1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include "debugfs_gt.h" 7 8 #include "gem/i915_gem_lmem.h" 9 #include "i915_drv.h" 10 #include "intel_context.h" 11 #include "intel_gt.h" 12 #include "intel_gt_buffer_pool.h" 13 #include "intel_gt_clock_utils.h" 14 #include "intel_gt_pm.h" 15 #include "intel_gt_requests.h" 16 #include "intel_migrate.h" 17 #include "intel_mocs.h" 18 #include "intel_rc6.h" 19 #include "intel_renderstate.h" 20 #include "intel_rps.h" 21 #include "intel_uncore.h" 22 #include "intel_pm.h" 23 #include "shmem_utils.h" 24 25 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 26 { 27 gt->i915 = i915; 28 gt->uncore = &i915->uncore; 29 30 spin_lock_init(>->irq_lock); 31 32 INIT_LIST_HEAD(>->closed_vma); 33 spin_lock_init(>->closed_lock); 34 35 init_llist_head(>->watchdog.list); 36 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 37 38 intel_gt_init_buffer_pool(gt); 39 intel_gt_init_reset(gt); 40 intel_gt_init_requests(gt); 41 intel_gt_init_timelines(gt); 42 intel_gt_pm_init_early(gt); 43 44 intel_uc_init_early(>->uc); 45 intel_rps_init_early(>->rps); 46 } 47 48 int intel_gt_probe_lmem(struct intel_gt *gt) 49 { 50 struct drm_i915_private *i915 = gt->i915; 51 struct intel_memory_region *mem; 52 int id; 53 int err; 54 55 mem = intel_gt_setup_lmem(gt); 56 if (mem == ERR_PTR(-ENODEV)) 57 mem = intel_gt_setup_fake_lmem(gt); 58 if (IS_ERR(mem)) { 59 err = PTR_ERR(mem); 60 if (err == -ENODEV) 61 return 0; 62 63 drm_err(&i915->drm, 64 "Failed to setup region(%d) type=%d\n", 65 err, INTEL_MEMORY_LOCAL); 66 return err; 67 } 68 69 id = INTEL_REGION_LMEM; 70 71 mem->id = id; 72 73 intel_memory_region_set_name(mem, "local%u", mem->instance); 74 75 GEM_BUG_ON(!HAS_REGION(i915, id)); 76 GEM_BUG_ON(i915->mm.regions[id]); 77 i915->mm.regions[id] = mem; 78 79 return 0; 80 } 81 82 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt) 83 { 84 gt->ggtt = ggtt; 85 } 86 87 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 88 { 0x00B100, 0x00B3FF }, 89 {}, 90 }; 91 92 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 93 { 0x004000, 0x004AFF }, 94 { 0x00C800, 0x00CFFF }, 95 { 0x00DD00, 0x00DDFF }, 96 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 97 {}, 98 }; 99 100 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 101 { 0x00B000, 0x00B0FF }, 102 { 0x00D800, 0x00D8FF }, 103 {}, 104 }; 105 106 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 107 { 0x00B000, 0x00B0FF }, 108 { 0x00D880, 0x00D8FF }, 109 {}, 110 }; 111 112 static u16 slicemask(struct intel_gt *gt, int count) 113 { 114 u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); 115 116 return intel_slicemask_from_dssmask(dss_mask, count); 117 } 118 119 int intel_gt_init_mmio(struct intel_gt *gt) 120 { 121 struct drm_i915_private *i915 = gt->i915; 122 123 intel_gt_init_clock_frequency(gt); 124 125 intel_uc_init_mmio(>->uc); 126 intel_sseu_info_init(gt); 127 128 /* 129 * An mslice is unavailable only if both the meml3 for the slice is 130 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 131 */ 132 if (HAS_MSLICES(i915)) 133 gt->info.mslice_mask = 134 slicemask(gt, GEN_DSS_PER_MSLICE) | 135 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 136 GEN12_MEML3_EN_MASK); 137 138 if (IS_DG2(i915)) { 139 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 140 gt->steering_table[LNCF] = dg2_lncf_steering_table; 141 } else if (IS_XEHPSDV(i915)) { 142 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 143 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 144 } else if (GRAPHICS_VER(i915) >= 11 && 145 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 146 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 147 gt->info.l3bank_mask = 148 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 149 GEN10_L3BANK_MASK; 150 } else if (HAS_MSLICES(i915)) { 151 MISSING_CASE(INTEL_INFO(i915)->platform); 152 } 153 154 return intel_engines_init_mmio(gt); 155 } 156 157 static void init_unused_ring(struct intel_gt *gt, u32 base) 158 { 159 struct intel_uncore *uncore = gt->uncore; 160 161 intel_uncore_write(uncore, RING_CTL(base), 0); 162 intel_uncore_write(uncore, RING_HEAD(base), 0); 163 intel_uncore_write(uncore, RING_TAIL(base), 0); 164 intel_uncore_write(uncore, RING_START(base), 0); 165 } 166 167 static void init_unused_rings(struct intel_gt *gt) 168 { 169 struct drm_i915_private *i915 = gt->i915; 170 171 if (IS_I830(i915)) { 172 init_unused_ring(gt, PRB1_BASE); 173 init_unused_ring(gt, SRB0_BASE); 174 init_unused_ring(gt, SRB1_BASE); 175 init_unused_ring(gt, SRB2_BASE); 176 init_unused_ring(gt, SRB3_BASE); 177 } else if (GRAPHICS_VER(i915) == 2) { 178 init_unused_ring(gt, SRB0_BASE); 179 init_unused_ring(gt, SRB1_BASE); 180 } else if (GRAPHICS_VER(i915) == 3) { 181 init_unused_ring(gt, PRB1_BASE); 182 init_unused_ring(gt, PRB2_BASE); 183 } 184 } 185 186 int intel_gt_init_hw(struct intel_gt *gt) 187 { 188 struct drm_i915_private *i915 = gt->i915; 189 struct intel_uncore *uncore = gt->uncore; 190 int ret; 191 192 gt->last_init_time = ktime_get(); 193 194 /* Double layer security blanket, see i915_gem_init() */ 195 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 196 197 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 198 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 199 200 if (IS_HASWELL(i915)) 201 intel_uncore_write(uncore, 202 MI_PREDICATE_RESULT_2, 203 IS_HSW_GT3(i915) ? 204 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 205 206 /* Apply the GT workarounds... */ 207 intel_gt_apply_workarounds(gt); 208 /* ...and determine whether they are sticking. */ 209 intel_gt_verify_workarounds(gt, "init"); 210 211 intel_gt_init_swizzling(gt); 212 213 /* 214 * At least 830 can leave some of the unused rings 215 * "active" (ie. head != tail) after resume which 216 * will prevent c3 entry. Makes sure all unused rings 217 * are totally idle. 218 */ 219 init_unused_rings(gt); 220 221 ret = i915_ppgtt_init_hw(gt); 222 if (ret) { 223 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 224 goto out; 225 } 226 227 /* We can't enable contexts until all firmware is loaded */ 228 ret = intel_uc_init_hw(>->uc); 229 if (ret) { 230 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 231 goto out; 232 } 233 234 intel_mocs_init(gt); 235 236 out: 237 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 238 return ret; 239 } 240 241 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 242 { 243 intel_uncore_rmw(uncore, reg, 0, set); 244 } 245 246 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 247 { 248 intel_uncore_rmw(uncore, reg, clr, 0); 249 } 250 251 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 252 { 253 intel_uncore_rmw(uncore, reg, 0, 0); 254 } 255 256 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 257 { 258 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 259 GEN6_RING_FAULT_REG_POSTING_READ(engine); 260 } 261 262 void 263 intel_gt_clear_error_registers(struct intel_gt *gt, 264 intel_engine_mask_t engine_mask) 265 { 266 struct drm_i915_private *i915 = gt->i915; 267 struct intel_uncore *uncore = gt->uncore; 268 u32 eir; 269 270 if (GRAPHICS_VER(i915) != 2) 271 clear_register(uncore, PGTBL_ER); 272 273 if (GRAPHICS_VER(i915) < 4) 274 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 275 else 276 clear_register(uncore, IPEIR_I965); 277 278 clear_register(uncore, EIR); 279 eir = intel_uncore_read(uncore, EIR); 280 if (eir) { 281 /* 282 * some errors might have become stuck, 283 * mask them. 284 */ 285 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 286 rmw_set(uncore, EMR, eir); 287 intel_uncore_write(uncore, GEN2_IIR, 288 I915_MASTER_ERROR_INTERRUPT); 289 } 290 291 if (GRAPHICS_VER(i915) >= 12) { 292 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 293 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 294 } else if (GRAPHICS_VER(i915) >= 8) { 295 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 296 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 297 } else if (GRAPHICS_VER(i915) >= 6) { 298 struct intel_engine_cs *engine; 299 enum intel_engine_id id; 300 301 for_each_engine_masked(engine, gt, engine_mask, id) 302 gen6_clear_engine_error_register(engine); 303 } 304 } 305 306 static void gen6_check_faults(struct intel_gt *gt) 307 { 308 struct intel_engine_cs *engine; 309 enum intel_engine_id id; 310 u32 fault; 311 312 for_each_engine(engine, gt, id) { 313 fault = GEN6_RING_FAULT_REG_READ(engine); 314 if (fault & RING_FAULT_VALID) { 315 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 316 "\tAddr: 0x%08lx\n" 317 "\tAddress space: %s\n" 318 "\tSource ID: %d\n" 319 "\tType: %d\n", 320 fault & PAGE_MASK, 321 fault & RING_FAULT_GTTSEL_MASK ? 322 "GGTT" : "PPGTT", 323 RING_FAULT_SRCID(fault), 324 RING_FAULT_FAULT_TYPE(fault)); 325 } 326 } 327 } 328 329 static void gen8_check_faults(struct intel_gt *gt) 330 { 331 struct intel_uncore *uncore = gt->uncore; 332 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 333 u32 fault; 334 335 if (GRAPHICS_VER(gt->i915) >= 12) { 336 fault_reg = GEN12_RING_FAULT_REG; 337 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 338 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 339 } else { 340 fault_reg = GEN8_RING_FAULT_REG; 341 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 342 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 343 } 344 345 fault = intel_uncore_read(uncore, fault_reg); 346 if (fault & RING_FAULT_VALID) { 347 u32 fault_data0, fault_data1; 348 u64 fault_addr; 349 350 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 351 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 352 353 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 354 ((u64)fault_data0 << 12); 355 356 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 357 "\tAddr: 0x%08x_%08x\n" 358 "\tAddress space: %s\n" 359 "\tEngine ID: %d\n" 360 "\tSource ID: %d\n" 361 "\tType: %d\n", 362 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 363 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 364 GEN8_RING_FAULT_ENGINE_ID(fault), 365 RING_FAULT_SRCID(fault), 366 RING_FAULT_FAULT_TYPE(fault)); 367 } 368 } 369 370 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 371 { 372 struct drm_i915_private *i915 = gt->i915; 373 374 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 375 if (GRAPHICS_VER(i915) >= 8) 376 gen8_check_faults(gt); 377 else if (GRAPHICS_VER(i915) >= 6) 378 gen6_check_faults(gt); 379 else 380 return; 381 382 intel_gt_clear_error_registers(gt, ALL_ENGINES); 383 } 384 385 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 386 { 387 struct intel_uncore *uncore = gt->uncore; 388 intel_wakeref_t wakeref; 389 390 /* 391 * No actual flushing is required for the GTT write domain for reads 392 * from the GTT domain. Writes to it "immediately" go to main memory 393 * as far as we know, so there's no chipset flush. It also doesn't 394 * land in the GPU render cache. 395 * 396 * However, we do have to enforce the order so that all writes through 397 * the GTT land before any writes to the device, such as updates to 398 * the GATT itself. 399 * 400 * We also have to wait a bit for the writes to land from the GTT. 401 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 402 * timing. This issue has only been observed when switching quickly 403 * between GTT writes and CPU reads from inside the kernel on recent hw, 404 * and it appears to only affect discrete GTT blocks (i.e. on LLC 405 * system agents we cannot reproduce this behaviour, until Cannonlake 406 * that was!). 407 */ 408 409 wmb(); 410 411 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 412 return; 413 414 intel_gt_chipset_flush(gt); 415 416 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 417 unsigned long flags; 418 419 spin_lock_irqsave(&uncore->lock, flags); 420 intel_uncore_posting_read_fw(uncore, 421 RING_HEAD(RENDER_RING_BASE)); 422 spin_unlock_irqrestore(&uncore->lock, flags); 423 } 424 } 425 426 void intel_gt_chipset_flush(struct intel_gt *gt) 427 { 428 wmb(); 429 if (GRAPHICS_VER(gt->i915) < 6) 430 intel_gtt_chipset_flush(); 431 } 432 433 void intel_gt_driver_register(struct intel_gt *gt) 434 { 435 intel_rps_driver_register(>->rps); 436 437 debugfs_gt_register(gt); 438 } 439 440 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 441 { 442 struct drm_i915_private *i915 = gt->i915; 443 struct drm_i915_gem_object *obj; 444 struct i915_vma *vma; 445 int ret; 446 447 obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE); 448 if (IS_ERR(obj)) 449 obj = i915_gem_object_create_stolen(i915, size); 450 if (IS_ERR(obj)) 451 obj = i915_gem_object_create_internal(i915, size); 452 if (IS_ERR(obj)) { 453 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 454 return PTR_ERR(obj); 455 } 456 457 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 458 if (IS_ERR(vma)) { 459 ret = PTR_ERR(vma); 460 goto err_unref; 461 } 462 463 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 464 if (ret) 465 goto err_unref; 466 467 gt->scratch = i915_vma_make_unshrinkable(vma); 468 469 return 0; 470 471 err_unref: 472 i915_gem_object_put(obj); 473 return ret; 474 } 475 476 static void intel_gt_fini_scratch(struct intel_gt *gt) 477 { 478 i915_vma_unpin_and_release(>->scratch, 0); 479 } 480 481 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 482 { 483 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 484 return &i915_ppgtt_create(gt)->vm; 485 else 486 return i915_vm_get(>->ggtt->vm); 487 } 488 489 static int __engines_record_defaults(struct intel_gt *gt) 490 { 491 struct i915_request *requests[I915_NUM_ENGINES] = {}; 492 struct intel_engine_cs *engine; 493 enum intel_engine_id id; 494 int err = 0; 495 496 /* 497 * As we reset the gpu during very early sanitisation, the current 498 * register state on the GPU should reflect its defaults values. 499 * We load a context onto the hw (with restore-inhibit), then switch 500 * over to a second context to save that default register state. We 501 * can then prime every new context with that state so they all start 502 * from the same default HW values. 503 */ 504 505 for_each_engine(engine, gt, id) { 506 struct intel_renderstate so; 507 struct intel_context *ce; 508 struct i915_request *rq; 509 510 /* We must be able to switch to something! */ 511 GEM_BUG_ON(!engine->kernel_context); 512 513 ce = intel_context_create(engine); 514 if (IS_ERR(ce)) { 515 err = PTR_ERR(ce); 516 goto out; 517 } 518 519 err = intel_renderstate_init(&so, ce); 520 if (err) 521 goto err; 522 523 rq = i915_request_create(ce); 524 if (IS_ERR(rq)) { 525 err = PTR_ERR(rq); 526 goto err_fini; 527 } 528 529 err = intel_engine_emit_ctx_wa(rq); 530 if (err) 531 goto err_rq; 532 533 err = intel_renderstate_emit(&so, rq); 534 if (err) 535 goto err_rq; 536 537 err_rq: 538 requests[id] = i915_request_get(rq); 539 i915_request_add(rq); 540 err_fini: 541 intel_renderstate_fini(&so, ce); 542 err: 543 if (err) { 544 intel_context_put(ce); 545 goto out; 546 } 547 } 548 549 /* Flush the default context image to memory, and enable powersaving. */ 550 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 551 err = -EIO; 552 goto out; 553 } 554 555 for (id = 0; id < ARRAY_SIZE(requests); id++) { 556 struct i915_request *rq; 557 struct file *state; 558 559 rq = requests[id]; 560 if (!rq) 561 continue; 562 563 if (rq->fence.error) { 564 err = -EIO; 565 goto out; 566 } 567 568 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 569 if (!rq->context->state) 570 continue; 571 572 /* Keep a copy of the state's backing pages; free the obj */ 573 state = shmem_create_from_object(rq->context->state->obj); 574 if (IS_ERR(state)) { 575 err = PTR_ERR(state); 576 goto out; 577 } 578 rq->engine->default_state = state; 579 } 580 581 out: 582 /* 583 * If we have to abandon now, we expect the engines to be idle 584 * and ready to be torn-down. The quickest way we can accomplish 585 * this is by declaring ourselves wedged. 586 */ 587 if (err) 588 intel_gt_set_wedged(gt); 589 590 for (id = 0; id < ARRAY_SIZE(requests); id++) { 591 struct intel_context *ce; 592 struct i915_request *rq; 593 594 rq = requests[id]; 595 if (!rq) 596 continue; 597 598 ce = rq->context; 599 i915_request_put(rq); 600 intel_context_put(ce); 601 } 602 return err; 603 } 604 605 static int __engines_verify_workarounds(struct intel_gt *gt) 606 { 607 struct intel_engine_cs *engine; 608 enum intel_engine_id id; 609 int err = 0; 610 611 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 612 return 0; 613 614 for_each_engine(engine, gt, id) { 615 if (intel_engine_verify_workarounds(engine, "load")) 616 err = -EIO; 617 } 618 619 /* Flush and restore the kernel context for safety */ 620 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 621 err = -EIO; 622 623 return err; 624 } 625 626 static void __intel_gt_disable(struct intel_gt *gt) 627 { 628 intel_gt_set_wedged_on_fini(gt); 629 630 intel_gt_suspend_prepare(gt); 631 intel_gt_suspend_late(gt); 632 633 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 634 } 635 636 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 637 { 638 long remaining_timeout; 639 640 /* If the device is asleep, we have no requests outstanding */ 641 if (!intel_gt_pm_is_awake(gt)) 642 return 0; 643 644 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 645 &remaining_timeout)) > 0) { 646 cond_resched(); 647 if (signal_pending(current)) 648 return -EINTR; 649 } 650 651 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 652 remaining_timeout); 653 } 654 655 int intel_gt_init(struct intel_gt *gt) 656 { 657 int err; 658 659 err = i915_inject_probe_error(gt->i915, -ENODEV); 660 if (err) 661 return err; 662 663 /* 664 * This is just a security blanket to placate dragons. 665 * On some systems, we very sporadically observe that the first TLBs 666 * used by the CS may be stale, despite us poking the TLB reset. If 667 * we hold the forcewake during initialisation these problems 668 * just magically go away. 669 */ 670 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 671 672 err = intel_gt_init_scratch(gt, 673 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 674 if (err) 675 goto out_fw; 676 677 intel_gt_pm_init(gt); 678 679 gt->vm = kernel_vm(gt); 680 if (!gt->vm) { 681 err = -ENOMEM; 682 goto err_pm; 683 } 684 685 err = intel_engines_init(gt); 686 if (err) 687 goto err_engines; 688 689 err = intel_uc_init(>->uc); 690 if (err) 691 goto err_engines; 692 693 err = intel_gt_resume(gt); 694 if (err) 695 goto err_uc_init; 696 697 err = __engines_record_defaults(gt); 698 if (err) 699 goto err_gt; 700 701 err = __engines_verify_workarounds(gt); 702 if (err) 703 goto err_gt; 704 705 intel_uc_init_late(>->uc); 706 707 err = i915_inject_probe_error(gt->i915, -EIO); 708 if (err) 709 goto err_gt; 710 711 intel_migrate_init(>->migrate, gt); 712 713 goto out_fw; 714 err_gt: 715 __intel_gt_disable(gt); 716 intel_uc_fini_hw(>->uc); 717 err_uc_init: 718 intel_uc_fini(>->uc); 719 err_engines: 720 intel_engines_release(gt); 721 i915_vm_put(fetch_and_zero(>->vm)); 722 err_pm: 723 intel_gt_pm_fini(gt); 724 intel_gt_fini_scratch(gt); 725 out_fw: 726 if (err) 727 intel_gt_set_wedged_on_init(gt); 728 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 729 return err; 730 } 731 732 void intel_gt_driver_remove(struct intel_gt *gt) 733 { 734 __intel_gt_disable(gt); 735 736 intel_migrate_fini(>->migrate); 737 intel_uc_driver_remove(>->uc); 738 739 intel_engines_release(gt); 740 } 741 742 void intel_gt_driver_unregister(struct intel_gt *gt) 743 { 744 intel_wakeref_t wakeref; 745 746 intel_rps_driver_unregister(>->rps); 747 748 /* 749 * Upon unregistering the device to prevent any new users, cancel 750 * all in-flight requests so that we can quickly unbind the active 751 * resources. 752 */ 753 intel_gt_set_wedged(gt); 754 755 /* Scrub all HW state upon release */ 756 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 757 __intel_gt_reset(gt, ALL_ENGINES); 758 } 759 760 void intel_gt_driver_release(struct intel_gt *gt) 761 { 762 struct i915_address_space *vm; 763 764 vm = fetch_and_zero(>->vm); 765 if (vm) /* FIXME being called twice on error paths :( */ 766 i915_vm_put(vm); 767 768 intel_gt_pm_fini(gt); 769 intel_gt_fini_scratch(gt); 770 intel_gt_fini_buffer_pool(gt); 771 } 772 773 void intel_gt_driver_late_release(struct intel_gt *gt) 774 { 775 /* We need to wait for inflight RCU frees to release their grip */ 776 rcu_barrier(); 777 778 intel_uc_driver_late_release(>->uc); 779 intel_gt_fini_requests(gt); 780 intel_gt_fini_reset(gt); 781 intel_gt_fini_timelines(gt); 782 intel_engines_free(gt); 783 } 784 785 /** 786 * intel_gt_reg_needs_read_steering - determine whether a register read 787 * requires explicit steering 788 * @gt: GT structure 789 * @reg: the register to check steering requirements for 790 * @type: type of multicast steering to check 791 * 792 * Determines whether @reg needs explicit steering of a specific type for 793 * reads. 794 * 795 * Returns false if @reg does not belong to a register range of the given 796 * steering type, or if the default (subslice-based) steering IDs are suitable 797 * for @type steering too. 798 */ 799 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, 800 i915_reg_t reg, 801 enum intel_steering_type type) 802 { 803 const u32 offset = i915_mmio_reg_offset(reg); 804 const struct intel_mmio_range *entry; 805 806 if (likely(!intel_gt_needs_read_steering(gt, type))) 807 return false; 808 809 for (entry = gt->steering_table[type]; entry->end; entry++) { 810 if (offset >= entry->start && offset <= entry->end) 811 return true; 812 } 813 814 return false; 815 } 816 817 /** 818 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering 819 * @gt: GT structure 820 * @type: multicast register type 821 * @sliceid: Slice ID returned 822 * @subsliceid: Subslice ID returned 823 * 824 * Determines sliceid and subsliceid values that will steer reads 825 * of a specific multicast register class to a valid value. 826 */ 827 static void intel_gt_get_valid_steering(struct intel_gt *gt, 828 enum intel_steering_type type, 829 u8 *sliceid, u8 *subsliceid) 830 { 831 switch (type) { 832 case L3BANK: 833 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ 834 835 *sliceid = 0; /* unused */ 836 *subsliceid = __ffs(gt->info.l3bank_mask); 837 break; 838 case MSLICE: 839 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 840 841 *sliceid = __ffs(gt->info.mslice_mask); 842 *subsliceid = 0; /* unused */ 843 break; 844 case LNCF: 845 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 846 847 /* 848 * An LNCF is always present if its mslice is present, so we 849 * can safely just steer to LNCF 0 in all cases. 850 */ 851 *sliceid = __ffs(gt->info.mslice_mask) << 1; 852 *subsliceid = 0; /* unused */ 853 break; 854 default: 855 MISSING_CASE(type); 856 *sliceid = 0; 857 *subsliceid = 0; 858 } 859 } 860 861 /** 862 * intel_gt_read_register_fw - reads a GT register with support for multicast 863 * @gt: GT structure 864 * @reg: register to read 865 * 866 * This function will read a GT register. If the register is a multicast 867 * register, the read will be steered to a valid instance (i.e., one that 868 * isn't fused off or powered down by power gating). 869 * 870 * Returns the value from a valid instance of @reg. 871 */ 872 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) 873 { 874 int type; 875 u8 sliceid, subsliceid; 876 877 for (type = 0; type < NUM_STEERING_TYPES; type++) { 878 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 879 intel_gt_get_valid_steering(gt, type, &sliceid, 880 &subsliceid); 881 return intel_uncore_read_with_mcr_steering_fw(gt->uncore, 882 reg, 883 sliceid, 884 subsliceid); 885 } 886 } 887 888 return intel_uncore_read_fw(gt->uncore, reg); 889 } 890 891 void intel_gt_info_print(const struct intel_gt_info *info, 892 struct drm_printer *p) 893 { 894 drm_printf(p, "available engines: %x\n", info->engine_mask); 895 896 intel_sseu_dump(&info->sseu, p); 897 } 898