xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gt_clock_utils.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_gt.h"
9 #include "intel_gt_clock_utils.h"
10 #include "intel_gt_print.h"
11 #include "intel_gt_regs.h"
12 
13 static u32 read_reference_ts_freq(struct intel_uncore *uncore)
14 {
15 	u32 ts_override = intel_uncore_read(uncore, GEN9_TIMESTAMP_OVERRIDE);
16 	u32 base_freq, frac_freq;
17 
18 	base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
19 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
20 	base_freq *= 1000000;
21 
22 	frac_freq = ((ts_override &
23 		      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
24 		     GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
25 	frac_freq = 1000000 / (frac_freq + 1);
26 
27 	return base_freq + frac_freq;
28 }
29 
30 static u32 gen11_get_crystal_clock_freq(struct intel_uncore *uncore,
31 					u32 rpm_config_reg)
32 {
33 	u32 f19_2_mhz = 19200000;
34 	u32 f24_mhz = 24000000;
35 	u32 f25_mhz = 25000000;
36 	u32 f38_4_mhz = 38400000;
37 	u32 crystal_clock =
38 		(rpm_config_reg & GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
39 		GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
40 
41 	switch (crystal_clock) {
42 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
43 		return f24_mhz;
44 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
45 		return f19_2_mhz;
46 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_38_4_MHZ:
47 		return f38_4_mhz;
48 	case GEN11_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_25_MHZ:
49 		return f25_mhz;
50 	default:
51 		MISSING_CASE(crystal_clock);
52 		return 0;
53 	}
54 }
55 
56 static u32 gen11_read_clock_frequency(struct intel_uncore *uncore)
57 {
58 	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
59 	u32 freq = 0;
60 
61 	/*
62 	 * Note that on gen11+, the clock frequency may be reconfigured.
63 	 * We do not, and we assume nobody else does.
64 	 *
65 	 * First figure out the reference frequency. There are 2 ways
66 	 * we can compute the frequency, either through the
67 	 * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
68 	 * tells us which one we should use.
69 	 */
70 	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
71 		freq = read_reference_ts_freq(uncore);
72 	} else {
73 		u32 c0 = intel_uncore_read(uncore, RPM_CONFIG0);
74 
75 		freq = gen11_get_crystal_clock_freq(uncore, c0);
76 
77 		/*
78 		 * Now figure out how the command stream's timestamp
79 		 * register increments from this frequency (it might
80 		 * increment only every few clock cycle).
81 		 */
82 		freq >>= 3 - ((c0 & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
83 			      GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
84 	}
85 
86 	return freq;
87 }
88 
89 static u32 gen9_read_clock_frequency(struct intel_uncore *uncore)
90 {
91 	u32 ctc_reg = intel_uncore_read(uncore, CTC_MODE);
92 	u32 freq = 0;
93 
94 	if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
95 		freq = read_reference_ts_freq(uncore);
96 	} else {
97 		freq = IS_GEN9_LP(uncore->i915) ? 19200000 : 24000000;
98 
99 		/*
100 		 * Now figure out how the command stream's timestamp
101 		 * register increments from this frequency (it might
102 		 * increment only every few clock cycle).
103 		 */
104 		freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
105 			      CTC_SHIFT_PARAMETER_SHIFT);
106 	}
107 
108 	return freq;
109 }
110 
111 static u32 gen6_read_clock_frequency(struct intel_uncore *uncore)
112 {
113 	/*
114 	 * PRMs say:
115 	 *
116 	 *     "The PCU TSC counts 10ns increments; this timestamp
117 	 *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
118 	 *      rolling over every 1.5 hours).
119 	 */
120 	return 12500000;
121 }
122 
123 static u32 gen5_read_clock_frequency(struct intel_uncore *uncore)
124 {
125 	/*
126 	 * 63:32 increments every 1000 ns
127 	 * 31:0 mbz
128 	 */
129 	return 1000000000 / 1000;
130 }
131 
132 static u32 g4x_read_clock_frequency(struct intel_uncore *uncore)
133 {
134 	/*
135 	 * 63:20 increments every 1/4 ns
136 	 * 19:0 mbz
137 	 *
138 	 * -> 63:32 increments every 1024 ns
139 	 */
140 	return 1000000000 / 1024;
141 }
142 
143 static u32 gen4_read_clock_frequency(struct intel_uncore *uncore)
144 {
145 	/*
146 	 * PRMs say:
147 	 *
148 	 *     "The value in this register increments once every 16
149 	 *      hclks." (through the “Clocking Configuration”
150 	 *      (“CLKCFG”) MCHBAR register)
151 	 *
152 	 * Testing on actual hardware has shown there is no /16.
153 	 */
154 	return RUNTIME_INFO(uncore->i915)->rawclk_freq * 1000;
155 }
156 
157 static u32 read_clock_frequency(struct intel_uncore *uncore)
158 {
159 	if (GRAPHICS_VER(uncore->i915) >= 11)
160 		return gen11_read_clock_frequency(uncore);
161 	else if (GRAPHICS_VER(uncore->i915) >= 9)
162 		return gen9_read_clock_frequency(uncore);
163 	else if (GRAPHICS_VER(uncore->i915) >= 6)
164 		return gen6_read_clock_frequency(uncore);
165 	else if (GRAPHICS_VER(uncore->i915) == 5)
166 		return gen5_read_clock_frequency(uncore);
167 	else if (IS_G4X(uncore->i915))
168 		return g4x_read_clock_frequency(uncore);
169 	else if (GRAPHICS_VER(uncore->i915) == 4)
170 		return gen4_read_clock_frequency(uncore);
171 	else
172 		return 0;
173 }
174 
175 void intel_gt_init_clock_frequency(struct intel_gt *gt)
176 {
177 	gt->clock_frequency = read_clock_frequency(gt->uncore);
178 
179 	/* Icelake appears to use another fixed frequency for CTX_TIMESTAMP */
180 	if (GRAPHICS_VER(gt->i915) == 11)
181 		gt->clock_period_ns = NSEC_PER_SEC / 13750000;
182 	else if (gt->clock_frequency)
183 		gt->clock_period_ns = intel_gt_clock_interval_to_ns(gt, 1);
184 
185 	GT_TRACE(gt,
186 		 "Using clock frequency: %dkHz, period: %dns, wrap: %lldms\n",
187 		 gt->clock_frequency / 1000,
188 		 gt->clock_period_ns,
189 		 div_u64(mul_u32_u32(gt->clock_period_ns, S32_MAX),
190 			 USEC_PER_SEC));
191 }
192 
193 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
194 void intel_gt_check_clock_frequency(const struct intel_gt *gt)
195 {
196 	if (gt->clock_frequency != read_clock_frequency(gt->uncore)) {
197 		gt_err(gt, "GT clock frequency changed, was %uHz, now %uHz!\n",
198 		       gt->clock_frequency,
199 		       read_clock_frequency(gt->uncore));
200 	}
201 }
202 #endif
203 
204 static u64 div_u64_roundup(u64 nom, u32 den)
205 {
206 	return div_u64(nom + den - 1, den);
207 }
208 
209 u64 intel_gt_clock_interval_to_ns(const struct intel_gt *gt, u64 count)
210 {
211 	return div_u64_roundup(count * NSEC_PER_SEC, gt->clock_frequency);
212 }
213 
214 u64 intel_gt_pm_interval_to_ns(const struct intel_gt *gt, u64 count)
215 {
216 	return intel_gt_clock_interval_to_ns(gt, 16 * count);
217 }
218 
219 u64 intel_gt_ns_to_clock_interval(const struct intel_gt *gt, u64 ns)
220 {
221 	return div_u64_roundup(gt->clock_frequency * ns, NSEC_PER_SEC);
222 }
223 
224 u64 intel_gt_ns_to_pm_interval(const struct intel_gt *gt, u64 ns)
225 {
226 	u64 val;
227 
228 	/*
229 	 * Make these a multiple of magic 25 to avoid SNB (eg. Dell XPS
230 	 * 8300) freezing up around GPU hangs. Looks as if even
231 	 * scheduling/timer interrupts start misbehaving if the RPS
232 	 * EI/thresholds are "bad", leading to a very sluggish or even
233 	 * frozen machine.
234 	 */
235 	val = div_u64_roundup(intel_gt_ns_to_clock_interval(gt, ns), 16);
236 	if (GRAPHICS_VER(gt->i915) == 6)
237 		val = div_u64_roundup(val, 25) * 25;
238 
239 	return val;
240 }
241