xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gt_mcr.c (revision 5ebfa90bdd3d78f4967dc0095daf755989a999e0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2022 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 
8 #include "intel_gt_mcr.h"
9 #include "intel_gt_regs.h"
10 
11 /**
12  * DOC: GT Multicast/Replicated (MCR) Register Support
13  *
14  * Some GT registers are designed as "multicast" or "replicated" registers:
15  * multiple instances of the same register share a single MMIO offset.  MCR
16  * registers are generally used when the hardware needs to potentially track
17  * independent values of a register per hardware unit (e.g., per-subslice,
18  * per-L3bank, etc.).  The specific types of replication that exist vary
19  * per-platform.
20  *
21  * MMIO accesses to MCR registers are controlled according to the settings
22  * programmed in the platform's MCR_SELECTOR register(s).  MMIO writes to MCR
23  * registers can be done in either a (i.e., a single write updates all
24  * instances of the register to the same value) or unicast (a write updates only
25  * one specific instance).  Reads of MCR registers always operate in a unicast
26  * manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
27  * Selection of a specific MCR instance for unicast operations is referred to
28  * as "steering."
29  *
30  * If MCR register operations are steered toward a hardware unit that is
31  * fused off or currently powered down due to power gating, the MMIO operation
32  * is "terminated" by the hardware.  Terminated read operations will return a
33  * value of zero and terminated unicast write operations will be silently
34  * ignored.
35  */
36 
37 #define HAS_MSLICE_STEERING(dev_priv)	(INTEL_INFO(dev_priv)->has_mslice_steering)
38 
39 static const char * const intel_steering_types[] = {
40 	"L3BANK",
41 	"MSLICE",
42 	"LNCF",
43 	"GAM",
44 	"DSS",
45 	"OADDRM",
46 	"INSTANCE 0",
47 };
48 
49 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
50 	{ 0x00B100, 0x00B3FF },
51 	{},
52 };
53 
54 /*
55  * Although the bspec lists more "MSLICE" ranges than shown here, some of those
56  * are of a "GAM" subclass that has special rules.  Thus we use a separate
57  * GAM table farther down for those.
58  */
59 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
60 	{ 0x00DD00, 0x00DDFF },
61 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
62 	{},
63 };
64 
65 static const struct intel_mmio_range xehpsdv_gam_steering_table[] = {
66 	{ 0x004000, 0x004AFF },
67 	{ 0x00C800, 0x00CFFF },
68 	{},
69 };
70 
71 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
72 	{ 0x00B000, 0x00B0FF },
73 	{ 0x00D800, 0x00D8FF },
74 	{},
75 };
76 
77 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
78 	{ 0x00B000, 0x00B0FF },
79 	{ 0x00D880, 0x00D8FF },
80 	{},
81 };
82 
83 /*
84  * We have several types of MCR registers on PVC where steering to (0,0)
85  * will always provide us with a non-terminated value.  We'll stick them
86  * all in the same table for simplicity.
87  */
88 static const struct intel_mmio_range pvc_instance0_steering_table[] = {
89 	{ 0x004000, 0x004AFF },		/* HALF-BSLICE */
90 	{ 0x008800, 0x00887F },		/* CC */
91 	{ 0x008A80, 0x008AFF },		/* TILEPSMI */
92 	{ 0x00B000, 0x00B0FF },		/* HALF-BSLICE */
93 	{ 0x00B100, 0x00B3FF },		/* L3BANK */
94 	{ 0x00C800, 0x00CFFF },		/* HALF-BSLICE */
95 	{ 0x00D800, 0x00D8FF },		/* HALF-BSLICE */
96 	{ 0x00DD00, 0x00DDFF },		/* BSLICE */
97 	{ 0x00E900, 0x00E9FF },		/* HALF-BSLICE */
98 	{ 0x00EC00, 0x00EEFF },		/* HALF-BSLICE */
99 	{ 0x00F000, 0x00FFFF },		/* HALF-BSLICE */
100 	{ 0x024180, 0x0241FF },		/* HALF-BSLICE */
101 	{},
102 };
103 
104 static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
105 	{ 0x000B00, 0x000BFF },         /* SQIDI */
106 	{ 0x001000, 0x001FFF },         /* SQIDI */
107 	{ 0x004000, 0x0048FF },         /* GAM */
108 	{ 0x008700, 0x0087FF },         /* SQIDI */
109 	{ 0x00B000, 0x00B0FF },         /* NODE */
110 	{ 0x00C800, 0x00CFFF },         /* GAM */
111 	{ 0x00D880, 0x00D8FF },         /* NODE */
112 	{ 0x00DD00, 0x00DDFF },         /* OAAL2 */
113 	{},
114 };
115 
116 static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
117 	{ 0x00B100, 0x00B3FF },
118 	{},
119 };
120 
121 /* DSS steering is used for SLICE ranges as well */
122 static const struct intel_mmio_range xelpg_dss_steering_table[] = {
123 	{ 0x005200, 0x0052FF },		/* SLICE */
124 	{ 0x005500, 0x007FFF },		/* SLICE */
125 	{ 0x008140, 0x00815F },		/* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
126 	{ 0x0094D0, 0x00955F },		/* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
127 	{ 0x009680, 0x0096FF },		/* DSS */
128 	{ 0x00D800, 0x00D87F },		/* SLICE */
129 	{ 0x00DC00, 0x00DCFF },		/* SLICE */
130 	{ 0x00DE80, 0x00E8FF },		/* DSS (0xE000-0xE0FF reserved) */
131 	{},
132 };
133 
134 static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
135 	{ 0x393200, 0x39323F },
136 	{ 0x393400, 0x3934FF },
137 	{},
138 };
139 
140 void intel_gt_mcr_init(struct intel_gt *gt)
141 {
142 	struct drm_i915_private *i915 = gt->i915;
143 	unsigned long fuse;
144 	int i;
145 
146 	/*
147 	 * An mslice is unavailable only if both the meml3 for the slice is
148 	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
149 	 */
150 	if (HAS_MSLICE_STEERING(i915)) {
151 		gt->info.mslice_mask =
152 			intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
153 							  GEN_DSS_PER_MSLICE);
154 		gt->info.mslice_mask |=
155 			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
156 			 GEN12_MEML3_EN_MASK);
157 
158 		if (!gt->info.mslice_mask) /* should be impossible! */
159 			drm_warn(&i915->drm, "mslice mask all zero!\n");
160 	}
161 
162 	if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
163 		gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
164 	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
165 		fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
166 				     intel_uncore_read(gt->uncore, XEHP_FUSE4));
167 
168 		/*
169 		 * Despite the register field being named "exclude mask" the
170 		 * bits actually represent enabled banks (two banks per bit).
171 		 */
172 		for_each_set_bit(i, &fuse, 3)
173 			gt->info.l3bank_mask |= 0x3 << 2 * i;
174 
175 		gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
176 		gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
177 		gt->steering_table[DSS] = xelpg_dss_steering_table;
178 	} else if (IS_PONTEVECCHIO(i915)) {
179 		gt->steering_table[INSTANCE0] = pvc_instance0_steering_table;
180 	} else if (IS_DG2(i915)) {
181 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
182 		gt->steering_table[LNCF] = dg2_lncf_steering_table;
183 		/*
184 		 * No need to hook up the GAM table since it has a dedicated
185 		 * steering control register on DG2 and can use implicit
186 		 * steering.
187 		 */
188 	} else if (IS_XEHPSDV(i915)) {
189 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
190 		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
191 		gt->steering_table[GAM] = xehpsdv_gam_steering_table;
192 	} else if (GRAPHICS_VER(i915) >= 11 &&
193 		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
194 		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
195 		gt->info.l3bank_mask =
196 			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
197 			GEN10_L3BANK_MASK;
198 		if (!gt->info.l3bank_mask) /* should be impossible! */
199 			drm_warn(&i915->drm, "L3 bank mask is all zero!\n");
200 	} else if (GRAPHICS_VER(i915) >= 11) {
201 		/*
202 		 * We expect all modern platforms to have at least some
203 		 * type of steering that needs to be initialized.
204 		 */
205 		MISSING_CASE(INTEL_INFO(i915)->platform);
206 	}
207 }
208 
209 /*
210  * Although the rest of the driver should use MCR-specific functions to
211  * read/write MCR registers, we still use the regular intel_uncore_* functions
212  * internally to implement those, so we need a way for the functions in this
213  * file to "cast" an i915_mcr_reg_t into an i915_reg_t.
214  */
215 static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
216 {
217 	i915_reg_t r = { .reg = mcr.reg };
218 
219 	return r;
220 }
221 
222 /*
223  * rw_with_mcr_steering_fw - Access a register with specific MCR steering
224  * @uncore: pointer to struct intel_uncore
225  * @reg: register being accessed
226  * @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
227  * @group: group number (documented as "sliceid" on older platforms)
228  * @instance: instance number (documented as "subsliceid" on older platforms)
229  * @value: register value to be written (ignored for read)
230  *
231  * Return: 0 for write access. register value for read access.
232  *
233  * Caller needs to make sure the relevant forcewake wells are up.
234  */
235 static u32 rw_with_mcr_steering_fw(struct intel_uncore *uncore,
236 				   i915_mcr_reg_t reg, u8 rw_flag,
237 				   int group, int instance, u32 value)
238 {
239 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
240 
241 	lockdep_assert_held(&uncore->lock);
242 
243 	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
244 		/*
245 		 * Always leave the hardware in multicast mode when doing reads
246 		 * (see comment about Wa_22013088509 below) and only change it
247 		 * to unicast mode when doing writes of a specific instance.
248 		 *
249 		 * No need to save old steering reg value.
250 		 */
251 		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
252 				      REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
253 				      REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
254 				      (rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
255 	} else if (GRAPHICS_VER(uncore->i915) >= 11) {
256 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
257 		mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
258 
259 		/*
260 		 * Wa_22013088509
261 		 *
262 		 * The setting of the multicast/unicast bit usually wouldn't
263 		 * matter for read operations (which always return the value
264 		 * from a single register instance regardless of how that bit
265 		 * is set), but some platforms have a workaround requiring us
266 		 * to remain in multicast mode for reads.  There's no real
267 		 * downside to this, so we'll just go ahead and do so on all
268 		 * platforms; we'll only clear the multicast bit from the mask
269 		 * when exlicitly doing a write operation.
270 		 */
271 		if (rw_flag == FW_REG_WRITE)
272 			mcr_mask |= GEN11_MCR_MULTICAST;
273 
274 		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
275 		old_mcr = mcr;
276 
277 		mcr &= ~mcr_mask;
278 		mcr |= mcr_ss;
279 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
280 	} else {
281 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
282 		mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
283 
284 		mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
285 		old_mcr = mcr;
286 
287 		mcr &= ~mcr_mask;
288 		mcr |= mcr_ss;
289 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
290 	}
291 
292 	if (rw_flag == FW_REG_READ)
293 		val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
294 	else
295 		intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
296 
297 	/*
298 	 * For pre-MTL platforms, we need to restore the old value of the
299 	 * steering control register to ensure that implicit steering continues
300 	 * to behave as expected.  For MTL and beyond, we need only reinstate
301 	 * the 'multicast' bit (and only if we did a write that cleared it).
302 	 */
303 	if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
304 		intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
305 	else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
306 		intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
307 
308 	return val;
309 }
310 
311 static u32 rw_with_mcr_steering(struct intel_uncore *uncore,
312 				i915_mcr_reg_t reg, u8 rw_flag,
313 				int group, int instance,
314 				u32 value)
315 {
316 	enum forcewake_domains fw_domains;
317 	u32 val;
318 
319 	fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
320 						    rw_flag);
321 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
322 						     GEN8_MCR_SELECTOR,
323 						     FW_REG_READ | FW_REG_WRITE);
324 
325 	spin_lock_irq(&uncore->lock);
326 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
327 
328 	val = rw_with_mcr_steering_fw(uncore, reg, rw_flag, group, instance, value);
329 
330 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
331 	spin_unlock_irq(&uncore->lock);
332 
333 	return val;
334 }
335 
336 /**
337  * intel_gt_mcr_read - read a specific instance of an MCR register
338  * @gt: GT structure
339  * @reg: the MCR register to read
340  * @group: the MCR group
341  * @instance: the MCR instance
342  *
343  * Returns the value read from an MCR register after steering toward a specific
344  * group/instance.
345  */
346 u32 intel_gt_mcr_read(struct intel_gt *gt,
347 		      i915_mcr_reg_t reg,
348 		      int group, int instance)
349 {
350 	return rw_with_mcr_steering(gt->uncore, reg, FW_REG_READ, group, instance, 0);
351 }
352 
353 /**
354  * intel_gt_mcr_unicast_write - write a specific instance of an MCR register
355  * @gt: GT structure
356  * @reg: the MCR register to write
357  * @value: value to write
358  * @group: the MCR group
359  * @instance: the MCR instance
360  *
361  * Write an MCR register in unicast mode after steering toward a specific
362  * group/instance.
363  */
364 void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
365 				int group, int instance)
366 {
367 	rw_with_mcr_steering(gt->uncore, reg, FW_REG_WRITE, group, instance, value);
368 }
369 
370 /**
371  * intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
372  * @gt: GT structure
373  * @reg: the MCR register to write
374  * @value: value to write
375  *
376  * Write an MCR register in multicast mode to update all instances.
377  */
378 void intel_gt_mcr_multicast_write(struct intel_gt *gt,
379 				  i915_mcr_reg_t reg, u32 value)
380 {
381 	/*
382 	 * Ensure we have multicast behavior, just in case some non-i915 agent
383 	 * left the hardware in unicast mode.
384 	 */
385 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
386 		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
387 
388 	intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
389 }
390 
391 /**
392  * intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
393  * @gt: GT structure
394  * @reg: the MCR register to write
395  * @value: value to write
396  *
397  * Write an MCR register in multicast mode to update all instances.  This
398  * function assumes the caller is already holding any necessary forcewake
399  * domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
400  * be obtained automatically.
401  */
402 void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
403 {
404 	/*
405 	 * Ensure we have multicast behavior, just in case some non-i915 agent
406 	 * left the hardware in unicast mode.
407 	 */
408 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
409 		intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
410 
411 	intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
412 }
413 
414 /**
415  * intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
416  * @gt: GT structure
417  * @reg: the MCR register to read and write
418  * @clear: bits to clear during RMW
419  * @set: bits to set during RMW
420  *
421  * Performs a read-modify-write on an MCR register in a multicast manner.
422  * This operation only makes sense on MCR registers where all instances are
423  * expected to have the same value.  The read will target any non-terminated
424  * instance and the write will be applied to all instances.
425  *
426  * This function assumes the caller is already holding any necessary forcewake
427  * domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
428  * be obtained automatically.
429  *
430  * Returns the old (unmodified) value read.
431  */
432 u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
433 			       u32 clear, u32 set)
434 {
435 	u32 val = intel_gt_mcr_read_any(gt, reg);
436 
437 	intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
438 
439 	return val;
440 }
441 
442 /*
443  * reg_needs_read_steering - determine whether a register read requires
444  *     explicit steering
445  * @gt: GT structure
446  * @reg: the register to check steering requirements for
447  * @type: type of multicast steering to check
448  *
449  * Determines whether @reg needs explicit steering of a specific type for
450  * reads.
451  *
452  * Returns false if @reg does not belong to a register range of the given
453  * steering type, or if the default (subslice-based) steering IDs are suitable
454  * for @type steering too.
455  */
456 static bool reg_needs_read_steering(struct intel_gt *gt,
457 				    i915_mcr_reg_t reg,
458 				    enum intel_steering_type type)
459 {
460 	const u32 offset = i915_mmio_reg_offset(reg);
461 	const struct intel_mmio_range *entry;
462 
463 	if (likely(!gt->steering_table[type]))
464 		return false;
465 
466 	for (entry = gt->steering_table[type]; entry->end; entry++) {
467 		if (offset >= entry->start && offset <= entry->end)
468 			return true;
469 	}
470 
471 	return false;
472 }
473 
474 /*
475  * get_nonterminated_steering - determines valid IDs for a class of MCR steering
476  * @gt: GT structure
477  * @type: multicast register type
478  * @group: Group ID returned
479  * @instance: Instance ID returned
480  *
481  * Determines group and instance values that will steer reads of the specified
482  * MCR class to a non-terminated instance.
483  */
484 static void get_nonterminated_steering(struct intel_gt *gt,
485 				       enum intel_steering_type type,
486 				       u8 *group, u8 *instance)
487 {
488 	u32 dss;
489 
490 	switch (type) {
491 	case L3BANK:
492 		*group = 0;		/* unused */
493 		*instance = __ffs(gt->info.l3bank_mask);
494 		break;
495 	case MSLICE:
496 		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
497 		*group = __ffs(gt->info.mslice_mask);
498 		*instance = 0;	/* unused */
499 		break;
500 	case LNCF:
501 		/*
502 		 * An LNCF is always present if its mslice is present, so we
503 		 * can safely just steer to LNCF 0 in all cases.
504 		 */
505 		GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
506 		*group = __ffs(gt->info.mslice_mask) << 1;
507 		*instance = 0;	/* unused */
508 		break;
509 	case GAM:
510 		*group = IS_DG2(gt->i915) ? 1 : 0;
511 		*instance = 0;
512 		break;
513 	case DSS:
514 		dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
515 		*group = dss / GEN_DSS_PER_GSLICE;
516 		*instance = dss % GEN_DSS_PER_GSLICE;
517 		break;
518 	case INSTANCE0:
519 		/*
520 		 * There are a lot of MCR types for which instance (0, 0)
521 		 * will always provide a non-terminated value.
522 		 */
523 		*group = 0;
524 		*instance = 0;
525 		break;
526 	case OADDRM:
527 		if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
528 			*group = 0;
529 		else
530 			*group = 1;
531 		*instance = 0;
532 		break;
533 	default:
534 		MISSING_CASE(type);
535 		*group = 0;
536 		*instance = 0;
537 	}
538 }
539 
540 /**
541  * intel_gt_mcr_get_nonterminated_steering - find group/instance values that
542  *    will steer a register to a non-terminated instance
543  * @gt: GT structure
544  * @reg: register for which the steering is required
545  * @group: return variable for group steering
546  * @instance: return variable for instance steering
547  *
548  * This function returns a group/instance pair that is guaranteed to work for
549  * read steering of the given register. Note that a value will be returned even
550  * if the register is not replicated and therefore does not actually require
551  * steering.
552  */
553 void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
554 					     i915_mcr_reg_t reg,
555 					     u8 *group, u8 *instance)
556 {
557 	int type;
558 
559 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
560 		if (reg_needs_read_steering(gt, reg, type)) {
561 			get_nonterminated_steering(gt, type, group, instance);
562 			return;
563 		}
564 	}
565 
566 	*group = gt->default_steering.groupid;
567 	*instance = gt->default_steering.instanceid;
568 }
569 
570 /**
571  * intel_gt_mcr_read_any_fw - reads one instance of an MCR register
572  * @gt: GT structure
573  * @reg: register to read
574  *
575  * Reads a GT MCR register.  The read will be steered to a non-terminated
576  * instance (i.e., one that isn't fused off or powered down by power gating).
577  * This function assumes the caller is already holding any necessary forcewake
578  * domains; use intel_gt_mcr_read_any() in cases where forcewake should be
579  * obtained automatically.
580  *
581  * Returns the value from a non-terminated instance of @reg.
582  */
583 u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
584 {
585 	int type;
586 	u8 group, instance;
587 
588 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
589 		if (reg_needs_read_steering(gt, reg, type)) {
590 			get_nonterminated_steering(gt, type, &group, &instance);
591 			return rw_with_mcr_steering_fw(gt->uncore, reg,
592 						       FW_REG_READ,
593 						       group, instance, 0);
594 		}
595 	}
596 
597 	return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
598 }
599 
600 /**
601  * intel_gt_mcr_read_any - reads one instance of an MCR register
602  * @gt: GT structure
603  * @reg: register to read
604  *
605  * Reads a GT MCR register.  The read will be steered to a non-terminated
606  * instance (i.e., one that isn't fused off or powered down by power gating).
607  *
608  * Returns the value from a non-terminated instance of @reg.
609  */
610 u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
611 {
612 	int type;
613 	u8 group, instance;
614 
615 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
616 		if (reg_needs_read_steering(gt, reg, type)) {
617 			get_nonterminated_steering(gt, type, &group, &instance);
618 			return rw_with_mcr_steering(gt->uncore, reg,
619 						    FW_REG_READ,
620 						    group, instance, 0);
621 		}
622 	}
623 
624 	return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
625 }
626 
627 static void report_steering_type(struct drm_printer *p,
628 				 struct intel_gt *gt,
629 				 enum intel_steering_type type,
630 				 bool dump_table)
631 {
632 	const struct intel_mmio_range *entry;
633 	u8 group, instance;
634 
635 	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
636 
637 	if (!gt->steering_table[type]) {
638 		drm_printf(p, "%s steering: uses default steering\n",
639 			   intel_steering_types[type]);
640 		return;
641 	}
642 
643 	get_nonterminated_steering(gt, type, &group, &instance);
644 	drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
645 		   intel_steering_types[type], group, instance);
646 
647 	if (!dump_table)
648 		return;
649 
650 	for (entry = gt->steering_table[type]; entry->end; entry++)
651 		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
652 }
653 
654 void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
655 				  bool dump_table)
656 {
657 	/*
658 	 * Starting with MTL we no longer have default steering;
659 	 * all ranges are explicitly steered.
660 	 */
661 	if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
662 		drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
663 			   gt->default_steering.groupid,
664 			   gt->default_steering.instanceid);
665 
666 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
667 		for (int i = 0; i < NUM_STEERING_TYPES; i++)
668 			if (gt->steering_table[i])
669 				report_steering_type(p, gt, i, dump_table);
670 	} else if (IS_PONTEVECCHIO(gt->i915)) {
671 		report_steering_type(p, gt, INSTANCE0, dump_table);
672 	} else if (HAS_MSLICE_STEERING(gt->i915)) {
673 		report_steering_type(p, gt, MSLICE, dump_table);
674 		report_steering_type(p, gt, LNCF, dump_table);
675 	}
676 }
677 
678 /**
679  * intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
680  * @gt: GT structure
681  * @dss: DSS ID to obtain steering for
682  * @group: pointer to storage for steering group ID
683  * @instance: pointer to storage for steering instance ID
684  *
685  * Returns the steering IDs (via the @group and @instance parameters) that
686  * correspond to a specific subslice/DSS ID.
687  */
688 void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
689 				   unsigned int *group, unsigned int *instance)
690 {
691 	if (IS_PONTEVECCHIO(gt->i915)) {
692 		*group = dss / GEN_DSS_PER_CSLICE;
693 		*instance = dss % GEN_DSS_PER_CSLICE;
694 	} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) {
695 		*group = dss / GEN_DSS_PER_GSLICE;
696 		*instance = dss % GEN_DSS_PER_GSLICE;
697 	} else {
698 		*group = dss / GEN_MAX_SS_PER_HSW_SLICE;
699 		*instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
700 		return;
701 	}
702 }
703 
704 /**
705  * intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
706  * @gt: GT structure
707  * @reg: the register to read
708  * @mask: mask to apply to register value
709  * @value: value to wait for
710  * @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
711  * @slow_timeout_ms: slow timeout in millisecond
712  *
713  * This routine waits until the target register @reg contains the expected
714  * @value after applying the @mask, i.e. it waits until ::
715  *
716  *     (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
717  *
718  * Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
719  * For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
720  * must be not larger than 20,0000 microseconds.
721  *
722  * This function is basically an MCR-friendly version of
723  * __intel_wait_for_register_fw().  Generally this function will only be used
724  * on GAM registers which are a bit special --- although they're MCR registers,
725  * reads (e.g., waiting for status updates) are always directed to the primary
726  * instance.
727  *
728  * Note that this routine assumes the caller holds forcewake asserted, it is
729  * not suitable for very long waits.
730  *
731  * Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
732  */
733 int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
734 			      i915_mcr_reg_t reg,
735 			      u32 mask,
736 			      u32 value,
737 			      unsigned int fast_timeout_us,
738 			      unsigned int slow_timeout_ms)
739 {
740 	int ret;
741 
742 	lockdep_assert_not_held(&gt->uncore->lock);
743 
744 #define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
745 
746 	/* Catch any overuse of this function */
747 	might_sleep_if(slow_timeout_ms);
748 	GEM_BUG_ON(fast_timeout_us > 20000);
749 	GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
750 
751 	ret = -ETIMEDOUT;
752 	if (fast_timeout_us && fast_timeout_us <= 20000)
753 		ret = _wait_for_atomic(done, fast_timeout_us, 0);
754 	if (ret && slow_timeout_ms)
755 		ret = wait_for(done, slow_timeout_ms);
756 
757 	return ret;
758 #undef done
759 }
760