xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision e953aeaa)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include "debugfs_gt.h"
7 #include "i915_drv.h"
8 #include "intel_context.h"
9 #include "intel_gt.h"
10 #include "intel_gt_buffer_pool.h"
11 #include "intel_gt_clock_utils.h"
12 #include "intel_gt_pm.h"
13 #include "intel_gt_requests.h"
14 #include "intel_mocs.h"
15 #include "intel_rc6.h"
16 #include "intel_renderstate.h"
17 #include "intel_rps.h"
18 #include "intel_uncore.h"
19 #include "intel_pm.h"
20 #include "shmem_utils.h"
21 
22 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
23 {
24 	gt->i915 = i915;
25 	gt->uncore = &i915->uncore;
26 
27 	spin_lock_init(&gt->irq_lock);
28 
29 	INIT_LIST_HEAD(&gt->closed_vma);
30 	spin_lock_init(&gt->closed_lock);
31 
32 	intel_gt_init_buffer_pool(gt);
33 	intel_gt_init_reset(gt);
34 	intel_gt_init_requests(gt);
35 	intel_gt_init_timelines(gt);
36 	intel_gt_pm_init_early(gt);
37 
38 	intel_rps_init_early(&gt->rps);
39 	intel_uc_init_early(&gt->uc);
40 }
41 
42 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
43 {
44 	gt->ggtt = ggtt;
45 }
46 
47 int intel_gt_init_mmio(struct intel_gt *gt)
48 {
49 	intel_uc_init_mmio(&gt->uc);
50 	intel_sseu_info_init(gt);
51 
52 	return intel_engines_init_mmio(gt);
53 }
54 
55 static void init_unused_ring(struct intel_gt *gt, u32 base)
56 {
57 	struct intel_uncore *uncore = gt->uncore;
58 
59 	intel_uncore_write(uncore, RING_CTL(base), 0);
60 	intel_uncore_write(uncore, RING_HEAD(base), 0);
61 	intel_uncore_write(uncore, RING_TAIL(base), 0);
62 	intel_uncore_write(uncore, RING_START(base), 0);
63 }
64 
65 static void init_unused_rings(struct intel_gt *gt)
66 {
67 	struct drm_i915_private *i915 = gt->i915;
68 
69 	if (IS_I830(i915)) {
70 		init_unused_ring(gt, PRB1_BASE);
71 		init_unused_ring(gt, SRB0_BASE);
72 		init_unused_ring(gt, SRB1_BASE);
73 		init_unused_ring(gt, SRB2_BASE);
74 		init_unused_ring(gt, SRB3_BASE);
75 	} else if (IS_GEN(i915, 2)) {
76 		init_unused_ring(gt, SRB0_BASE);
77 		init_unused_ring(gt, SRB1_BASE);
78 	} else if (IS_GEN(i915, 3)) {
79 		init_unused_ring(gt, PRB1_BASE);
80 		init_unused_ring(gt, PRB2_BASE);
81 	}
82 }
83 
84 int intel_gt_init_hw(struct intel_gt *gt)
85 {
86 	struct drm_i915_private *i915 = gt->i915;
87 	struct intel_uncore *uncore = gt->uncore;
88 	int ret;
89 
90 	gt->last_init_time = ktime_get();
91 
92 	/* Double layer security blanket, see i915_gem_init() */
93 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
94 
95 	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
96 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
97 
98 	if (IS_HASWELL(i915))
99 		intel_uncore_write(uncore,
100 				   MI_PREDICATE_RESULT_2,
101 				   IS_HSW_GT3(i915) ?
102 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
103 
104 	/* Apply the GT workarounds... */
105 	intel_gt_apply_workarounds(gt);
106 	/* ...and determine whether they are sticking. */
107 	intel_gt_verify_workarounds(gt, "init");
108 
109 	intel_gt_init_swizzling(gt);
110 
111 	/*
112 	 * At least 830 can leave some of the unused rings
113 	 * "active" (ie. head != tail) after resume which
114 	 * will prevent c3 entry. Makes sure all unused rings
115 	 * are totally idle.
116 	 */
117 	init_unused_rings(gt);
118 
119 	ret = i915_ppgtt_init_hw(gt);
120 	if (ret) {
121 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
122 		goto out;
123 	}
124 
125 	/* We can't enable contexts until all firmware is loaded */
126 	ret = intel_uc_init_hw(&gt->uc);
127 	if (ret) {
128 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
129 		goto out;
130 	}
131 
132 	intel_mocs_init(gt);
133 
134 out:
135 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
136 	return ret;
137 }
138 
139 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
140 {
141 	intel_uncore_rmw(uncore, reg, 0, set);
142 }
143 
144 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
145 {
146 	intel_uncore_rmw(uncore, reg, clr, 0);
147 }
148 
149 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
150 {
151 	intel_uncore_rmw(uncore, reg, 0, 0);
152 }
153 
154 static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
155 {
156 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
157 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
158 }
159 
160 void
161 intel_gt_clear_error_registers(struct intel_gt *gt,
162 			       intel_engine_mask_t engine_mask)
163 {
164 	struct drm_i915_private *i915 = gt->i915;
165 	struct intel_uncore *uncore = gt->uncore;
166 	u32 eir;
167 
168 	if (!IS_GEN(i915, 2))
169 		clear_register(uncore, PGTBL_ER);
170 
171 	if (INTEL_GEN(i915) < 4)
172 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
173 	else
174 		clear_register(uncore, IPEIR_I965);
175 
176 	clear_register(uncore, EIR);
177 	eir = intel_uncore_read(uncore, EIR);
178 	if (eir) {
179 		/*
180 		 * some errors might have become stuck,
181 		 * mask them.
182 		 */
183 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
184 		rmw_set(uncore, EMR, eir);
185 		intel_uncore_write(uncore, GEN2_IIR,
186 				   I915_MASTER_ERROR_INTERRUPT);
187 	}
188 
189 	if (INTEL_GEN(i915) >= 12) {
190 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
191 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
192 	} else if (INTEL_GEN(i915) >= 8) {
193 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
194 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
195 	} else if (INTEL_GEN(i915) >= 6) {
196 		struct intel_engine_cs *engine;
197 		enum intel_engine_id id;
198 
199 		for_each_engine_masked(engine, gt, engine_mask, id)
200 			gen8_clear_engine_error_register(engine);
201 	}
202 }
203 
204 static void gen6_check_faults(struct intel_gt *gt)
205 {
206 	struct intel_engine_cs *engine;
207 	enum intel_engine_id id;
208 	u32 fault;
209 
210 	for_each_engine(engine, gt, id) {
211 		fault = GEN6_RING_FAULT_REG_READ(engine);
212 		if (fault & RING_FAULT_VALID) {
213 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
214 				"\tAddr: 0x%08lx\n"
215 				"\tAddress space: %s\n"
216 				"\tSource ID: %d\n"
217 				"\tType: %d\n",
218 				fault & PAGE_MASK,
219 				fault & RING_FAULT_GTTSEL_MASK ?
220 				"GGTT" : "PPGTT",
221 				RING_FAULT_SRCID(fault),
222 				RING_FAULT_FAULT_TYPE(fault));
223 		}
224 	}
225 }
226 
227 static void gen8_check_faults(struct intel_gt *gt)
228 {
229 	struct intel_uncore *uncore = gt->uncore;
230 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
231 	u32 fault;
232 
233 	if (INTEL_GEN(gt->i915) >= 12) {
234 		fault_reg = GEN12_RING_FAULT_REG;
235 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
236 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
237 	} else {
238 		fault_reg = GEN8_RING_FAULT_REG;
239 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
240 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
241 	}
242 
243 	fault = intel_uncore_read(uncore, fault_reg);
244 	if (fault & RING_FAULT_VALID) {
245 		u32 fault_data0, fault_data1;
246 		u64 fault_addr;
247 
248 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
249 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
250 
251 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
252 			     ((u64)fault_data0 << 12);
253 
254 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
255 			"\tAddr: 0x%08x_%08x\n"
256 			"\tAddress space: %s\n"
257 			"\tEngine ID: %d\n"
258 			"\tSource ID: %d\n"
259 			"\tType: %d\n",
260 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
261 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
262 			GEN8_RING_FAULT_ENGINE_ID(fault),
263 			RING_FAULT_SRCID(fault),
264 			RING_FAULT_FAULT_TYPE(fault));
265 	}
266 }
267 
268 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
269 {
270 	struct drm_i915_private *i915 = gt->i915;
271 
272 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
273 	if (INTEL_GEN(i915) >= 8)
274 		gen8_check_faults(gt);
275 	else if (INTEL_GEN(i915) >= 6)
276 		gen6_check_faults(gt);
277 	else
278 		return;
279 
280 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
281 }
282 
283 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
284 {
285 	struct intel_uncore *uncore = gt->uncore;
286 	intel_wakeref_t wakeref;
287 
288 	/*
289 	 * No actual flushing is required for the GTT write domain for reads
290 	 * from the GTT domain. Writes to it "immediately" go to main memory
291 	 * as far as we know, so there's no chipset flush. It also doesn't
292 	 * land in the GPU render cache.
293 	 *
294 	 * However, we do have to enforce the order so that all writes through
295 	 * the GTT land before any writes to the device, such as updates to
296 	 * the GATT itself.
297 	 *
298 	 * We also have to wait a bit for the writes to land from the GTT.
299 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
300 	 * timing. This issue has only been observed when switching quickly
301 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
302 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
303 	 * system agents we cannot reproduce this behaviour, until Cannonlake
304 	 * that was!).
305 	 */
306 
307 	wmb();
308 
309 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
310 		return;
311 
312 	intel_gt_chipset_flush(gt);
313 
314 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
315 		unsigned long flags;
316 
317 		spin_lock_irqsave(&uncore->lock, flags);
318 		intel_uncore_posting_read_fw(uncore,
319 					     RING_HEAD(RENDER_RING_BASE));
320 		spin_unlock_irqrestore(&uncore->lock, flags);
321 	}
322 }
323 
324 void intel_gt_chipset_flush(struct intel_gt *gt)
325 {
326 	wmb();
327 	if (INTEL_GEN(gt->i915) < 6)
328 		intel_gtt_chipset_flush();
329 }
330 
331 void intel_gt_driver_register(struct intel_gt *gt)
332 {
333 	intel_rps_driver_register(&gt->rps);
334 
335 	debugfs_gt_register(gt);
336 }
337 
338 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
339 {
340 	struct drm_i915_private *i915 = gt->i915;
341 	struct drm_i915_gem_object *obj;
342 	struct i915_vma *vma;
343 	int ret;
344 
345 	obj = i915_gem_object_create_stolen(i915, size);
346 	if (IS_ERR(obj))
347 		obj = i915_gem_object_create_internal(i915, size);
348 	if (IS_ERR(obj)) {
349 		DRM_ERROR("Failed to allocate scratch page\n");
350 		return PTR_ERR(obj);
351 	}
352 
353 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
354 	if (IS_ERR(vma)) {
355 		ret = PTR_ERR(vma);
356 		goto err_unref;
357 	}
358 
359 	ret = i915_ggtt_pin(vma, 0, PIN_HIGH);
360 	if (ret)
361 		goto err_unref;
362 
363 	gt->scratch = i915_vma_make_unshrinkable(vma);
364 
365 	return 0;
366 
367 err_unref:
368 	i915_gem_object_put(obj);
369 	return ret;
370 }
371 
372 static void intel_gt_fini_scratch(struct intel_gt *gt)
373 {
374 	i915_vma_unpin_and_release(&gt->scratch, 0);
375 }
376 
377 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
378 {
379 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
380 		return &i915_ppgtt_create(gt)->vm;
381 	else
382 		return i915_vm_get(&gt->ggtt->vm);
383 }
384 
385 static int __engines_record_defaults(struct intel_gt *gt)
386 {
387 	struct i915_request *requests[I915_NUM_ENGINES] = {};
388 	struct intel_engine_cs *engine;
389 	enum intel_engine_id id;
390 	int err = 0;
391 
392 	/*
393 	 * As we reset the gpu during very early sanitisation, the current
394 	 * register state on the GPU should reflect its defaults values.
395 	 * We load a context onto the hw (with restore-inhibit), then switch
396 	 * over to a second context to save that default register state. We
397 	 * can then prime every new context with that state so they all start
398 	 * from the same default HW values.
399 	 */
400 
401 	for_each_engine(engine, gt, id) {
402 		struct intel_renderstate so;
403 		struct intel_context *ce;
404 		struct i915_request *rq;
405 
406 		/* We must be able to switch to something! */
407 		GEM_BUG_ON(!engine->kernel_context);
408 
409 		err = intel_renderstate_init(&so, engine);
410 		if (err)
411 			goto out;
412 
413 		ce = intel_context_create(engine);
414 		if (IS_ERR(ce)) {
415 			err = PTR_ERR(ce);
416 			goto out;
417 		}
418 
419 		rq = intel_context_create_request(ce);
420 		if (IS_ERR(rq)) {
421 			err = PTR_ERR(rq);
422 			intel_context_put(ce);
423 			goto out;
424 		}
425 
426 		err = intel_engine_emit_ctx_wa(rq);
427 		if (err)
428 			goto err_rq;
429 
430 		err = intel_renderstate_emit(&so, rq);
431 		if (err)
432 			goto err_rq;
433 
434 err_rq:
435 		requests[id] = i915_request_get(rq);
436 		i915_request_add(rq);
437 		intel_renderstate_fini(&so);
438 		if (err)
439 			goto out;
440 	}
441 
442 	/* Flush the default context image to memory, and enable powersaving. */
443 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
444 		err = -EIO;
445 		goto out;
446 	}
447 
448 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
449 		struct i915_request *rq;
450 		struct file *state;
451 
452 		rq = requests[id];
453 		if (!rq)
454 			continue;
455 
456 		if (rq->fence.error) {
457 			err = -EIO;
458 			goto out;
459 		}
460 
461 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
462 		if (!rq->context->state)
463 			continue;
464 
465 		/* Keep a copy of the state's backing pages; free the obj */
466 		state = shmem_create_from_object(rq->context->state->obj);
467 		if (IS_ERR(state)) {
468 			err = PTR_ERR(state);
469 			goto out;
470 		}
471 		rq->engine->default_state = state;
472 	}
473 
474 out:
475 	/*
476 	 * If we have to abandon now, we expect the engines to be idle
477 	 * and ready to be torn-down. The quickest way we can accomplish
478 	 * this is by declaring ourselves wedged.
479 	 */
480 	if (err)
481 		intel_gt_set_wedged(gt);
482 
483 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
484 		struct intel_context *ce;
485 		struct i915_request *rq;
486 
487 		rq = requests[id];
488 		if (!rq)
489 			continue;
490 
491 		ce = rq->context;
492 		i915_request_put(rq);
493 		intel_context_put(ce);
494 	}
495 	return err;
496 }
497 
498 static int __engines_verify_workarounds(struct intel_gt *gt)
499 {
500 	struct intel_engine_cs *engine;
501 	enum intel_engine_id id;
502 	int err = 0;
503 
504 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
505 		return 0;
506 
507 	for_each_engine(engine, gt, id) {
508 		if (intel_engine_verify_workarounds(engine, "load"))
509 			err = -EIO;
510 	}
511 
512 	/* Flush and restore the kernel context for safety */
513 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
514 		err = -EIO;
515 
516 	return err;
517 }
518 
519 static void __intel_gt_disable(struct intel_gt *gt)
520 {
521 	intel_gt_set_wedged_on_fini(gt);
522 
523 	intel_gt_suspend_prepare(gt);
524 	intel_gt_suspend_late(gt);
525 
526 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
527 }
528 
529 int intel_gt_init(struct intel_gt *gt)
530 {
531 	int err;
532 
533 	err = i915_inject_probe_error(gt->i915, -ENODEV);
534 	if (err)
535 		return err;
536 
537 	/*
538 	 * This is just a security blanket to placate dragons.
539 	 * On some systems, we very sporadically observe that the first TLBs
540 	 * used by the CS may be stale, despite us poking the TLB reset. If
541 	 * we hold the forcewake during initialisation these problems
542 	 * just magically go away.
543 	 */
544 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
545 
546 	intel_gt_init_clock_frequency(gt);
547 
548 	err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K);
549 	if (err)
550 		goto out_fw;
551 
552 	intel_gt_pm_init(gt);
553 
554 	gt->vm = kernel_vm(gt);
555 	if (!gt->vm) {
556 		err = -ENOMEM;
557 		goto err_pm;
558 	}
559 
560 	err = intel_engines_init(gt);
561 	if (err)
562 		goto err_engines;
563 
564 	err = intel_uc_init(&gt->uc);
565 	if (err)
566 		goto err_engines;
567 
568 	err = intel_gt_resume(gt);
569 	if (err)
570 		goto err_uc_init;
571 
572 	err = __engines_record_defaults(gt);
573 	if (err)
574 		goto err_gt;
575 
576 	err = __engines_verify_workarounds(gt);
577 	if (err)
578 		goto err_gt;
579 
580 	err = i915_inject_probe_error(gt->i915, -EIO);
581 	if (err)
582 		goto err_gt;
583 
584 	goto out_fw;
585 err_gt:
586 	__intel_gt_disable(gt);
587 	intel_uc_fini_hw(&gt->uc);
588 err_uc_init:
589 	intel_uc_fini(&gt->uc);
590 err_engines:
591 	intel_engines_release(gt);
592 	i915_vm_put(fetch_and_zero(&gt->vm));
593 err_pm:
594 	intel_gt_pm_fini(gt);
595 	intel_gt_fini_scratch(gt);
596 out_fw:
597 	if (err)
598 		intel_gt_set_wedged_on_init(gt);
599 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
600 	return err;
601 }
602 
603 void intel_gt_driver_remove(struct intel_gt *gt)
604 {
605 	__intel_gt_disable(gt);
606 
607 	intel_uc_driver_remove(&gt->uc);
608 
609 	intel_engines_release(gt);
610 }
611 
612 void intel_gt_driver_unregister(struct intel_gt *gt)
613 {
614 	intel_rps_driver_unregister(&gt->rps);
615 
616 	/*
617 	 * Upon unregistering the device to prevent any new users, cancel
618 	 * all in-flight requests so that we can quickly unbind the active
619 	 * resources.
620 	 */
621 	intel_gt_set_wedged(gt);
622 }
623 
624 void intel_gt_driver_release(struct intel_gt *gt)
625 {
626 	struct i915_address_space *vm;
627 	intel_wakeref_t wakeref;
628 
629 	/* Scrub all HW state upon release */
630 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
631 		__intel_gt_reset(gt, ALL_ENGINES);
632 
633 	vm = fetch_and_zero(&gt->vm);
634 	if (vm) /* FIXME being called twice on error paths :( */
635 		i915_vm_put(vm);
636 
637 	intel_gt_pm_fini(gt);
638 	intel_gt_fini_scratch(gt);
639 	intel_gt_fini_buffer_pool(gt);
640 }
641 
642 void intel_gt_driver_late_release(struct intel_gt *gt)
643 {
644 	/* We need to wait for inflight RCU frees to release their grip */
645 	rcu_barrier();
646 
647 	intel_uc_driver_late_release(&gt->uc);
648 	intel_gt_fini_requests(gt);
649 	intel_gt_fini_reset(gt);
650 	intel_gt_fini_timelines(gt);
651 	intel_engines_free(gt);
652 }
653 
654 void intel_gt_info_print(const struct intel_gt_info *info,
655 			 struct drm_printer *p)
656 {
657 	drm_printf(p, "available engines: %x\n", info->engine_mask);
658 
659 	intel_sseu_dump(&info->sseu, p);
660 }
661