1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2022 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 8 #include "intel_gt_mcr.h" 9 #include "intel_gt_print.h" 10 #include "intel_gt_regs.h" 11 12 /** 13 * DOC: GT Multicast/Replicated (MCR) Register Support 14 * 15 * Some GT registers are designed as "multicast" or "replicated" registers: 16 * multiple instances of the same register share a single MMIO offset. MCR 17 * registers are generally used when the hardware needs to potentially track 18 * independent values of a register per hardware unit (e.g., per-subslice, 19 * per-L3bank, etc.). The specific types of replication that exist vary 20 * per-platform. 21 * 22 * MMIO accesses to MCR registers are controlled according to the settings 23 * programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR 24 * registers can be done in either a (i.e., a single write updates all 25 * instances of the register to the same value) or unicast (a write updates only 26 * one specific instance). Reads of MCR registers always operate in a unicast 27 * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR. 28 * Selection of a specific MCR instance for unicast operations is referred to 29 * as "steering." 30 * 31 * If MCR register operations are steered toward a hardware unit that is 32 * fused off or currently powered down due to power gating, the MMIO operation 33 * is "terminated" by the hardware. Terminated read operations will return a 34 * value of zero and terminated unicast write operations will be silently 35 * ignored. 36 */ 37 38 #define HAS_MSLICE_STEERING(i915) (INTEL_INFO(i915)->has_mslice_steering) 39 40 static const char * const intel_steering_types[] = { 41 "L3BANK", 42 "MSLICE", 43 "LNCF", 44 "GAM", 45 "DSS", 46 "OADDRM", 47 "INSTANCE 0", 48 }; 49 50 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 51 { 0x00B100, 0x00B3FF }, 52 {}, 53 }; 54 55 /* 56 * Although the bspec lists more "MSLICE" ranges than shown here, some of those 57 * are of a "GAM" subclass that has special rules. Thus we use a separate 58 * GAM table farther down for those. 59 */ 60 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 61 { 0x00DD00, 0x00DDFF }, 62 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 63 {}, 64 }; 65 66 static const struct intel_mmio_range xehpsdv_gam_steering_table[] = { 67 { 0x004000, 0x004AFF }, 68 { 0x00C800, 0x00CFFF }, 69 {}, 70 }; 71 72 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 73 { 0x00B000, 0x00B0FF }, 74 { 0x00D800, 0x00D8FF }, 75 {}, 76 }; 77 78 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 79 { 0x00B000, 0x00B0FF }, 80 { 0x00D880, 0x00D8FF }, 81 {}, 82 }; 83 84 /* 85 * We have several types of MCR registers on PVC where steering to (0,0) 86 * will always provide us with a non-terminated value. We'll stick them 87 * all in the same table for simplicity. 88 */ 89 static const struct intel_mmio_range pvc_instance0_steering_table[] = { 90 { 0x004000, 0x004AFF }, /* HALF-BSLICE */ 91 { 0x008800, 0x00887F }, /* CC */ 92 { 0x008A80, 0x008AFF }, /* TILEPSMI */ 93 { 0x00B000, 0x00B0FF }, /* HALF-BSLICE */ 94 { 0x00B100, 0x00B3FF }, /* L3BANK */ 95 { 0x00C800, 0x00CFFF }, /* HALF-BSLICE */ 96 { 0x00D800, 0x00D8FF }, /* HALF-BSLICE */ 97 { 0x00DD00, 0x00DDFF }, /* BSLICE */ 98 { 0x00E900, 0x00E9FF }, /* HALF-BSLICE */ 99 { 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */ 100 { 0x00F000, 0x00FFFF }, /* HALF-BSLICE */ 101 { 0x024180, 0x0241FF }, /* HALF-BSLICE */ 102 {}, 103 }; 104 105 static const struct intel_mmio_range xelpg_instance0_steering_table[] = { 106 { 0x000B00, 0x000BFF }, /* SQIDI */ 107 { 0x001000, 0x001FFF }, /* SQIDI */ 108 { 0x004000, 0x0048FF }, /* GAM */ 109 { 0x008700, 0x0087FF }, /* SQIDI */ 110 { 0x00B000, 0x00B0FF }, /* NODE */ 111 { 0x00C800, 0x00CFFF }, /* GAM */ 112 { 0x00D880, 0x00D8FF }, /* NODE */ 113 { 0x00DD00, 0x00DDFF }, /* OAAL2 */ 114 {}, 115 }; 116 117 static const struct intel_mmio_range xelpg_l3bank_steering_table[] = { 118 { 0x00B100, 0x00B3FF }, 119 {}, 120 }; 121 122 /* DSS steering is used for SLICE ranges as well */ 123 static const struct intel_mmio_range xelpg_dss_steering_table[] = { 124 { 0x005200, 0x0052FF }, /* SLICE */ 125 { 0x005500, 0x007FFF }, /* SLICE */ 126 { 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */ 127 { 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */ 128 { 0x009680, 0x0096FF }, /* DSS */ 129 { 0x00D800, 0x00D87F }, /* SLICE */ 130 { 0x00DC00, 0x00DCFF }, /* SLICE */ 131 { 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */ 132 {}, 133 }; 134 135 static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = { 136 { 0x393200, 0x39323F }, 137 { 0x393400, 0x3934FF }, 138 {}, 139 }; 140 141 void intel_gt_mcr_init(struct intel_gt *gt) 142 { 143 struct drm_i915_private *i915 = gt->i915; 144 unsigned long fuse; 145 int i; 146 147 spin_lock_init(>->mcr_lock); 148 149 /* 150 * An mslice is unavailable only if both the meml3 for the slice is 151 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 152 */ 153 if (HAS_MSLICE_STEERING(i915)) { 154 gt->info.mslice_mask = 155 intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask, 156 GEN_DSS_PER_MSLICE); 157 gt->info.mslice_mask |= 158 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 159 GEN12_MEML3_EN_MASK); 160 161 if (!gt->info.mslice_mask) /* should be impossible! */ 162 gt_warn(gt, "mslice mask all zero!\n"); 163 } 164 165 if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) { 166 gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table; 167 } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) { 168 /* Wa_14016747170 */ 169 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 170 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) 171 fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK, 172 intel_uncore_read(gt->uncore, 173 MTL_GT_ACTIVITY_FACTOR)); 174 else 175 fuse = REG_FIELD_GET(GT_L3_EXC_MASK, 176 intel_uncore_read(gt->uncore, XEHP_FUSE4)); 177 178 /* 179 * Despite the register field being named "exclude mask" the 180 * bits actually represent enabled banks (two banks per bit). 181 */ 182 for_each_set_bit(i, &fuse, 3) 183 gt->info.l3bank_mask |= 0x3 << 2 * i; 184 185 gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table; 186 gt->steering_table[L3BANK] = xelpg_l3bank_steering_table; 187 gt->steering_table[DSS] = xelpg_dss_steering_table; 188 } else if (IS_PONTEVECCHIO(i915)) { 189 gt->steering_table[INSTANCE0] = pvc_instance0_steering_table; 190 } else if (IS_DG2(i915)) { 191 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 192 gt->steering_table[LNCF] = dg2_lncf_steering_table; 193 /* 194 * No need to hook up the GAM table since it has a dedicated 195 * steering control register on DG2 and can use implicit 196 * steering. 197 */ 198 } else if (IS_XEHPSDV(i915)) { 199 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 200 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 201 gt->steering_table[GAM] = xehpsdv_gam_steering_table; 202 } else if (GRAPHICS_VER(i915) >= 11 && 203 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 204 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 205 gt->info.l3bank_mask = 206 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 207 GEN10_L3BANK_MASK; 208 if (!gt->info.l3bank_mask) /* should be impossible! */ 209 gt_warn(gt, "L3 bank mask is all zero!\n"); 210 } else if (GRAPHICS_VER(i915) >= 11) { 211 /* 212 * We expect all modern platforms to have at least some 213 * type of steering that needs to be initialized. 214 */ 215 MISSING_CASE(INTEL_INFO(i915)->platform); 216 } 217 } 218 219 /* 220 * Although the rest of the driver should use MCR-specific functions to 221 * read/write MCR registers, we still use the regular intel_uncore_* functions 222 * internally to implement those, so we need a way for the functions in this 223 * file to "cast" an i915_mcr_reg_t into an i915_reg_t. 224 */ 225 static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr) 226 { 227 i915_reg_t r = { .reg = mcr.reg }; 228 229 return r; 230 } 231 232 /* 233 * rw_with_mcr_steering_fw - Access a register with specific MCR steering 234 * @gt: GT to read register from 235 * @reg: register being accessed 236 * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access 237 * @group: group number (documented as "sliceid" on older platforms) 238 * @instance: instance number (documented as "subsliceid" on older platforms) 239 * @value: register value to be written (ignored for read) 240 * 241 * Context: The caller must hold the MCR lock 242 * Return: 0 for write access. register value for read access. 243 * 244 * Caller needs to make sure the relevant forcewake wells are up. 245 */ 246 static u32 rw_with_mcr_steering_fw(struct intel_gt *gt, 247 i915_mcr_reg_t reg, u8 rw_flag, 248 int group, int instance, u32 value) 249 { 250 struct intel_uncore *uncore = gt->uncore; 251 u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0; 252 253 lockdep_assert_held(>->mcr_lock); 254 255 if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) { 256 /* 257 * Always leave the hardware in multicast mode when doing reads 258 * (see comment about Wa_22013088509 below) and only change it 259 * to unicast mode when doing writes of a specific instance. 260 * 261 * No need to save old steering reg value. 262 */ 263 intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, 264 REG_FIELD_PREP(MTL_MCR_GROUPID, group) | 265 REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) | 266 (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0)); 267 } else if (GRAPHICS_VER(uncore->i915) >= 11) { 268 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 269 mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance); 270 271 /* 272 * Wa_22013088509 273 * 274 * The setting of the multicast/unicast bit usually wouldn't 275 * matter for read operations (which always return the value 276 * from a single register instance regardless of how that bit 277 * is set), but some platforms have a workaround requiring us 278 * to remain in multicast mode for reads. There's no real 279 * downside to this, so we'll just go ahead and do so on all 280 * platforms; we'll only clear the multicast bit from the mask 281 * when exlicitly doing a write operation. 282 */ 283 if (rw_flag == FW_REG_WRITE) 284 mcr_mask |= GEN11_MCR_MULTICAST; 285 286 mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); 287 old_mcr = mcr; 288 289 mcr &= ~mcr_mask; 290 mcr |= mcr_ss; 291 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 292 } else { 293 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 294 mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance); 295 296 mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); 297 old_mcr = mcr; 298 299 mcr &= ~mcr_mask; 300 mcr |= mcr_ss; 301 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 302 } 303 304 if (rw_flag == FW_REG_READ) 305 val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg)); 306 else 307 intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value); 308 309 /* 310 * For pre-MTL platforms, we need to restore the old value of the 311 * steering control register to ensure that implicit steering continues 312 * to behave as expected. For MTL and beyond, we need only reinstate 313 * the 'multicast' bit (and only if we did a write that cleared it). 314 */ 315 if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE) 316 intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); 317 else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70)) 318 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr); 319 320 return val; 321 } 322 323 static u32 rw_with_mcr_steering(struct intel_gt *gt, 324 i915_mcr_reg_t reg, u8 rw_flag, 325 int group, int instance, 326 u32 value) 327 { 328 struct intel_uncore *uncore = gt->uncore; 329 enum forcewake_domains fw_domains; 330 unsigned long flags; 331 u32 val; 332 333 fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg), 334 rw_flag); 335 fw_domains |= intel_uncore_forcewake_for_reg(uncore, 336 GEN8_MCR_SELECTOR, 337 FW_REG_READ | FW_REG_WRITE); 338 339 intel_gt_mcr_lock(gt, &flags); 340 spin_lock(&uncore->lock); 341 intel_uncore_forcewake_get__locked(uncore, fw_domains); 342 343 val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value); 344 345 intel_uncore_forcewake_put__locked(uncore, fw_domains); 346 spin_unlock(&uncore->lock); 347 intel_gt_mcr_unlock(gt, flags); 348 349 return val; 350 } 351 352 /** 353 * intel_gt_mcr_lock - Acquire MCR steering lock 354 * @gt: GT structure 355 * @flags: storage to save IRQ flags to 356 * 357 * Performs locking to protect the steering for the duration of an MCR 358 * operation. On MTL and beyond, a hardware lock will also be taken to 359 * serialize access not only for the driver, but also for external hardware and 360 * firmware agents. 361 * 362 * Context: Takes gt->mcr_lock. uncore->lock should *not* be held when this 363 * function is called, although it may be acquired after this 364 * function call. 365 */ 366 void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags) 367 __acquires(>->mcr_lock) 368 { 369 unsigned long __flags; 370 int err = 0; 371 372 lockdep_assert_not_held(>->uncore->lock); 373 374 /* 375 * Starting with MTL, we need to coordinate not only with other 376 * driver threads, but also with hardware/firmware agents. A dedicated 377 * locking register is used. 378 */ 379 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 380 /* 381 * The steering control and semaphore registers are inside an 382 * "always on" power domain with respect to RC6. However there 383 * are some issues if higher-level platform sleep states are 384 * entering/exiting at the same time these registers are 385 * accessed. Grabbing GT forcewake and holding it over the 386 * entire lock/steer/unlock cycle ensures that those sleep 387 * states have been fully exited before we access these 388 * registers. This wakeref will be released in the unlock 389 * routine. 390 * 391 * This is expected to become a formally documented/numbered 392 * workaround soon. 393 */ 394 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_GT); 395 396 err = wait_for(intel_uncore_read_fw(gt->uncore, 397 MTL_STEER_SEMAPHORE) == 0x1, 100); 398 } 399 400 /* 401 * Even on platforms with a hardware lock, we'll continue to grab 402 * a software spinlock too for lockdep purposes. If the hardware lock 403 * was already acquired, there should never be contention on the 404 * software lock. 405 */ 406 spin_lock_irqsave(>->mcr_lock, __flags); 407 408 *flags = __flags; 409 410 /* 411 * In theory we should never fail to acquire the HW semaphore; this 412 * would indicate some hardware/firmware is misbehaving and not 413 * releasing it properly. 414 */ 415 if (err == -ETIMEDOUT) { 416 gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out"); 417 add_taint_for_CI(gt->i915, TAINT_WARN); /* CI is now unreliable */ 418 } 419 } 420 421 /** 422 * intel_gt_mcr_unlock - Release MCR steering lock 423 * @gt: GT structure 424 * @flags: IRQ flags to restore 425 * 426 * Releases the lock acquired by intel_gt_mcr_lock(). 427 * 428 * Context: Releases gt->mcr_lock 429 */ 430 void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags) 431 __releases(>->mcr_lock) 432 { 433 spin_unlock_irqrestore(>->mcr_lock, flags); 434 435 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 436 intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1); 437 438 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_GT); 439 } 440 } 441 442 /** 443 * intel_gt_mcr_read - read a specific instance of an MCR register 444 * @gt: GT structure 445 * @reg: the MCR register to read 446 * @group: the MCR group 447 * @instance: the MCR instance 448 * 449 * Context: Takes and releases gt->mcr_lock 450 * 451 * Returns the value read from an MCR register after steering toward a specific 452 * group/instance. 453 */ 454 u32 intel_gt_mcr_read(struct intel_gt *gt, 455 i915_mcr_reg_t reg, 456 int group, int instance) 457 { 458 return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0); 459 } 460 461 /** 462 * intel_gt_mcr_unicast_write - write a specific instance of an MCR register 463 * @gt: GT structure 464 * @reg: the MCR register to write 465 * @value: value to write 466 * @group: the MCR group 467 * @instance: the MCR instance 468 * 469 * Write an MCR register in unicast mode after steering toward a specific 470 * group/instance. 471 * 472 * Context: Calls a function that takes and releases gt->mcr_lock 473 */ 474 void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value, 475 int group, int instance) 476 { 477 rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value); 478 } 479 480 /** 481 * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register 482 * @gt: GT structure 483 * @reg: the MCR register to write 484 * @value: value to write 485 * 486 * Write an MCR register in multicast mode to update all instances. 487 * 488 * Context: Takes and releases gt->mcr_lock 489 */ 490 void intel_gt_mcr_multicast_write(struct intel_gt *gt, 491 i915_mcr_reg_t reg, u32 value) 492 { 493 unsigned long flags; 494 495 intel_gt_mcr_lock(gt, &flags); 496 497 /* 498 * Ensure we have multicast behavior, just in case some non-i915 agent 499 * left the hardware in unicast mode. 500 */ 501 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) 502 intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); 503 504 intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value); 505 506 intel_gt_mcr_unlock(gt, flags); 507 } 508 509 /** 510 * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register 511 * @gt: GT structure 512 * @reg: the MCR register to write 513 * @value: value to write 514 * 515 * Write an MCR register in multicast mode to update all instances. This 516 * function assumes the caller is already holding any necessary forcewake 517 * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should 518 * be obtained automatically. 519 * 520 * Context: The caller must hold gt->mcr_lock. 521 */ 522 void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value) 523 { 524 lockdep_assert_held(>->mcr_lock); 525 526 /* 527 * Ensure we have multicast behavior, just in case some non-i915 agent 528 * left the hardware in unicast mode. 529 */ 530 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) 531 intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST); 532 533 intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value); 534 } 535 536 /** 537 * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations 538 * @gt: GT structure 539 * @reg: the MCR register to read and write 540 * @clear: bits to clear during RMW 541 * @set: bits to set during RMW 542 * 543 * Performs a read-modify-write on an MCR register in a multicast manner. 544 * This operation only makes sense on MCR registers where all instances are 545 * expected to have the same value. The read will target any non-terminated 546 * instance and the write will be applied to all instances. 547 * 548 * This function assumes the caller is already holding any necessary forcewake 549 * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should 550 * be obtained automatically. 551 * 552 * Context: Calls functions that take and release gt->mcr_lock 553 * 554 * Returns the old (unmodified) value read. 555 */ 556 u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg, 557 u32 clear, u32 set) 558 { 559 u32 val = intel_gt_mcr_read_any(gt, reg); 560 561 intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set); 562 563 return val; 564 } 565 566 /* 567 * reg_needs_read_steering - determine whether a register read requires 568 * explicit steering 569 * @gt: GT structure 570 * @reg: the register to check steering requirements for 571 * @type: type of multicast steering to check 572 * 573 * Determines whether @reg needs explicit steering of a specific type for 574 * reads. 575 * 576 * Returns false if @reg does not belong to a register range of the given 577 * steering type, or if the default (subslice-based) steering IDs are suitable 578 * for @type steering too. 579 */ 580 static bool reg_needs_read_steering(struct intel_gt *gt, 581 i915_mcr_reg_t reg, 582 enum intel_steering_type type) 583 { 584 u32 offset = i915_mmio_reg_offset(reg); 585 const struct intel_mmio_range *entry; 586 587 if (likely(!gt->steering_table[type])) 588 return false; 589 590 if (IS_GSI_REG(offset)) 591 offset += gt->uncore->gsi_offset; 592 593 for (entry = gt->steering_table[type]; entry->end; entry++) { 594 if (offset >= entry->start && offset <= entry->end) 595 return true; 596 } 597 598 return false; 599 } 600 601 /* 602 * get_nonterminated_steering - determines valid IDs for a class of MCR steering 603 * @gt: GT structure 604 * @type: multicast register type 605 * @group: Group ID returned 606 * @instance: Instance ID returned 607 * 608 * Determines group and instance values that will steer reads of the specified 609 * MCR class to a non-terminated instance. 610 */ 611 static void get_nonterminated_steering(struct intel_gt *gt, 612 enum intel_steering_type type, 613 u8 *group, u8 *instance) 614 { 615 u32 dss; 616 617 switch (type) { 618 case L3BANK: 619 *group = 0; /* unused */ 620 *instance = __ffs(gt->info.l3bank_mask); 621 break; 622 case MSLICE: 623 GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); 624 *group = __ffs(gt->info.mslice_mask); 625 *instance = 0; /* unused */ 626 break; 627 case LNCF: 628 /* 629 * An LNCF is always present if its mslice is present, so we 630 * can safely just steer to LNCF 0 in all cases. 631 */ 632 GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915)); 633 *group = __ffs(gt->info.mslice_mask) << 1; 634 *instance = 0; /* unused */ 635 break; 636 case GAM: 637 *group = IS_DG2(gt->i915) ? 1 : 0; 638 *instance = 0; 639 break; 640 case DSS: 641 dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0); 642 *group = dss / GEN_DSS_PER_GSLICE; 643 *instance = dss % GEN_DSS_PER_GSLICE; 644 break; 645 case INSTANCE0: 646 /* 647 * There are a lot of MCR types for which instance (0, 0) 648 * will always provide a non-terminated value. 649 */ 650 *group = 0; 651 *instance = 0; 652 break; 653 case OADDRM: 654 if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0)) 655 *group = 0; 656 else 657 *group = 1; 658 *instance = 0; 659 break; 660 default: 661 MISSING_CASE(type); 662 *group = 0; 663 *instance = 0; 664 } 665 } 666 667 /** 668 * intel_gt_mcr_get_nonterminated_steering - find group/instance values that 669 * will steer a register to a non-terminated instance 670 * @gt: GT structure 671 * @reg: register for which the steering is required 672 * @group: return variable for group steering 673 * @instance: return variable for instance steering 674 * 675 * This function returns a group/instance pair that is guaranteed to work for 676 * read steering of the given register. Note that a value will be returned even 677 * if the register is not replicated and therefore does not actually require 678 * steering. 679 */ 680 void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt, 681 i915_mcr_reg_t reg, 682 u8 *group, u8 *instance) 683 { 684 int type; 685 686 for (type = 0; type < NUM_STEERING_TYPES; type++) { 687 if (reg_needs_read_steering(gt, reg, type)) { 688 get_nonterminated_steering(gt, type, group, instance); 689 return; 690 } 691 } 692 693 *group = gt->default_steering.groupid; 694 *instance = gt->default_steering.instanceid; 695 } 696 697 /** 698 * intel_gt_mcr_read_any_fw - reads one instance of an MCR register 699 * @gt: GT structure 700 * @reg: register to read 701 * 702 * Reads a GT MCR register. The read will be steered to a non-terminated 703 * instance (i.e., one that isn't fused off or powered down by power gating). 704 * This function assumes the caller is already holding any necessary forcewake 705 * domains; use intel_gt_mcr_read_any() in cases where forcewake should be 706 * obtained automatically. 707 * 708 * Context: The caller must hold gt->mcr_lock. 709 * 710 * Returns the value from a non-terminated instance of @reg. 711 */ 712 u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg) 713 { 714 int type; 715 u8 group, instance; 716 717 lockdep_assert_held(>->mcr_lock); 718 719 for (type = 0; type < NUM_STEERING_TYPES; type++) { 720 if (reg_needs_read_steering(gt, reg, type)) { 721 get_nonterminated_steering(gt, type, &group, &instance); 722 return rw_with_mcr_steering_fw(gt, reg, 723 FW_REG_READ, 724 group, instance, 0); 725 } 726 } 727 728 return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg)); 729 } 730 731 /** 732 * intel_gt_mcr_read_any - reads one instance of an MCR register 733 * @gt: GT structure 734 * @reg: register to read 735 * 736 * Reads a GT MCR register. The read will be steered to a non-terminated 737 * instance (i.e., one that isn't fused off or powered down by power gating). 738 * 739 * Context: Calls a function that takes and releases gt->mcr_lock. 740 * 741 * Returns the value from a non-terminated instance of @reg. 742 */ 743 u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg) 744 { 745 int type; 746 u8 group, instance; 747 748 for (type = 0; type < NUM_STEERING_TYPES; type++) { 749 if (reg_needs_read_steering(gt, reg, type)) { 750 get_nonterminated_steering(gt, type, &group, &instance); 751 return rw_with_mcr_steering(gt, reg, 752 FW_REG_READ, 753 group, instance, 0); 754 } 755 } 756 757 return intel_uncore_read(gt->uncore, mcr_reg_cast(reg)); 758 } 759 760 static void report_steering_type(struct drm_printer *p, 761 struct intel_gt *gt, 762 enum intel_steering_type type, 763 bool dump_table) 764 { 765 const struct intel_mmio_range *entry; 766 u8 group, instance; 767 768 BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES); 769 770 if (!gt->steering_table[type]) { 771 drm_printf(p, "%s steering: uses default steering\n", 772 intel_steering_types[type]); 773 return; 774 } 775 776 get_nonterminated_steering(gt, type, &group, &instance); 777 drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n", 778 intel_steering_types[type], group, instance); 779 780 if (!dump_table) 781 return; 782 783 for (entry = gt->steering_table[type]; entry->end; entry++) 784 drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end); 785 } 786 787 void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt, 788 bool dump_table) 789 { 790 /* 791 * Starting with MTL we no longer have default steering; 792 * all ranges are explicitly steered. 793 */ 794 if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)) 795 drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n", 796 gt->default_steering.groupid, 797 gt->default_steering.instanceid); 798 799 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) { 800 for (int i = 0; i < NUM_STEERING_TYPES; i++) 801 if (gt->steering_table[i]) 802 report_steering_type(p, gt, i, dump_table); 803 } else if (IS_PONTEVECCHIO(gt->i915)) { 804 report_steering_type(p, gt, INSTANCE0, dump_table); 805 } else if (HAS_MSLICE_STEERING(gt->i915)) { 806 report_steering_type(p, gt, MSLICE, dump_table); 807 report_steering_type(p, gt, LNCF, dump_table); 808 } 809 } 810 811 /** 812 * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS 813 * @gt: GT structure 814 * @dss: DSS ID to obtain steering for 815 * @group: pointer to storage for steering group ID 816 * @instance: pointer to storage for steering instance ID 817 * 818 * Returns the steering IDs (via the @group and @instance parameters) that 819 * correspond to a specific subslice/DSS ID. 820 */ 821 void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss, 822 unsigned int *group, unsigned int *instance) 823 { 824 if (IS_PONTEVECCHIO(gt->i915)) { 825 *group = dss / GEN_DSS_PER_CSLICE; 826 *instance = dss % GEN_DSS_PER_CSLICE; 827 } else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) { 828 *group = dss / GEN_DSS_PER_GSLICE; 829 *instance = dss % GEN_DSS_PER_GSLICE; 830 } else { 831 *group = dss / GEN_MAX_SS_PER_HSW_SLICE; 832 *instance = dss % GEN_MAX_SS_PER_HSW_SLICE; 833 return; 834 } 835 } 836 837 /** 838 * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state 839 * @gt: GT structure 840 * @reg: the register to read 841 * @mask: mask to apply to register value 842 * @value: value to wait for 843 * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait 844 * @slow_timeout_ms: slow timeout in millisecond 845 * 846 * This routine waits until the target register @reg contains the expected 847 * @value after applying the @mask, i.e. it waits until :: 848 * 849 * (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value 850 * 851 * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds. 852 * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us 853 * must be not larger than 20,0000 microseconds. 854 * 855 * This function is basically an MCR-friendly version of 856 * __intel_wait_for_register_fw(). Generally this function will only be used 857 * on GAM registers which are a bit special --- although they're MCR registers, 858 * reads (e.g., waiting for status updates) are always directed to the primary 859 * instance. 860 * 861 * Note that this routine assumes the caller holds forcewake asserted, it is 862 * not suitable for very long waits. 863 * 864 * Context: Calls a function that takes and releases gt->mcr_lock 865 * Return: 0 if the register matches the desired condition, or -ETIMEDOUT. 866 */ 867 int intel_gt_mcr_wait_for_reg(struct intel_gt *gt, 868 i915_mcr_reg_t reg, 869 u32 mask, 870 u32 value, 871 unsigned int fast_timeout_us, 872 unsigned int slow_timeout_ms) 873 { 874 int ret; 875 876 lockdep_assert_not_held(>->mcr_lock); 877 878 #define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value) 879 880 /* Catch any overuse of this function */ 881 might_sleep_if(slow_timeout_ms); 882 GEM_BUG_ON(fast_timeout_us > 20000); 883 GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms); 884 885 ret = -ETIMEDOUT; 886 if (fast_timeout_us && fast_timeout_us <= 20000) 887 ret = _wait_for_atomic(done, fast_timeout_us, 0); 888 if (ret && slow_timeout_ms) 889 ret = wait_for(done, slow_timeout_ms); 890 891 return ret; 892 #undef done 893 } 894