @gt: GT structure
603  * @type: multicast register type
604  * @group: Group ID returned
605  * @instance: Instance ID returned
606  *
607  * Determines group and instance values that will steer reads of the specified
608  * MCR class to a non-terminated instance.
609  */
610 static void get_nonterminated_steering(struct intel_gt *gt,
611 				       enum intel_steering_type type,
612 				       u8 *group, u8 *instance)
613 {
614 	u32 dss;
615 
616 	switch (type) {
617 	case L3BANK:
618 		*group = 0;		/* unused */
619 		*instance = __ffs(gt->info.l3bank_mask);
620 		break;
621 	case MSLICE:
622 		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
623 		*group = __ffs(gt->info.mslice_mask);
624 		*instance = 0;	/* unused */
625 		break;
626 	case LNCF:
627 		/*
628 		 * An LNCF is always present if its mslice is present, so we
629 		 * can safely just steer to LNCF 0 in all cases.
630 		 */
631 		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
632 		*group = __ffs(gt->info.mslice_mask) << 1;
633 		*instance = 0;	/* unused */
634 		break;
635 	case GAM:
636 		*group = IS_DG2(gt->i915) ? 1 : 0;
637 		*instance = 0;
638 		break;
639 	case DSS:
640 		dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
641 		*group = dss / GEN_DSS_PER_GSLICE;
642 		*instance = dss % GEN_DSS_PER_GSLICE;
643 		break;
644 	case INSTANCE0:
645 		/*
646 		 * There are a lot of MCR types for which instance (0, 0)
647 		 * will always provide a non-terminated value.
648 		 */
649 		*group = 0;
650 		*instance = 0;
651 		break;
652 	case OADDRM:
653 		if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
654 			*group = 0;
655 		else
656 			*group = 1;
657 		*instance = 0;
658 		break;
659 	default:
660 		MISSING_CASE(type);
661 		*group = 0;
662 		*instance = 0;
663 	}
664 }
665 
666 /**
667  * intel_gt_mcr_get_nonterminated_steering - find group/instance values that
668  *    will steer a register to a non-terminated instance
669  * @gt: GT structure
670  * @reg: register for which the steering is required
671  * @group: return variable for group steering
672  * @instance: return variable for instance steering
673  *
674  * This function returns a group/instance pair that is guaranteed to work for
675  * read steering of the given register. Note that a value will be returned even
676  * if the register is not replicated and therefore does not actually require
677  * steering.
678  */
679 void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
680 					     i915_mcr_reg_t reg,
681 					     u8 *group, u8 *instance)
682 {
683 	int type;
684 
685 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
686 		if (reg_needs_read_steering(gt, reg, type)) {
687 			get_nonterminated_steering(gt, type, group, instance);
688 			return;
689 		}
690 	}
691 
692 	*group = gt->default_steering.groupid;
693 	*instance = gt->default_steering.instanceid;
694 }
695 
696 /**
697  * intel_gt_mcr_read_any_fw - reads one instance of an MCR register
698  * @gt: GT structure
699  * @reg: register to read
700  *
701  * Reads a GT MCR register.  The read will be steered to a non-terminated
702  * instance (i.e., one that isn't fused off or powered down by power gating).
703  * This function assumes the caller is already holding any necessary forcewake
704  * domains; use intel_gt_mcr_read_any() in cases where forcewake should be
705  * obtained automatically.
706  *
707  * Context: The caller must hold gt->mcr_lock.
708  *
709  * Returns the value from a non-terminated instance of @reg.
710  */
711 u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
712 {
713 	int type;
714 	u8 group, instance;
715 
716 	lockdep_assert_held(&gt->mcr_lock);
717 
718 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
719 		if (reg_needs_read_steering(gt, reg, type)) {
720 			get_nonterminated_steering(gt, type, &group, &instance);
721 			return rw_with_mcr_steering_fw(gt, reg,
722 						       FW_REG_READ,
723 						       group, instance, 0);
724 		}
725 	}
726 
727 	return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
728 }
729 
730 /**
731  * intel_gt_mcr_read_any - reads one instance of an MCR register
732  * @gt: GT structure
733  * @reg: register to read
734  *
735  * Reads a GT MCR register.  The read will be steered to a non-terminated
736  * instance (i.e., one that isn't fused off or powered down by power gating).
737  *
738  * Context: Calls a function that takes and releases gt->mcr_lock.
739  *
740  * Returns the value from a non-terminated instance of @reg.
741  */
742 u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
743 {
744 	int type;
745 	u8 group, instance;
746 
747 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
748 		if (reg_needs_read_steering(gt, reg, type)) {
749 			get_nonterminated_steering(gt, type, &group, &instance);
750 			return rw_with_mcr_steering(gt, reg,
751 						    FW_REG_READ,
752 						    group, instance, 0);
753 		}
754 	}
755 
756 	return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
757 }
758 
759 static void report_steering_type(struct drm_printer *p,
760 				 struct intel_gt *gt,
761 				 enum intel_steering_type type,
762 				 bool dump_table)
763 {
764 	const struct intel_mmio_range *entry;
765 	u8 group, instance;
766 
767 	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
768 
769 	if (!gt->steering_table[type]) {
770 		drm_printf(p, "%s steering: uses default steering\n",
771 			   intel_steering_types[type]);
772 		return;
773 	}
774 
775 	get_nonterminated_steering(gt, type, &group, &instance);
776 	drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
777 		   intel_steering_types[type], group, instance);
778 
779 	if (!dump_table)
780 		return;
781 
782 	for (entry = gt->steering_table[type]; entry->end; entry++)
783 		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
784 }
785 
786 void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
787 				  bool dump_table)
788 {
789 	/*
790 	 * Starting with MTL we no longer have default steering;
791 	 * all ranges are explicitly steered.
792 	 */
793 	if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
794 		drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
795 			   gt->default_steering.groupid,
796 			   gt->default_steering.instanceid);
797 
798 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
799 		for (int i = 0; i < NUM_STEERING_TYPES; i++)
800 			if (gt->steering_table[i])
801 				report_steering_type(p, gt, i, dump_table);
802 	} else if (IS_PONTEVECCHIO(gt->i915)) {
803 		report_steering_type(p, gt, INSTANCE0, dump_table);
804 	} else if (HAS_MSLICE_STEERING(gt->i915)) {
805 		report_steering_type(p, gt, MSLICE, dump_table);
806 		report_steering_type(p, gt, LNCF, dump_table);
807 	}
808 }
809 
810 /**
811  * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
812  * @gt: GT structure
813  * @dss: DSS ID to obtain steering for
814  * @group: pointer to storage for steering group ID
815  * @instance: pointer to storage for steering instance ID
816  *
817  * Returns the steering IDs (via the @group and @instance parameters) that
818  * correspond to a specific subslice/DSS ID.
819  */
820 void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
821 				   unsigned int *group, unsigned int *instance)
822 {
823 	if (IS_PONTEVECCHIO(gt->i915)) {
824 		*group = dss / GEN_DSS_PER_CSLICE;
825 		*instance = dss % GEN_DSS_PER_CSLICE;
826 	} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) {
827 		*group = dss / GEN_DSS_PER_GSLICE;
828 		*instance = dss % GEN_DSS_PER_GSLICE;
829 	} else {
830 		*group = dss / GEN_MAX_SS_PER_HSW_SLICE;
831 		*instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
832 		return;
833 	}
834 }
835 
836 /**
837  * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
838  * @gt: GT structure
839  * @reg: the register to read
840  * @mask: mask to apply to register value
841  * @value: value to wait for
842  * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
843  * @slow_timeout_ms: slow timeout in millisecond
844  *
845  * This routine waits until the target register @reg contains the expected
846  * @value after applying the @mask, i.e. it waits until ::
847  *
848  *     (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
849  *
850  * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
851  * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
852  * must be not larger than 20,0000 microseconds.
853  *
854  * This function is basically an MCR-friendly version of
855  * __intel_wait_for_register_fw().  Generally this function will only be used
856  * on GAM registers which are a bit special --- although they're MCR registers,
857  * reads (e.g., waiting for status updates) are always directed to the primary
858  * instance.
859  *
860  * Note that this routine assumes the caller holds forcewake asserted, it is
861  * not suitable for very long waits.
862  *
863  * Context: Calls a function that takes and releases gt->mcr_lock
864  * Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
865  */
866 int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
867 			      i915_mcr_reg_t reg,
868 			      u32 mask,
869 			      u32 value,
870 			      unsigned int fast_timeout_us,
871 			      unsigned int slow_timeout_ms)
872 {
873 	int ret;
874 
875 	lockdep_assert_not_held(&gt->mcr_lock);
876 
877 #define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
878 
879 	/* Catch any overuse of this function */
880 	might_sleep_if(slow_timeout_ms);
881 	GEM_BUG_ON(fast_timeout_us > 20000);
882 	GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
883 
884 	ret = -ETIMEDOUT;
885 	if (fast_timeout_us && fast_timeout_us <= 20000)
886 		ret = _wait_for_atomic(done, fast_timeout_us, 0);
887 	if (ret && slow_timeout_ms)
888 		ret = wait_for(done, slow_timeout_ms);
889 
890 	return ret;
891 #undef done
892 }
893