xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision f759f5b5)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_managed.h>
7 #include <drm/intel-gtt.h>
8 
9 #include "gem/i915_gem_internal.h"
10 #include "gem/i915_gem_lmem.h"
11 #include "pxp/intel_pxp.h"
12 
13 #include "i915_drv.h"
14 #include "i915_perf_oa_regs.h"
15 #include "i915_reg.h"
16 #include "intel_context.h"
17 #include "intel_engine_pm.h"
18 #include "intel_engine_regs.h"
19 #include "intel_ggtt_gmch.h"
20 #include "intel_gt.h"
21 #include "intel_gt_buffer_pool.h"
22 #include "intel_gt_clock_utils.h"
23 #include "intel_gt_debugfs.h"
24 #include "intel_gt_mcr.h"
25 #include "intel_gt_pm.h"
26 #include "intel_gt_regs.h"
27 #include "intel_gt_requests.h"
28 #include "intel_migrate.h"
29 #include "intel_mocs.h"
30 #include "intel_pci_config.h"
31 #include "intel_pm.h"
32 #include "intel_rc6.h"
33 #include "intel_renderstate.h"
34 #include "intel_rps.h"
35 #include "intel_sa_media.h"
36 #include "intel_gt_sysfs.h"
37 #include "intel_uncore.h"
38 #include "shmem_utils.h"
39 
40 void intel_gt_common_init_early(struct intel_gt *gt)
41 {
42 	spin_lock_init(gt->irq_lock);
43 
44 	INIT_LIST_HEAD(&gt->closed_vma);
45 	spin_lock_init(&gt->closed_lock);
46 
47 	init_llist_head(&gt->watchdog.list);
48 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
49 
50 	intel_gt_init_buffer_pool(gt);
51 	intel_gt_init_reset(gt);
52 	intel_gt_init_requests(gt);
53 	intel_gt_init_timelines(gt);
54 	mutex_init(&gt->tlb.invalidate_lock);
55 	seqcount_mutex_init(&gt->tlb.seqno, &gt->tlb.invalidate_lock);
56 	intel_gt_pm_init_early(gt);
57 
58 	intel_wopcm_init_early(&gt->wopcm);
59 	intel_uc_init_early(&gt->uc);
60 	intel_rps_init_early(&gt->rps);
61 }
62 
63 /* Preliminary initialization of Tile 0 */
64 int intel_root_gt_init_early(struct drm_i915_private *i915)
65 {
66 	struct intel_gt *gt = to_gt(i915);
67 
68 	gt->i915 = i915;
69 	gt->uncore = &i915->uncore;
70 	gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
71 	if (!gt->irq_lock)
72 		return -ENOMEM;
73 
74 	intel_gt_common_init_early(gt);
75 
76 	return 0;
77 }
78 
79 static int intel_gt_probe_lmem(struct intel_gt *gt)
80 {
81 	struct drm_i915_private *i915 = gt->i915;
82 	unsigned int instance = gt->info.id;
83 	int id = INTEL_REGION_LMEM_0 + instance;
84 	struct intel_memory_region *mem;
85 	int err;
86 
87 	mem = intel_gt_setup_lmem(gt);
88 	if (IS_ERR(mem)) {
89 		err = PTR_ERR(mem);
90 		if (err == -ENODEV)
91 			return 0;
92 
93 		drm_err(&i915->drm,
94 			"Failed to setup region(%d) type=%d\n",
95 			err, INTEL_MEMORY_LOCAL);
96 		return err;
97 	}
98 
99 	mem->id = id;
100 	mem->instance = instance;
101 
102 	intel_memory_region_set_name(mem, "local%u", mem->instance);
103 
104 	GEM_BUG_ON(!HAS_REGION(i915, id));
105 	GEM_BUG_ON(i915->mm.regions[id]);
106 	i915->mm.regions[id] = mem;
107 
108 	return 0;
109 }
110 
111 int intel_gt_assign_ggtt(struct intel_gt *gt)
112 {
113 	gt->ggtt = drmm_kzalloc(&gt->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL);
114 
115 	return gt->ggtt ? 0 : -ENOMEM;
116 }
117 
118 int intel_gt_init_mmio(struct intel_gt *gt)
119 {
120 	intel_gt_init_clock_frequency(gt);
121 
122 	intel_uc_init_mmio(&gt->uc);
123 	intel_sseu_info_init(gt);
124 	intel_gt_mcr_init(gt);
125 
126 	return intel_engines_init_mmio(gt);
127 }
128 
129 static void init_unused_ring(struct intel_gt *gt, u32 base)
130 {
131 	struct intel_uncore *uncore = gt->uncore;
132 
133 	intel_uncore_write(uncore, RING_CTL(base), 0);
134 	intel_uncore_write(uncore, RING_HEAD(base), 0);
135 	intel_uncore_write(uncore, RING_TAIL(base), 0);
136 	intel_uncore_write(uncore, RING_START(base), 0);
137 }
138 
139 static void init_unused_rings(struct intel_gt *gt)
140 {
141 	struct drm_i915_private *i915 = gt->i915;
142 
143 	if (IS_I830(i915)) {
144 		init_unused_ring(gt, PRB1_BASE);
145 		init_unused_ring(gt, SRB0_BASE);
146 		init_unused_ring(gt, SRB1_BASE);
147 		init_unused_ring(gt, SRB2_BASE);
148 		init_unused_ring(gt, SRB3_BASE);
149 	} else if (GRAPHICS_VER(i915) == 2) {
150 		init_unused_ring(gt, SRB0_BASE);
151 		init_unused_ring(gt, SRB1_BASE);
152 	} else if (GRAPHICS_VER(i915) == 3) {
153 		init_unused_ring(gt, PRB1_BASE);
154 		init_unused_ring(gt, PRB2_BASE);
155 	}
156 }
157 
158 int intel_gt_init_hw(struct intel_gt *gt)
159 {
160 	struct drm_i915_private *i915 = gt->i915;
161 	struct intel_uncore *uncore = gt->uncore;
162 	int ret;
163 
164 	gt->last_init_time = ktime_get();
165 
166 	/* Double layer security blanket, see i915_gem_init() */
167 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
168 
169 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
170 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
171 
172 	if (IS_HASWELL(i915))
173 		intel_uncore_write(uncore,
174 				   HSW_MI_PREDICATE_RESULT_2,
175 				   IS_HSW_GT3(i915) ?
176 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
177 
178 	/* Apply the GT workarounds... */
179 	intel_gt_apply_workarounds(gt);
180 	/* ...and determine whether they are sticking. */
181 	intel_gt_verify_workarounds(gt, "init");
182 
183 	intel_gt_init_swizzling(gt);
184 
185 	/*
186 	 * At least 830 can leave some of the unused rings
187 	 * "active" (ie. head != tail) after resume which
188 	 * will prevent c3 entry. Makes sure all unused rings
189 	 * are totally idle.
190 	 */
191 	init_unused_rings(gt);
192 
193 	ret = i915_ppgtt_init_hw(gt);
194 	if (ret) {
195 		drm_err(&i915->drm, "Enabling PPGTT failed (%d)\n", ret);
196 		goto out;
197 	}
198 
199 	/* We can't enable contexts until all firmware is loaded */
200 	ret = intel_uc_init_hw(&gt->uc);
201 	if (ret) {
202 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
203 		goto out;
204 	}
205 
206 	intel_mocs_init(gt);
207 
208 out:
209 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
210 	return ret;
211 }
212 
213 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
214 {
215 	intel_uncore_rmw(uncore, reg, 0, set);
216 }
217 
218 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
219 {
220 	intel_uncore_rmw(uncore, reg, clr, 0);
221 }
222 
223 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
224 {
225 	intel_uncore_rmw(uncore, reg, 0, 0);
226 }
227 
228 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
229 {
230 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
231 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
232 }
233 
234 i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
235 {
236 	/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
237 	if (GRAPHICS_VER(gt->i915) < 11)
238 		return INVALID_MMIO_REG;
239 
240 	return gt->type == GT_MEDIA ?
241 		MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
242 }
243 
244 void
245 intel_gt_clear_error_registers(struct intel_gt *gt,
246 			       intel_engine_mask_t engine_mask)
247 {
248 	struct drm_i915_private *i915 = gt->i915;
249 	struct intel_uncore *uncore = gt->uncore;
250 	u32 eir;
251 
252 	if (GRAPHICS_VER(i915) != 2)
253 		clear_register(uncore, PGTBL_ER);
254 
255 	if (GRAPHICS_VER(i915) < 4)
256 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
257 	else
258 		clear_register(uncore, IPEIR_I965);
259 
260 	clear_register(uncore, EIR);
261 	eir = intel_uncore_read(uncore, EIR);
262 	if (eir) {
263 		/*
264 		 * some errors might have become stuck,
265 		 * mask them.
266 		 */
267 		drm_dbg(&gt->i915->drm, "EIR stuck: 0x%08x, masking\n", eir);
268 		rmw_set(uncore, EMR, eir);
269 		intel_uncore_write(uncore, GEN2_IIR,
270 				   I915_MASTER_ERROR_INTERRUPT);
271 	}
272 
273 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
274 		intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
275 					   RING_FAULT_VALID, 0);
276 		intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
277 	} else if (GRAPHICS_VER(i915) >= 12) {
278 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
279 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
280 	} else if (GRAPHICS_VER(i915) >= 8) {
281 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
282 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
283 	} else if (GRAPHICS_VER(i915) >= 6) {
284 		struct intel_engine_cs *engine;
285 		enum intel_engine_id id;
286 
287 		for_each_engine_masked(engine, gt, engine_mask, id)
288 			gen6_clear_engine_error_register(engine);
289 	}
290 }
291 
292 static void gen6_check_faults(struct intel_gt *gt)
293 {
294 	struct intel_engine_cs *engine;
295 	enum intel_engine_id id;
296 	u32 fault;
297 
298 	for_each_engine(engine, gt, id) {
299 		fault = GEN6_RING_FAULT_REG_READ(engine);
300 		if (fault & RING_FAULT_VALID) {
301 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
302 				"\tAddr: 0x%08lx\n"
303 				"\tAddress space: %s\n"
304 				"\tSource ID: %d\n"
305 				"\tType: %d\n",
306 				fault & PAGE_MASK,
307 				fault & RING_FAULT_GTTSEL_MASK ?
308 				"GGTT" : "PPGTT",
309 				RING_FAULT_SRCID(fault),
310 				RING_FAULT_FAULT_TYPE(fault));
311 		}
312 	}
313 }
314 
315 static void xehp_check_faults(struct intel_gt *gt)
316 {
317 	u32 fault;
318 
319 	/*
320 	 * Although the fault register now lives in an MCR register range,
321 	 * the GAM registers are special and we only truly need to read
322 	 * the "primary" GAM instance rather than handling each instance
323 	 * individually.  intel_gt_mcr_read_any() will automatically steer
324 	 * toward the primary instance.
325 	 */
326 	fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
327 	if (fault & RING_FAULT_VALID) {
328 		u32 fault_data0, fault_data1;
329 		u64 fault_addr;
330 
331 		fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
332 		fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
333 
334 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
335 			     ((u64)fault_data0 << 12);
336 
337 		drm_dbg(&gt->i915->drm, "Unexpected fault\n"
338 			"\tAddr: 0x%08x_%08x\n"
339 			"\tAddress space: %s\n"
340 			"\tEngine ID: %d\n"
341 			"\tSource ID: %d\n"
342 			"\tType: %d\n",
343 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
344 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
345 			GEN8_RING_FAULT_ENGINE_ID(fault),
346 			RING_FAULT_SRCID(fault),
347 			RING_FAULT_FAULT_TYPE(fault));
348 	}
349 }
350 
351 static void gen8_check_faults(struct intel_gt *gt)
352 {
353 	struct intel_uncore *uncore = gt->uncore;
354 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
355 	u32 fault;
356 
357 	if (GRAPHICS_VER(gt->i915) >= 12) {
358 		fault_reg = GEN12_RING_FAULT_REG;
359 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
360 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
361 	} else {
362 		fault_reg = GEN8_RING_FAULT_REG;
363 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
364 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
365 	}
366 
367 	fault = intel_uncore_read(uncore, fault_reg);
368 	if (fault & RING_FAULT_VALID) {
369 		u32 fault_data0, fault_data1;
370 		u64 fault_addr;
371 
372 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
373 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
374 
375 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
376 			     ((u64)fault_data0 << 12);
377 
378 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
379 			"\tAddr: 0x%08x_%08x\n"
380 			"\tAddress space: %s\n"
381 			"\tEngine ID: %d\n"
382 			"\tSource ID: %d\n"
383 			"\tType: %d\n",
384 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
385 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
386 			GEN8_RING_FAULT_ENGINE_ID(fault),
387 			RING_FAULT_SRCID(fault),
388 			RING_FAULT_FAULT_TYPE(fault));
389 	}
390 }
391 
392 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
393 {
394 	struct drm_i915_private *i915 = gt->i915;
395 
396 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
397 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
398 		xehp_check_faults(gt);
399 	else if (GRAPHICS_VER(i915) >= 8)
400 		gen8_check_faults(gt);
401 	else if (GRAPHICS_VER(i915) >= 6)
402 		gen6_check_faults(gt);
403 	else
404 		return;
405 
406 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
407 }
408 
409 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
410 {
411 	struct intel_uncore *uncore = gt->uncore;
412 	intel_wakeref_t wakeref;
413 
414 	/*
415 	 * No actual flushing is required for the GTT write domain for reads
416 	 * from the GTT domain. Writes to it "immediately" go to main memory
417 	 * as far as we know, so there's no chipset flush. It also doesn't
418 	 * land in the GPU render cache.
419 	 *
420 	 * However, we do have to enforce the order so that all writes through
421 	 * the GTT land before any writes to the device, such as updates to
422 	 * the GATT itself.
423 	 *
424 	 * We also have to wait a bit for the writes to land from the GTT.
425 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
426 	 * timing. This issue has only been observed when switching quickly
427 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
428 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
429 	 * system agents we cannot reproduce this behaviour, until Cannonlake
430 	 * that was!).
431 	 */
432 
433 	wmb();
434 
435 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
436 		return;
437 
438 	intel_gt_chipset_flush(gt);
439 
440 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
441 		unsigned long flags;
442 
443 		spin_lock_irqsave(&uncore->lock, flags);
444 		intel_uncore_posting_read_fw(uncore,
445 					     RING_HEAD(RENDER_RING_BASE));
446 		spin_unlock_irqrestore(&uncore->lock, flags);
447 	}
448 }
449 
450 void intel_gt_chipset_flush(struct intel_gt *gt)
451 {
452 	wmb();
453 	if (GRAPHICS_VER(gt->i915) < 6)
454 		intel_ggtt_gmch_flush();
455 }
456 
457 void intel_gt_driver_register(struct intel_gt *gt)
458 {
459 	intel_gsc_init(&gt->gsc, gt->i915);
460 
461 	intel_rps_driver_register(&gt->rps);
462 
463 	intel_gt_debugfs_register(gt);
464 	intel_gt_sysfs_register(gt);
465 }
466 
467 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
468 {
469 	struct drm_i915_private *i915 = gt->i915;
470 	struct drm_i915_gem_object *obj;
471 	struct i915_vma *vma;
472 	int ret;
473 
474 	obj = i915_gem_object_create_lmem(i915, size,
475 					  I915_BO_ALLOC_VOLATILE |
476 					  I915_BO_ALLOC_GPU_ONLY);
477 	if (IS_ERR(obj))
478 		obj = i915_gem_object_create_stolen(i915, size);
479 	if (IS_ERR(obj))
480 		obj = i915_gem_object_create_internal(i915, size);
481 	if (IS_ERR(obj)) {
482 		drm_err(&i915->drm, "Failed to allocate scratch page\n");
483 		return PTR_ERR(obj);
484 	}
485 
486 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
487 	if (IS_ERR(vma)) {
488 		ret = PTR_ERR(vma);
489 		goto err_unref;
490 	}
491 
492 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
493 	if (ret)
494 		goto err_unref;
495 
496 	gt->scratch = i915_vma_make_unshrinkable(vma);
497 
498 	return 0;
499 
500 err_unref:
501 	i915_gem_object_put(obj);
502 	return ret;
503 }
504 
505 static void intel_gt_fini_scratch(struct intel_gt *gt)
506 {
507 	i915_vma_unpin_and_release(&gt->scratch, 0);
508 }
509 
510 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
511 {
512 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
513 		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
514 	else
515 		return i915_vm_get(&gt->ggtt->vm);
516 }
517 
518 static int __engines_record_defaults(struct intel_gt *gt)
519 {
520 	struct i915_request *requests[I915_NUM_ENGINES] = {};
521 	struct intel_engine_cs *engine;
522 	enum intel_engine_id id;
523 	int err = 0;
524 
525 	/*
526 	 * As we reset the gpu during very early sanitisation, the current
527 	 * register state on the GPU should reflect its defaults values.
528 	 * We load a context onto the hw (with restore-inhibit), then switch
529 	 * over to a second context to save that default register state. We
530 	 * can then prime every new context with that state so they all start
531 	 * from the same default HW values.
532 	 */
533 
534 	for_each_engine(engine, gt, id) {
535 		struct intel_renderstate so;
536 		struct intel_context *ce;
537 		struct i915_request *rq;
538 
539 		/* We must be able to switch to something! */
540 		GEM_BUG_ON(!engine->kernel_context);
541 
542 		ce = intel_context_create(engine);
543 		if (IS_ERR(ce)) {
544 			err = PTR_ERR(ce);
545 			goto out;
546 		}
547 
548 		err = intel_renderstate_init(&so, ce);
549 		if (err)
550 			goto err;
551 
552 		rq = i915_request_create(ce);
553 		if (IS_ERR(rq)) {
554 			err = PTR_ERR(rq);
555 			goto err_fini;
556 		}
557 
558 		err = intel_engine_emit_ctx_wa(rq);
559 		if (err)
560 			goto err_rq;
561 
562 		err = intel_renderstate_emit(&so, rq);
563 		if (err)
564 			goto err_rq;
565 
566 err_rq:
567 		requests[id] = i915_request_get(rq);
568 		i915_request_add(rq);
569 err_fini:
570 		intel_renderstate_fini(&so, ce);
571 err:
572 		if (err) {
573 			intel_context_put(ce);
574 			goto out;
575 		}
576 	}
577 
578 	/* Flush the default context image to memory, and enable powersaving. */
579 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
580 		err = -EIO;
581 		goto out;
582 	}
583 
584 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
585 		struct i915_request *rq;
586 		struct file *state;
587 
588 		rq = requests[id];
589 		if (!rq)
590 			continue;
591 
592 		if (rq->fence.error) {
593 			err = -EIO;
594 			goto out;
595 		}
596 
597 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
598 		if (!rq->context->state)
599 			continue;
600 
601 		/* Keep a copy of the state's backing pages; free the obj */
602 		state = shmem_create_from_object(rq->context->state->obj);
603 		if (IS_ERR(state)) {
604 			err = PTR_ERR(state);
605 			goto out;
606 		}
607 		rq->engine->default_state = state;
608 	}
609 
610 out:
611 	/*
612 	 * If we have to abandon now, we expect the engines to be idle
613 	 * and ready to be torn-down. The quickest way we can accomplish
614 	 * this is by declaring ourselves wedged.
615 	 */
616 	if (err)
617 		intel_gt_set_wedged(gt);
618 
619 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
620 		struct intel_context *ce;
621 		struct i915_request *rq;
622 
623 		rq = requests[id];
624 		if (!rq)
625 			continue;
626 
627 		ce = rq->context;
628 		i915_request_put(rq);
629 		intel_context_put(ce);
630 	}
631 	return err;
632 }
633 
634 static int __engines_verify_workarounds(struct intel_gt *gt)
635 {
636 	struct intel_engine_cs *engine;
637 	enum intel_engine_id id;
638 	int err = 0;
639 
640 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
641 		return 0;
642 
643 	for_each_engine(engine, gt, id) {
644 		if (intel_engine_verify_workarounds(engine, "load"))
645 			err = -EIO;
646 	}
647 
648 	/* Flush and restore the kernel context for safety */
649 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
650 		err = -EIO;
651 
652 	return err;
653 }
654 
655 static void __intel_gt_disable(struct intel_gt *gt)
656 {
657 	intel_gt_set_wedged_on_fini(gt);
658 
659 	intel_gt_suspend_prepare(gt);
660 	intel_gt_suspend_late(gt);
661 
662 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
663 }
664 
665 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
666 {
667 	long remaining_timeout;
668 
669 	/* If the device is asleep, we have no requests outstanding */
670 	if (!intel_gt_pm_is_awake(gt))
671 		return 0;
672 
673 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
674 							   &remaining_timeout)) > 0) {
675 		cond_resched();
676 		if (signal_pending(current))
677 			return -EINTR;
678 	}
679 
680 	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
681 							  remaining_timeout);
682 }
683 
684 int intel_gt_init(struct intel_gt *gt)
685 {
686 	int err;
687 
688 	err = i915_inject_probe_error(gt->i915, -ENODEV);
689 	if (err)
690 		return err;
691 
692 	intel_gt_init_workarounds(gt);
693 
694 	/*
695 	 * This is just a security blanket to placate dragons.
696 	 * On some systems, we very sporadically observe that the first TLBs
697 	 * used by the CS may be stale, despite us poking the TLB reset. If
698 	 * we hold the forcewake during initialisation these problems
699 	 * just magically go away.
700 	 */
701 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
702 
703 	err = intel_gt_init_scratch(gt,
704 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
705 	if (err)
706 		goto out_fw;
707 
708 	intel_gt_pm_init(gt);
709 
710 	gt->vm = kernel_vm(gt);
711 	if (!gt->vm) {
712 		err = -ENOMEM;
713 		goto err_pm;
714 	}
715 
716 	intel_set_mocs_index(gt);
717 
718 	err = intel_engines_init(gt);
719 	if (err)
720 		goto err_engines;
721 
722 	err = intel_uc_init(&gt->uc);
723 	if (err)
724 		goto err_engines;
725 
726 	err = intel_gt_resume(gt);
727 	if (err)
728 		goto err_uc_init;
729 
730 	err = intel_gt_init_hwconfig(gt);
731 	if (err)
732 		drm_err(&gt->i915->drm, "Failed to retrieve hwconfig table: %pe\n",
733 			ERR_PTR(err));
734 
735 	err = __engines_record_defaults(gt);
736 	if (err)
737 		goto err_gt;
738 
739 	err = __engines_verify_workarounds(gt);
740 	if (err)
741 		goto err_gt;
742 
743 	intel_uc_init_late(&gt->uc);
744 
745 	err = i915_inject_probe_error(gt->i915, -EIO);
746 	if (err)
747 		goto err_gt;
748 
749 	intel_migrate_init(&gt->migrate, gt);
750 
751 	intel_pxp_init(&gt->pxp);
752 
753 	goto out_fw;
754 err_gt:
755 	__intel_gt_disable(gt);
756 	intel_uc_fini_hw(&gt->uc);
757 err_uc_init:
758 	intel_uc_fini(&gt->uc);
759 err_engines:
760 	intel_engines_release(gt);
761 	i915_vm_put(fetch_and_zero(&gt->vm));
762 err_pm:
763 	intel_gt_pm_fini(gt);
764 	intel_gt_fini_scratch(gt);
765 out_fw:
766 	if (err)
767 		intel_gt_set_wedged_on_init(gt);
768 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
769 	return err;
770 }
771 
772 void intel_gt_driver_remove(struct intel_gt *gt)
773 {
774 	__intel_gt_disable(gt);
775 
776 	intel_migrate_fini(&gt->migrate);
777 	intel_uc_driver_remove(&gt->uc);
778 
779 	intel_engines_release(gt);
780 
781 	intel_gt_flush_buffer_pool(gt);
782 }
783 
784 void intel_gt_driver_unregister(struct intel_gt *gt)
785 {
786 	intel_wakeref_t wakeref;
787 
788 	intel_gt_sysfs_unregister(gt);
789 	intel_rps_driver_unregister(&gt->rps);
790 	intel_gsc_fini(&gt->gsc);
791 
792 	intel_pxp_fini(&gt->pxp);
793 
794 	/*
795 	 * Upon unregistering the device to prevent any new users, cancel
796 	 * all in-flight requests so that we can quickly unbind the active
797 	 * resources.
798 	 */
799 	intel_gt_set_wedged_on_fini(gt);
800 
801 	/* Scrub all HW state upon release */
802 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
803 		__intel_gt_reset(gt, ALL_ENGINES);
804 }
805 
806 void intel_gt_driver_release(struct intel_gt *gt)
807 {
808 	struct i915_address_space *vm;
809 
810 	vm = fetch_and_zero(&gt->vm);
811 	if (vm) /* FIXME being called twice on error paths :( */
812 		i915_vm_put(vm);
813 
814 	intel_wa_list_free(&gt->wa_list);
815 	intel_gt_pm_fini(gt);
816 	intel_gt_fini_scratch(gt);
817 	intel_gt_fini_buffer_pool(gt);
818 	intel_gt_fini_hwconfig(gt);
819 }
820 
821 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
822 {
823 	struct intel_gt *gt;
824 	unsigned int id;
825 
826 	/* We need to wait for inflight RCU frees to release their grip */
827 	rcu_barrier();
828 
829 	for_each_gt(gt, i915, id) {
830 		intel_uc_driver_late_release(&gt->uc);
831 		intel_gt_fini_requests(gt);
832 		intel_gt_fini_reset(gt);
833 		intel_gt_fini_timelines(gt);
834 		mutex_destroy(&gt->tlb.invalidate_lock);
835 		intel_engines_free(gt);
836 	}
837 }
838 
839 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
840 {
841 	int ret;
842 
843 	if (!gt_is_root(gt)) {
844 		struct intel_uncore *uncore;
845 		spinlock_t *irq_lock;
846 
847 		uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL);
848 		if (!uncore)
849 			return -ENOMEM;
850 
851 		irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
852 		if (!irq_lock)
853 			return -ENOMEM;
854 
855 		gt->uncore = uncore;
856 		gt->irq_lock = irq_lock;
857 
858 		intel_gt_common_init_early(gt);
859 	}
860 
861 	intel_uncore_init_early(gt->uncore, gt);
862 
863 	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
864 	if (ret)
865 		return ret;
866 
867 	gt->phys_addr = phys_addr;
868 
869 	return 0;
870 }
871 
872 int intel_gt_probe_all(struct drm_i915_private *i915)
873 {
874 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
875 	struct intel_gt *gt = &i915->gt0;
876 	const struct intel_gt_definition *gtdef;
877 	phys_addr_t phys_addr;
878 	unsigned int mmio_bar;
879 	unsigned int i;
880 	int ret;
881 
882 	mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
883 	phys_addr = pci_resource_start(pdev, mmio_bar);
884 
885 	/*
886 	 * We always have at least one primary GT on any device
887 	 * and it has been already initialized early during probe
888 	 * in i915_driver_probe()
889 	 */
890 	gt->i915 = i915;
891 	gt->name = "Primary GT";
892 	gt->info.engine_mask = RUNTIME_INFO(i915)->platform_engine_mask;
893 
894 	drm_dbg(&i915->drm, "Setting up %s\n", gt->name);
895 	ret = intel_gt_tile_setup(gt, phys_addr);
896 	if (ret)
897 		return ret;
898 
899 	i915->gt[0] = gt;
900 
901 	if (!HAS_EXTRA_GT_LIST(i915))
902 		return 0;
903 
904 	for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
905 	     gtdef->name != NULL;
906 	     i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
907 		gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
908 		if (!gt) {
909 			ret = -ENOMEM;
910 			goto err;
911 		}
912 
913 		gt->i915 = i915;
914 		gt->name = gtdef->name;
915 		gt->type = gtdef->type;
916 		gt->info.engine_mask = gtdef->engine_mask;
917 		gt->info.id = i;
918 
919 		drm_dbg(&i915->drm, "Setting up %s\n", gt->name);
920 		if (GEM_WARN_ON(range_overflows_t(resource_size_t,
921 						  gtdef->mapping_base,
922 						  SZ_16M,
923 						  pci_resource_len(pdev, mmio_bar)))) {
924 			ret = -ENODEV;
925 			goto err;
926 		}
927 
928 		switch (gtdef->type) {
929 		case GT_TILE:
930 			ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
931 			break;
932 
933 		case GT_MEDIA:
934 			ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
935 						     gtdef->gsi_offset);
936 			break;
937 
938 		case GT_PRIMARY:
939 			/* Primary GT should not appear in extra GT list */
940 		default:
941 			MISSING_CASE(gtdef->type);
942 			ret = -ENODEV;
943 		}
944 
945 		if (ret)
946 			goto err;
947 
948 		i915->gt[i] = gt;
949 	}
950 
951 	return 0;
952 
953 err:
954 	i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
955 	intel_gt_release_all(i915);
956 
957 	return ret;
958 }
959 
960 int intel_gt_tiles_init(struct drm_i915_private *i915)
961 {
962 	struct intel_gt *gt;
963 	unsigned int id;
964 	int ret;
965 
966 	for_each_gt(gt, i915, id) {
967 		ret = intel_gt_probe_lmem(gt);
968 		if (ret)
969 			return ret;
970 	}
971 
972 	return 0;
973 }
974 
975 void intel_gt_release_all(struct drm_i915_private *i915)
976 {
977 	struct intel_gt *gt;
978 	unsigned int id;
979 
980 	for_each_gt(gt, i915, id)
981 		i915->gt[id] = NULL;
982 }
983 
984 void intel_gt_info_print(const struct intel_gt_info *info,
985 			 struct drm_printer *p)
986 {
987 	drm_printf(p, "available engines: %x\n", info->engine_mask);
988 
989 	intel_sseu_dump(&info->sseu, p);
990 }
991 
992 struct reg_and_bit {
993 	union {
994 		i915_reg_t reg;
995 		i915_mcr_reg_t mcr_reg;
996 	};
997 	u32 bit;
998 };
999 
1000 static struct reg_and_bit
1001 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
1002 		const i915_reg_t *regs, const unsigned int num)
1003 {
1004 	const unsigned int class = engine->class;
1005 	struct reg_and_bit rb = { };
1006 
1007 	if (drm_WARN_ON_ONCE(&engine->i915->drm,
1008 			     class >= num || !regs[class].reg))
1009 		return rb;
1010 
1011 	rb.reg = regs[class];
1012 	if (gen8 && class == VIDEO_DECODE_CLASS)
1013 		rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
1014 	else
1015 		rb.bit = engine->instance;
1016 
1017 	rb.bit = BIT(rb.bit);
1018 
1019 	return rb;
1020 }
1021 
1022 /*
1023  * HW architecture suggest typical invalidation time at 40us,
1024  * with pessimistic cases up to 100us and a recommendation to
1025  * cap at 1ms. We go a bit higher just in case.
1026  */
1027 #define TLB_INVAL_TIMEOUT_US 100
1028 #define TLB_INVAL_TIMEOUT_MS 4
1029 
1030 /*
1031  * On Xe_HP the TLB invalidation registers are located at the same MMIO offsets
1032  * but are now considered MCR registers.  Since they exist within a GAM range,
1033  * the primary instance of the register rolls up the status from each unit.
1034  */
1035 static int wait_for_invalidate(struct intel_gt *gt, struct reg_and_bit rb)
1036 {
1037 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
1038 		return intel_gt_mcr_wait_for_reg_fw(gt, rb.mcr_reg, rb.bit, 0,
1039 						    TLB_INVAL_TIMEOUT_US,
1040 						    TLB_INVAL_TIMEOUT_MS);
1041 	else
1042 		return __intel_wait_for_register_fw(gt->uncore, rb.reg, rb.bit, 0,
1043 						    TLB_INVAL_TIMEOUT_US,
1044 						    TLB_INVAL_TIMEOUT_MS,
1045 						    NULL);
1046 }
1047 
1048 static void mmio_invalidate_full(struct intel_gt *gt)
1049 {
1050 	static const i915_reg_t gen8_regs[] = {
1051 		[RENDER_CLASS]			= GEN8_RTCR,
1052 		[VIDEO_DECODE_CLASS]		= GEN8_M1TCR, /* , GEN8_M2TCR */
1053 		[VIDEO_ENHANCEMENT_CLASS]	= GEN8_VTCR,
1054 		[COPY_ENGINE_CLASS]		= GEN8_BTCR,
1055 	};
1056 	static const i915_reg_t gen12_regs[] = {
1057 		[RENDER_CLASS]			= GEN12_GFX_TLB_INV_CR,
1058 		[VIDEO_DECODE_CLASS]		= GEN12_VD_TLB_INV_CR,
1059 		[VIDEO_ENHANCEMENT_CLASS]	= GEN12_VE_TLB_INV_CR,
1060 		[COPY_ENGINE_CLASS]		= GEN12_BLT_TLB_INV_CR,
1061 		[COMPUTE_CLASS]			= GEN12_COMPCTX_TLB_INV_CR,
1062 	};
1063 	static const i915_mcr_reg_t xehp_regs[] = {
1064 		[RENDER_CLASS]			= XEHP_GFX_TLB_INV_CR,
1065 		[VIDEO_DECODE_CLASS]		= XEHP_VD_TLB_INV_CR,
1066 		[VIDEO_ENHANCEMENT_CLASS]	= XEHP_VE_TLB_INV_CR,
1067 		[COPY_ENGINE_CLASS]		= XEHP_BLT_TLB_INV_CR,
1068 		[COMPUTE_CLASS]			= XEHP_COMPCTX_TLB_INV_CR,
1069 	};
1070 	struct drm_i915_private *i915 = gt->i915;
1071 	struct intel_uncore *uncore = gt->uncore;
1072 	struct intel_engine_cs *engine;
1073 	intel_engine_mask_t awake, tmp;
1074 	enum intel_engine_id id;
1075 	const i915_reg_t *regs;
1076 	unsigned int num = 0;
1077 
1078 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1079 		regs = NULL;
1080 		num = ARRAY_SIZE(xehp_regs);
1081 	} else if (GRAPHICS_VER(i915) == 12) {
1082 		regs = gen12_regs;
1083 		num = ARRAY_SIZE(gen12_regs);
1084 	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1085 		regs = gen8_regs;
1086 		num = ARRAY_SIZE(gen8_regs);
1087 	} else if (GRAPHICS_VER(i915) < 8) {
1088 		return;
1089 	}
1090 
1091 	if (drm_WARN_ONCE(&i915->drm, !num,
1092 			  "Platform does not implement TLB invalidation!"))
1093 		return;
1094 
1095 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1096 
1097 	spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */
1098 
1099 	awake = 0;
1100 	for_each_engine(engine, gt, id) {
1101 		struct reg_and_bit rb;
1102 
1103 		if (!intel_engine_pm_is_awake(engine))
1104 			continue;
1105 
1106 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1107 			intel_gt_mcr_multicast_write_fw(gt,
1108 							xehp_regs[engine->class],
1109 							BIT(engine->instance));
1110 		} else {
1111 			rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1112 			if (!i915_mmio_reg_offset(rb.reg))
1113 				continue;
1114 
1115 			intel_uncore_write_fw(uncore, rb.reg, rb.bit);
1116 		}
1117 		awake |= engine->mask;
1118 	}
1119 
1120 	GT_TRACE(gt, "invalidated engines %08x\n", awake);
1121 
1122 	/* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */
1123 	if (awake &&
1124 	    (IS_TIGERLAKE(i915) ||
1125 	     IS_DG1(i915) ||
1126 	     IS_ROCKETLAKE(i915) ||
1127 	     IS_ALDERLAKE_S(i915) ||
1128 	     IS_ALDERLAKE_P(i915)))
1129 		intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1);
1130 
1131 	spin_unlock_irq(&uncore->lock);
1132 
1133 	for_each_engine_masked(engine, gt, awake, tmp) {
1134 		struct reg_and_bit rb;
1135 
1136 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1137 			rb.mcr_reg = xehp_regs[engine->class];
1138 			rb.bit = BIT(engine->instance);
1139 		} else {
1140 			rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1141 		}
1142 
1143 		if (wait_for_invalidate(gt, rb))
1144 			drm_err_ratelimited(&gt->i915->drm,
1145 					    "%s TLB invalidation did not complete in %ums!\n",
1146 					    engine->name, TLB_INVAL_TIMEOUT_MS);
1147 	}
1148 
1149 	/*
1150 	 * Use delayed put since a) we mostly expect a flurry of TLB
1151 	 * invalidations so it is good to avoid paying the forcewake cost and
1152 	 * b) it works around a bug in Icelake which cannot cope with too rapid
1153 	 * transitions.
1154 	 */
1155 	intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
1156 }
1157 
1158 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno)
1159 {
1160 	u32 cur = intel_gt_tlb_seqno(gt);
1161 
1162 	/* Only skip if a *full* TLB invalidate barrier has passed */
1163 	return (s32)(cur - ALIGN(seqno, 2)) > 0;
1164 }
1165 
1166 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno)
1167 {
1168 	intel_wakeref_t wakeref;
1169 
1170 	if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
1171 		return;
1172 
1173 	if (intel_gt_is_wedged(gt))
1174 		return;
1175 
1176 	if (tlb_seqno_passed(gt, seqno))
1177 		return;
1178 
1179 	with_intel_gt_pm_if_awake(gt, wakeref) {
1180 		mutex_lock(&gt->tlb.invalidate_lock);
1181 		if (tlb_seqno_passed(gt, seqno))
1182 			goto unlock;
1183 
1184 		mmio_invalidate_full(gt);
1185 
1186 		write_seqcount_invalidate(&gt->tlb.seqno);
1187 unlock:
1188 		mutex_unlock(&gt->tlb.invalidate_lock);
1189 	}
1190 }
1191