1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 
8 #include "intel_gt_mcr.h"
9 #include "intel_gt_print.h"
10 #include "intel_gt_regs.h"
11 
12 /**
13  * DOC: GT Multicast/Replicated (MCR) Register Support
14  *
15  * Some GT registers are designed as "multicast" or "replicated" registers:
16  * multiple instances of the same register share a single MMIO offset.  MCR
17  * registers are generally used when the hardware needs to potentially track
18  * independent values of a register per hardware unit (e.g., per-subslice,
19  * per-L3bank, etc.).  The specific types of replication that exist vary
20  * per-platform.
21  *
22  * MMIO accesses to MCR registers are controlled according to the settings
23  * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
24  * registers can be done in either a (i.e., a single write updates all
25  * instances of the register to the same value) or unicast (a write updates only
26  * one specific instance).  Reads of MCR registers always operate in a unicast
27  * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
28  * Selection of a specific MCR instance for unicast operations is referred to
29  * as "steering."
30  *
31  * If MCR register operations are steered toward a hardware unit that is
32  * fused off or currently powered down due to power gating, the MMIO operation
33  * is "terminated" by the hardware.  Terminated read operations will return a
34  * value of zero and terminated unicast write operations will be silently
35  * ignored.
36  */
37 
38 #define HAS_MSLICE_STEERING(i915)	(INTEL_INFO(i915)->has_mslice_steering)
39 
40 static const char * const intel_steering_types[] = {
41 	"L3BANK",
42 	"MSLICE",
43 	"LNCF",
44 	"GAM",
45 	"DSS",
46 	"OADDRM",
47 	"INSTANCE 0",
48 };
49 
50 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
51 	{ 0x00B100, 0x00B3FF },
52 	{},
53 };
54 
55 /*
56  * Although the bspec lists more "MSLICE" ranges than shown here, some of those
57  * are of a "GAM" subclass that has special rules.  Thus we use a separate
58  * GAM table farther down for those.
59  */
60 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
61 	{ 0x00DD00, 0x00DDFF },
62 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
63 	{},
64 };
65 
66 static const struct intel_mmio_range xehpsdv_gam_steering_table[] = {
67 	{ 0x004000, 0x004AFF },
68 	{ 0x00C800, 0x00CFFF },
69 	{},
70 };
71 
72 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
73 	{ 0x00B000, 0x00B0FF },
74 	{ 0x00D800, 0x00D8FF },
75 	{},
76 };
77 
78 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
79 	{ 0x00B000, 0x00B0FF },
80 	{ 0x00D880, 0x00D8FF },
81 	{},
82 };
83 
84 /*
85  * We have several types of MCR registers on PVC where steering to (0,0)
86  * will always provide us with a non-terminated value.  We'll stick them
87  * all in the same table for simplicity.
88  */
89 static const struct intel_mmio_range pvc_instance0_steering_table[] = {
90 	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
91 	{ 0x008800, 0x00887F },		/* CC */
92 	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
93 	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
94 	{ 0x00B100, 0x00B3FF },		/* L3BANK */
95 	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
96 	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
97 	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
98 	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
99 	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
100 	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
101 	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
102 	{},
103 };
104 
105 static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
106 	{ 0x000B00, 0x000BFF },         /* SQIDI */
107 	{ 0x001000, 0x001FFF },         /* SQIDI */
108 	{ 0x004000, 0x0048FF },         /* GAM */
109 	{ 0x008700, 0x0087FF },         /* SQIDI */
110 	{ 0x00B000, 0x00B0FF },         /* NODE */
111 	{ 0x00C800, 0x00CFFF },         /* GAM */
112 	{ 0x00D880, 0x00D8FF },         /* NODE */
113 	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
114 	{},
115 };
116 
117 static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
118 	{ 0x00B100, 0x00B3FF },
119 	{},
120 };
121 
122 /* DSS steering is used for SLICE ranges as well */
123 static const struct intel_mmio_range xelpg_dss_steering_table[] = {
124 	{ 0x005200, 0x0052FF },		/* SLICE */
125 	{ 0x005500, 0x007FFF },		/* SLICE */
126 	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
127 	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
128 	{ 0x009680, 0x0096FF },		/* DSS */
129 	{ 0x00D800, 0x00D87F },		/* SLICE */
130 	{ 0x00DC00, 0x00DCFF },		/* SLICE */
131 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
132 	{},
133 };
134 
135 static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
136 	{ 0x393200, 0x39323F },
137 	{ 0x393400, 0x3934FF },
138 	{},
139 };
140 
141 void intel_gt_mcr_init(struct intel_gt *gt)
142 {
143 	struct drm_i915_private *i915 = gt->i915;
144 	unsigned long fuse;
145 	int i;
146 
147 	spin_lock_init(&gt->mcr_lock);
148 
149 	/*
150 	 * An mslice is unavailable only if both the meml3 for the slice is
151 	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
152 	 */
153 	if (HAS_MSLICE_STEERING(i915)) {
154 		gt->info.mslice_mask =
155 			intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
156 							  GEN_DSS_PER_MSLICE);
157 		gt->info.mslice_mask |=
158 			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
159 			 GEN12_MEML3_EN_MASK);
160 
161 		if (!gt->info.mslice_mask) /* should be impossible! */
162 			gt_warn(gt, "mslice mask all zero!\n");
163 	}
164 
165 	if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
166 		gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
167 	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
168 		/* Wa_14016747170 */
169 		if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
170 		    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
171 			fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK,
172 					     intel_uncore_read(gt->uncore,
173 							       MTL_GT_ACTIVITY_FACTOR));
174 		else
175 			fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
176 					     intel_uncore_read(gt->uncore, XEHP_FUSE4));
177 
178 		/*
179 		 * Despite the register field being named "exclude mask" the
180 		 * bits actually represent enabled banks (two banks per bit).
181 		 */
182 		for_each_set_bit(i, &fuse, 3)
183 			gt->info.l3bank_mask |= 0x3 << 2 * i;
184 
185 		gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
186 		gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
187 		gt->steering_table[DSS] = xelpg_dss_steering_table;
188 	} else if (IS_PONTEVECCHIO(i915)) {
189 		gt->steering_table[INSTANCE0] = pvc_instance0_steering_table;
190 	} else if (IS_DG2(i915)) {
191 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
192 		gt->steering_table[LNCF] = dg2_lncf_steering_table;
193 		/*
194 		 * No need to hook up the GAM table since it has a dedicated
195 		 * steering control register on DG2 and can use implicit
196 		 * steering.
197 		 */
198 	} else if (IS_XEHPSDV(i915)) {
199 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
200 		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
201 		gt->steering_table[GAM] = xehpsdv_gam_steering_table;
202 	} else if (GRAPHICS_VER(i915) >= 11 &&
203 		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
204 		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
205 		gt->info.l3bank_mask =
206 			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
207 			GEN10_L3BANK_MASK;
208 		if (!gt->info.l3bank_mask) /* should be impossible! */
209 			gt_warn(gt, "L3 bank mask is all zero!\n");
210 	} else if (GRAPHICS_VER(i915) >= 11) {
211 		/*
212 		 * We expect all modern platforms to have at least some
213 		 * type of steering that needs to be initialized.
214 		 */
215 		MISSING_CASE(INTEL_INFO(i915)->platform);
216 	}
217 }
218 
219 /*
220  * Although the rest of the driver should use MCR-specific functions to
221  * read/write MCR registers, we still use the regular intel_uncore_* functions
222  * internally to implement those, so we need a way for the functions in this
223  * file to "cast" an i915_mcr_reg_t into an i915_reg_t.
224  */
225 static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
226 {
227 	i915_reg_t r = { .reg = mcr.reg };
228 
229 	return r;
230 }
231 
232 /*
233  * rw_with_mcr_steering_fw - Access a register with specific MCR steering
234  * @gt: GT to read register from
235  * @reg: register being accessed
236  * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
237  * @group: group number (documented as "sliceid" on older platforms)
238  * @instance: instance number (documented as "subsliceid" on older platforms)
239  * @value: register value to be written (ignored for read)
240  *
241  * Context: The caller must hold the MCR lock
242  * Return: 0 for write access. register value for read access.
243  *
244  * Caller needs to make sure the relevant forcewake wells are up.
245  */
246 static u32 rw_with_mcr_steering_fw(struct intel_gt *gt,
247 				   i915_mcr_reg_t reg, u8 rw_flag,
248 				   int group, int instance, u32 value)
249 {
250 	struct intel_uncore *uncore = gt->uncore;
251 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
252 
253 	lockdep_assert_held(&gt->mcr_lock);
254 
255 	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
256 		/*
257 		 * Always leave the hardware in multicast mode when doing reads
258 		 * (see comment about Wa_22013088509 below) and only change it
259 		 * to unicast mode when doing writes of a specific instance.
260 		 *
261 		 * No need to save old steering reg value.
262 		 */
263 		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
264 				      REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
265 				      REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
266 				      (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
267 	} else if (GRAPHICS_VER(uncore->i915) >= 11) {
268 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
269 		mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
270 
271 		/*
272 		 * Wa_22013088509
273 		 *
274 		 * The setting of the multicast/unicast bit usually wouldn't
275 		 * matter for read operations (which always return the value
276 		 * from a single register instance regardless of how that bit
277 		 * is set), but some platforms have a workaround requiring us
278 		 * to remain in multicast mode for reads.  There's no real
279 		 * downside to this, so we'll just go ahead and do so on all
280 		 * platforms; we'll only clear the multicast bit from the mask
281 		 * when exlicitly doing a write operation.
282 		 */
283 		if (rw_flag == FW_REG_WRITE)
284 			mcr_mask |= GEN11_MCR_MULTICAST;
285 
286 		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
287 		old_mcr = mcr;
288 
289 		mcr &= ~mcr_mask;
290 		mcr |= mcr_ss;
291 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
292 	} else {
293 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
294 		mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
295 
296 		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
297 		old_mcr = mcr;
298 
299 		mcr &= ~mcr_mask;
300 		mcr |= mcr_ss;
301 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
302 	}
303 
304 	if (rw_flag == FW_REG_READ)
305 		val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
306 	else
307 		intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
308 
309 	/*
310 	 * For pre-MTL platforms, we need to restore the old value of the
311 	 * steering control register to ensure that implicit steering continues
312 	 * to behave as expected.  For MTL and beyond, we need only reinstate
313 	 * the 'multicast' bit (and only if we did a write that cleared it).
314 	 */
315 	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
316 		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
317 	else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
318 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
319 
320 	return val;
321 }
322 
323 static u32 rw_with_mcr_steering(struct intel_gt *gt,
324 				i915_mcr_reg_t reg, u8 rw_flag,
325 				int group, int instance,
326 				u32 value)
327 {
328 	struct intel_uncore *uncore = gt->uncore;
329 	enum forcewake_domains fw_domains;
330 	unsigned long flags;
331 	u32 val;
332 
333 	fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
334 						    rw_flag);
335 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
336 						     GEN8_MCR_SELECTOR,
337 						     FW_REG_READ | FW_REG_WRITE);
338 
339 	intel_gt_mcr_lock(gt, &flags);
340 	spin_lock(&uncore->lock);
341 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
342 
343 	val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value);
344 
345 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
346 	spin_unlock(&uncore->lock);
347 	intel_gt_mcr_unlock(gt, flags);
348 
349 	return val;
350 }
351 
352 /**
353  * intel_gt_mcr_lock - Acquire MCR steering lock
354  * @gt: GT structure
355  * @flags: storage to save IRQ flags to
356  *
357  * Performs locking to protect the steering for the duration of an MCR
358  * operation.  On MTL and beyond, a hardware lock will also be taken to
359  * serialize access not only for the driver, but also for external hardware and
360  * firmware agents.
361  *
362  * Context: Takes gt->mcr_lock.  uncore->lock should *not* be held when this
363  *          function is called, although it may be acquired after this
364  *          function call.
365  */
366 void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags)
367 	__acquires(&gt->mcr_lock)
368 {
369 	unsigned long __flags;
370 	int err = 0;
371 
372 	lockdep_assert_not_held(&gt->uncore->lock);
373 
374 	/*
375 	 * Starting with MTL, we need to coordinate not only with other
376 	 * driver threads, but also with hardware/firmware agents.  A dedicated
377 	 * locking register is used.
378 	 */
379 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
380 		/*
381 		 * The steering control and semaphore registers are inside an
382 		 * "always on" power domain with respect to RC6.  However there
383 		 * are some issues if higher-level platform sleep states are
384 		 * entering/exiting at the same time these registers are
385 		 * accessed.  Grabbing GT forcewake and holding it over the
386 		 * entire lock/steer/unlock cycle ensures that those sleep
387 		 * states have been fully exited before we access these
388 		 * registers.  This wakeref will be released in the unlock
389 		 * routine.
390 		 *
391 		 * This is expected to become a formally documented/numbered
392 		 * workaround soon.
393 		 */
394 		intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_GT);
395 
396 		err = wait_for(intel_uncore_read_fw(gt->uncore,
397 						    MTL_STEER_SEMAPHORE) == 0x1, 100);
398 	}
399 
400 	/*
401 	 * Even on platforms with a hardware lock, we'll continue to grab
402 	 * a software spinlock too for lockdep purposes.  If the hardware lock
403 	 * was already acquired, there should never be contention on the
404 	 * software lock.
405 	 */
406 	spin_lock_irqsave(&gt->mcr_lock, __flags);
407 
408 	*flags = __flags;
409 
410 	/*
411 	 * In theory we should never fail to acquire the HW semaphore; this
412 	 * would indicate some hardware/firmware is misbehaving and not
413 	 * releasing it properly.
414 	 */
415 	if (err == -ETIMEDOUT) {
416 		gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out");
417 		add_taint_for_CI(gt->i915, TAINT_WARN);  /* CI is now unreliable */
418 	}
419 }
420 
421 /**
422  * intel_gt_mcr_unlock - Release MCR steering lock
423  * @gt: GT structure
424  * @flags: IRQ flags to restore
425  *
426  * Releases the lock acquired by intel_gt_mcr_lock().
427  *
428  * Context: Releases gt->mcr_lock
429  */
430 void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags)
431 	__releases(&gt->mcr_lock)
432 {
433 	spin_unlock_irqrestore(&gt->mcr_lock, flags);
434 
435 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
436 		intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
437 
438 		intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_GT);
439 	}
440 }
441 
442 /**
443  * intel_gt_mcr_read - read a specific instance of an MCR register
444  * @gt: GT structure
445  * @reg: the MCR register to read
446  * @group: the MCR group
447  * @instance: the MCR instance
448  *
449  * Context: Takes and releases gt->mcr_lock
450  *
451  * Returns the value read from an MCR register after steering toward a specific
452  * group/instance.
453  */
454 u32 intel_gt_mcr_read(struct intel_gt *gt,
455 		      i915_mcr_reg_t reg,
456 		      int group, int instance)
457 {
458 	return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0);
459 }
460 
461 /**
462  * intel_gt_mcr_unicast_write - write a specific instance of an MCR register
463  * @gt: GT structure
464  * @reg: the MCR register to write
465  * @value: value to write
466  * @group: the MCR group
467  * @instance: the MCR instance
468  *
469  * Write an MCR register in unicast mode after steering toward a specific
470  * group/instance.
471  *
472  * Context: Calls a function that takes and releases gt->mcr_lock
473  */
474 void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
475 				int group, int instance)
476 {
477 	rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value);
478 }
479 
480 /**
481  * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
482  * @gt: GT structure
483  * @reg: the MCR register to write
484  * @value: value to write
485  *
486  * Write an MCR register in multicast mode to update all instances.
487  *
488  * Context: Takes and releases gt->mcr_lock
489  */
490 void intel_gt_mcr_multicast_write(struct intel_gt *gt,
491 				  i915_mcr_reg_t reg, u32 value)
492 {
493 	unsigned long flags;
494 
495 	intel_gt_mcr_lock(gt, &flags);
496 
497 	/*
498 	 * Ensure we have multicast behavior, just in case some non-i915 agent
499 	 * left the hardware in unicast mode.
500 	 */
501 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
502 		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
503 
504 	intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
505 
506 	intel_gt_mcr_unlock(gt, flags);
507 }
508 
509 /**
510  * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
511  * @gt: GT structure
512  * @reg: the MCR register to write
513  * @value: value to write
514  *
515  * Write an MCR register in multicast mode to update all instances.  This
516  * function assumes the caller is already holding any necessary forcewake
517  * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
518  * be obtained automatically.
519  *
520  * Context: The caller must hold gt->mcr_lock.
521  */
522 void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
523 {
524 	lockdep_assert_held(&gt->mcr_lock);
525 
526 	/*
527 	 * Ensure we have multicast behavior, just in case some non-i915 agent
528 	 * left the hardware in unicast mode.
529 	 */
530 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
531 		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
532 
533 	intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
534 }
535 
536 /**
537  * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
538  * @gt: GT structure
539  * @reg: the MCR register to read and write
540  * @clear: bits to clear during RMW
541  * @set: bits to set during RMW
542  *
543  * Performs a read-modify-write on an MCR register in a multicast manner.
544  * This operation only makes sense on MCR registers where all instances are
545  * expected to have the same value.  The read will target any non-terminated
546  * instance and the write will be applied to all instances.
547  *
548  * This function assumes the caller is already holding any necessary forcewake
549  * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
550  * be obtained automatically.
551  *
552  * Context: Calls functions that take and release gt->mcr_lock
553  *
554  * Returns the old (unmodified) value read.
555  */
556 u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
557 			       u32 clear, u32 set)
558 {
559 	u32 val = intel_gt_mcr_read_any(gt, reg);
560 
561 	intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
562 
563 	return val;
564 }
565 
566 /*
567  * reg_needs_read_steering - determine whether a register read requires
568  *     explicit steering
569  * @gt: GT structure
570  * @reg: the register to check steering requirements for
571  * @type: type of multicast steering to check
572  *
573  * Determines whether @reg needs explicit steering of a specific type for
574  * reads.
575  *
576  * Returns false if @reg does not belong to a register range of the given
577  * steering type, or if the default (subslice-based) steering IDs are suitable
578  * for @type steering too.
579  */
580 static bool reg_needs_read_steering(struct intel_gt *gt,
581 				    i915_mcr_reg_t reg,
582 				    enum intel_steering_type type)
583 {
584 	u32 offset = i915_mmio_reg_offset(reg);
585 	const struct intel_mmio_range *entry;
586 
587 	if (likely(!gt->steering_table[type]))
588 		return false;
589 
590 	if (IS_GSI_REG(offset))
591 		offset += gt->uncore->gsi_offset;
592 
593 	for (entry = gt->steering_table[type]; entry->end; entry++) {
594 		if (offset >= entry->start && offset <= entry->end)
595 			return true;
596 	}
597 
598 	return false;
599 }
600 
601 /*
602  * get_nonterminated_steering - determines valid IDs for a class of MCR steering
603  * @gt: GT structure
604  * @type: multicast register type
605  * @group: Group ID returned
606  * @instance: Instance ID returned
607  *
608  * Determines group and instance values that will steer reads of the specified
609  * MCR class to a non-terminated instance.
610  */
611 static void get_nonterminated_steering(struct intel_gt *gt,
612 				       enum intel_steering_type type,
613 				       u8 *group, u8 *instance)
614 {
615 	u32 dss;
616 
617 	switch (type) {
618 	case L3BANK:
619 		*group = 0;		/* unused */
620 		*instance = __ffs(gt->info.l3bank_mask);
621 		break;
622 	case MSLICE:
623 		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
624 		*group = __ffs(gt->info.mslice_mask);
625 		*instance = 0;	/* unused */
626 		break;
627 	case LNCF:
628 		/*
629 		 * An LNCF is always present if its mslice is present, so we
630 		 * can safely just steer to LNCF 0 in all cases.
631 		 */
632 		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
633 		*group = __ffs(gt->info.mslice_mask) << 1;
634 		*instance = 0;	/* unused */
635 		break;
636 	case GAM:
637 		*group = IS_DG2(gt->i915) ? 1 : 0;
638 		*instance = 0;
639 		break;
640 	case DSS:
641 		dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
642 		*group = dss / GEN_DSS_PER_GSLICE;
643 		*instance = dss % GEN_DSS_PER_GSLICE;
644 		break;
645 	case INSTANCE0:
646 		/*
647 		 * There are a lot of MCR types for which instance (0, 0)
648 		 * will always provide a non-terminated value.
649 		 */
650 		*group = 0;
651 		*instance = 0;
652 		break;
653 	case OADDRM:
654 		if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
655 			*group = 0;
656 		else
657 			*group = 1;
658 		*instance = 0;
659 		break;
660 	default:
661 		MISSING_CASE(type);
662 		*group = 0;
663 		*instance = 0;
664 	}
665 }
666 
667 /**
668  * intel_gt_mcr_get_nonterminated_steering - find group/instance values that
669  *    will steer a register to a non-terminated instance
670  * @gt: GT structure
671  * @reg: register for which the steering is required
672  * @group: return variable for group steering
673  * @instance: return variable for instance steering
674  *
675  * This function returns a group/instance pair that is guaranteed to work for
676  * read steering of the given register. Note that a value will be returned even
677  * if the register is not replicated and therefore does not actually require
678  * steering.
679  */
680 void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
681 					     i915_mcr_reg_t reg,
682 					     u8 *group, u8 *instance)
683 {
684 	int type;
685 
686 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
687 		if (reg_needs_read_steering(gt, reg, type)) {
688 			get_nonterminated_steering(gt, type, group, instance);
689 			return;
690 		}
691 	}
692 
693 	*group = gt->default_steering.groupid;
694 	*instance = gt->default_steering.instanceid;
695 }
696 
697 /**
698  * intel_gt_mcr_read_any_fw - reads one instance of an MCR register
699  * @gt: GT structure
700  * @reg: register to read
701  *
702  * Reads a GT MCR register.  The read will be steered to a non-terminated
703  * instance (i.e., one that isn't fused off or powered down by power gating).
704  * This function assumes the caller is already holding any necessary forcewake
705  * domains; use intel_gt_mcr_read_any() in cases where forcewake should be
706  * obtained automatically.
707  *
708  * Context: The caller must hold gt->mcr_lock.
709  *
710  * Returns the value from a non-terminated instance of @reg.
711  */
712 u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
713 {
714 	int type;
715 	u8 group, instance;
716 
717 	lockdep_assert_held(&gt->mcr_lock);
718 
719 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
720 		if (reg_needs_read_steering(gt, reg, type)) {
721 			get_nonterminated_steering(gt, type, &group, &instance);
722 			return rw_with_mcr_steering_fw(gt, reg,
723 						       FW_REG_READ,
724 						       group, instance, 0);
725 		}
726 	}
727 
728 	return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
729 }
730 
731 /**
732  * intel_gt_mcr_read_any - reads one instance of an MCR register
733  * @gt: GT structure
734  * @reg: register to read
735  *
736  * Reads a GT MCR register.  The read will be steered to a non-terminated
737  * instance (i.e., one that isn't fused off or powered down by power gating).
738  *
739  * Context: Calls a function that takes and releases gt->mcr_lock.
740  *
741  * Returns the value from a non-terminated instance of @reg.
742  */
743 u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
744 {
745 	int type;
746 	u8 group, instance;
747 
748 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
749 		if (reg_needs_read_steering(gt, reg, type)) {
750 			get_nonterminated_steering(gt, type, &group, &instance);
751 			return rw_with_mcr_steering(gt, reg,
752 						    FW_REG_READ,
753 						    group, instance, 0);
754 		}
755 	}
756 
757 	return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
758 }
759 
760 static void report_steering_type(struct drm_printer *p,
761 				 struct intel_gt *gt,
762 				 enum intel_steering_type type,
763 				 bool dump_table)
764 {
765 	const struct intel_mmio_range *entry;
766 	u8 group, instance;
767 
768 	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
769 
770 	if (!gt->steering_table[type]) {
771 		drm_printf(p, "%s steering: uses default steering\n",
772 			   intel_steering_types[type]);
773 		return;
774 	}
775 
776 	get_nonterminated_steering(gt, type, &group, &instance);
777 	drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
778 		   intel_steering_types[type], group, instance);
779 
780 	if (!dump_table)
781 		return;
782 
783 	for (entry = gt->steering_table[type]; entry->end; entry++)
784 		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
785 }
786 
787 void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
788 				  bool dump_table)
789 {
790 	/*
791 	 * Starting with MTL we no longer have default steering;
792 	 * all ranges are explicitly steered.
793 	 */
794 	if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
795 		drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
796 			   gt->default_steering.groupid,
797 			   gt->default_steering.instanceid);
798 
799 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
800 		for (int i = 0; i < NUM_STEERING_TYPES; i++)
801 			if (gt->steering_table[i])
802 				report_steering_type(p, gt, i, dump_table);
803 	} else if (IS_PONTEVECCHIO(gt->i915)) {
804 		report_steering_type(p, gt, INSTANCE0, dump_table);
805 	} else if (HAS_MSLICE_STEERING(gt->i915)) {
806 		report_steering_type(p, gt, MSLICE, dump_table);
807 		report_steering_type(p, gt, LNCF, dump_table);
808 	}
809 }
810 
811 /**
812  * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
813  * @gt: GT structure
814  * @dss: DSS ID to obtain steering for
815  * @group: pointer to storage for steering group ID
816  * @instance: pointer to storage for steering instance ID
817  *
818  * Returns the steering IDs (via the @group and @instance parameters) that
819  * correspond to a specific subslice/DSS ID.
820  */
821 void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
822 				   unsigned int *group, unsigned int *instance)
823 {
824 	if (IS_PONTEVECCHIO(gt->i915)) {
825 		*group = dss / GEN_DSS_PER_CSLICE;
826 		*instance = dss % GEN_DSS_PER_CSLICE;
827 	} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) {
828 		*group = dss / GEN_DSS_PER_GSLICE;
829 		*instance = dss % GEN_DSS_PER_GSLICE;
830 	} else {
831 		*group = dss / GEN_MAX_SS_PER_HSW_SLICE;
832 		*instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
833 		return;
834 	}
835 }
836 
837 /**
838  * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
839  * @gt: GT structure
840  * @reg: the register to read
841  * @mask: mask to apply to register value
842  * @value: value to wait for
843  * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
844  * @slow_timeout_ms: slow timeout in millisecond
845  *
846  * This routine waits until the target register @reg contains the expected
847  * @value after applying the @mask, i.e. it waits until ::
848  *
849  *     (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
850  *
851  * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
852  * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
853  * must be not larger than 20,0000 microseconds.
854  *
855  * This function is basically an MCR-friendly version of
856  * __intel_wait_for_register_fw().  Generally this function will only be used
857  * on GAM registers which are a bit special --- although they're MCR registers,
858  * reads (e.g., waiting for status updates) are always directed to the primary
859  * instance.
860  *
861  * Note that this routine assumes the caller holds forcewake asserted, it is
862  * not suitable for very long waits.
863  *
864  * Context: Calls a function that takes and releases gt->mcr_lock
865  * Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
866  */
867 int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
868 			      i915_mcr_reg_t reg,
869 			      u32 mask,
870 			      u32 value,
871 			      unsigned int fast_timeout_us,
872 			      unsigned int slow_timeout_ms)
873 {
874 	int ret;
875 
876 	lockdep_assert_not_held(&gt->mcr_lock);
877 
878 #define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
879 
880 	/* Catch any overuse of this function */
881 	might_sleep_if(slow_timeout_ms);
882 	GEM_BUG_ON(fast_timeout_us > 20000);
883 	GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
884 
885 	ret = -ETIMEDOUT;
886 	if (fast_timeout_us && fast_timeout_us <= 20000)
887 		ret = _wait_for_atomic(done, fast_timeout_us, 0);
888 	if (ret && slow_timeout_ms)
889 		ret = wait_for(done, slow_timeout_ms);
890 
891 	return ret;
892 #undef done
893 }
894