1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include "debugfs_gt.h" 7 #include "i915_drv.h" 8 #include "intel_context.h" 9 #include "intel_gt.h" 10 #include "intel_gt_buffer_pool.h" 11 #include "intel_gt_clock_utils.h" 12 #include "intel_gt_pm.h" 13 #include "intel_gt_requests.h" 14 #include "intel_mocs.h" 15 #include "intel_rc6.h" 16 #include "intel_renderstate.h" 17 #include "intel_rps.h" 18 #include "intel_uncore.h" 19 #include "intel_pm.h" 20 #include "shmem_utils.h" 21 22 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 23 { 24 gt->i915 = i915; 25 gt->uncore = &i915->uncore; 26 27 spin_lock_init(>->irq_lock); 28 29 INIT_LIST_HEAD(>->closed_vma); 30 spin_lock_init(>->closed_lock); 31 32 intel_gt_init_buffer_pool(gt); 33 intel_gt_init_reset(gt); 34 intel_gt_init_requests(gt); 35 intel_gt_init_timelines(gt); 36 intel_gt_pm_init_early(gt); 37 38 intel_rps_init_early(>->rps); 39 intel_uc_init_early(>->uc); 40 } 41 42 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt) 43 { 44 gt->ggtt = ggtt; 45 } 46 47 int intel_gt_init_mmio(struct intel_gt *gt) 48 { 49 intel_uc_init_mmio(>->uc); 50 intel_sseu_info_init(gt); 51 52 return intel_engines_init_mmio(gt); 53 } 54 55 static void init_unused_ring(struct intel_gt *gt, u32 base) 56 { 57 struct intel_uncore *uncore = gt->uncore; 58 59 intel_uncore_write(uncore, RING_CTL(base), 0); 60 intel_uncore_write(uncore, RING_HEAD(base), 0); 61 intel_uncore_write(uncore, RING_TAIL(base), 0); 62 intel_uncore_write(uncore, RING_START(base), 0); 63 } 64 65 static void init_unused_rings(struct intel_gt *gt) 66 { 67 struct drm_i915_private *i915 = gt->i915; 68 69 if (IS_I830(i915)) { 70 init_unused_ring(gt, PRB1_BASE); 71 init_unused_ring(gt, SRB0_BASE); 72 init_unused_ring(gt, SRB1_BASE); 73 init_unused_ring(gt, SRB2_BASE); 74 init_unused_ring(gt, SRB3_BASE); 75 } else if (IS_GEN(i915, 2)) { 76 init_unused_ring(gt, SRB0_BASE); 77 init_unused_ring(gt, SRB1_BASE); 78 } else if (IS_GEN(i915, 3)) { 79 init_unused_ring(gt, PRB1_BASE); 80 init_unused_ring(gt, PRB2_BASE); 81 } 82 } 83 84 int intel_gt_init_hw(struct intel_gt *gt) 85 { 86 struct drm_i915_private *i915 = gt->i915; 87 struct intel_uncore *uncore = gt->uncore; 88 int ret; 89 90 gt->last_init_time = ktime_get(); 91 92 /* Double layer security blanket, see i915_gem_init() */ 93 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 94 95 if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9) 96 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 97 98 if (IS_HASWELL(i915)) 99 intel_uncore_write(uncore, 100 MI_PREDICATE_RESULT_2, 101 IS_HSW_GT3(i915) ? 102 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 103 104 /* Apply the GT workarounds... */ 105 intel_gt_apply_workarounds(gt); 106 /* ...and determine whether they are sticking. */ 107 intel_gt_verify_workarounds(gt, "init"); 108 109 intel_gt_init_swizzling(gt); 110 111 /* 112 * At least 830 can leave some of the unused rings 113 * "active" (ie. head != tail) after resume which 114 * will prevent c3 entry. Makes sure all unused rings 115 * are totally idle. 116 */ 117 init_unused_rings(gt); 118 119 ret = i915_ppgtt_init_hw(gt); 120 if (ret) { 121 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 122 goto out; 123 } 124 125 /* We can't enable contexts until all firmware is loaded */ 126 ret = intel_uc_init_hw(>->uc); 127 if (ret) { 128 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 129 goto out; 130 } 131 132 intel_mocs_init(gt); 133 134 out: 135 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 136 return ret; 137 } 138 139 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 140 { 141 intel_uncore_rmw(uncore, reg, 0, set); 142 } 143 144 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 145 { 146 intel_uncore_rmw(uncore, reg, clr, 0); 147 } 148 149 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 150 { 151 intel_uncore_rmw(uncore, reg, 0, 0); 152 } 153 154 static void gen8_clear_engine_error_register(struct intel_engine_cs *engine) 155 { 156 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 157 GEN6_RING_FAULT_REG_POSTING_READ(engine); 158 } 159 160 void 161 intel_gt_clear_error_registers(struct intel_gt *gt, 162 intel_engine_mask_t engine_mask) 163 { 164 struct drm_i915_private *i915 = gt->i915; 165 struct intel_uncore *uncore = gt->uncore; 166 u32 eir; 167 168 if (!IS_GEN(i915, 2)) 169 clear_register(uncore, PGTBL_ER); 170 171 if (INTEL_GEN(i915) < 4) 172 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 173 else 174 clear_register(uncore, IPEIR_I965); 175 176 clear_register(uncore, EIR); 177 eir = intel_uncore_read(uncore, EIR); 178 if (eir) { 179 /* 180 * some errors might have become stuck, 181 * mask them. 182 */ 183 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 184 rmw_set(uncore, EMR, eir); 185 intel_uncore_write(uncore, GEN2_IIR, 186 I915_MASTER_ERROR_INTERRUPT); 187 } 188 189 if (INTEL_GEN(i915) >= 12) { 190 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 191 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 192 } else if (INTEL_GEN(i915) >= 8) { 193 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 194 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 195 } else if (INTEL_GEN(i915) >= 6) { 196 struct intel_engine_cs *engine; 197 enum intel_engine_id id; 198 199 for_each_engine_masked(engine, gt, engine_mask, id) 200 gen8_clear_engine_error_register(engine); 201 } 202 } 203 204 static void gen6_check_faults(struct intel_gt *gt) 205 { 206 struct intel_engine_cs *engine; 207 enum intel_engine_id id; 208 u32 fault; 209 210 for_each_engine(engine, gt, id) { 211 fault = GEN6_RING_FAULT_REG_READ(engine); 212 if (fault & RING_FAULT_VALID) { 213 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 214 "\tAddr: 0x%08lx\n" 215 "\tAddress space: %s\n" 216 "\tSource ID: %d\n" 217 "\tType: %d\n", 218 fault & PAGE_MASK, 219 fault & RING_FAULT_GTTSEL_MASK ? 220 "GGTT" : "PPGTT", 221 RING_FAULT_SRCID(fault), 222 RING_FAULT_FAULT_TYPE(fault)); 223 } 224 } 225 } 226 227 static void gen8_check_faults(struct intel_gt *gt) 228 { 229 struct intel_uncore *uncore = gt->uncore; 230 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 231 u32 fault; 232 233 if (INTEL_GEN(gt->i915) >= 12) { 234 fault_reg = GEN12_RING_FAULT_REG; 235 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 236 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 237 } else { 238 fault_reg = GEN8_RING_FAULT_REG; 239 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 240 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 241 } 242 243 fault = intel_uncore_read(uncore, fault_reg); 244 if (fault & RING_FAULT_VALID) { 245 u32 fault_data0, fault_data1; 246 u64 fault_addr; 247 248 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 249 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 250 251 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 252 ((u64)fault_data0 << 12); 253 254 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 255 "\tAddr: 0x%08x_%08x\n" 256 "\tAddress space: %s\n" 257 "\tEngine ID: %d\n" 258 "\tSource ID: %d\n" 259 "\tType: %d\n", 260 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 261 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 262 GEN8_RING_FAULT_ENGINE_ID(fault), 263 RING_FAULT_SRCID(fault), 264 RING_FAULT_FAULT_TYPE(fault)); 265 } 266 } 267 268 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 269 { 270 struct drm_i915_private *i915 = gt->i915; 271 272 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 273 if (INTEL_GEN(i915) >= 8) 274 gen8_check_faults(gt); 275 else if (INTEL_GEN(i915) >= 6) 276 gen6_check_faults(gt); 277 else 278 return; 279 280 intel_gt_clear_error_registers(gt, ALL_ENGINES); 281 } 282 283 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 284 { 285 struct intel_uncore *uncore = gt->uncore; 286 intel_wakeref_t wakeref; 287 288 /* 289 * No actual flushing is required for the GTT write domain for reads 290 * from the GTT domain. Writes to it "immediately" go to main memory 291 * as far as we know, so there's no chipset flush. It also doesn't 292 * land in the GPU render cache. 293 * 294 * However, we do have to enforce the order so that all writes through 295 * the GTT land before any writes to the device, such as updates to 296 * the GATT itself. 297 * 298 * We also have to wait a bit for the writes to land from the GTT. 299 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 300 * timing. This issue has only been observed when switching quickly 301 * between GTT writes and CPU reads from inside the kernel on recent hw, 302 * and it appears to only affect discrete GTT blocks (i.e. on LLC 303 * system agents we cannot reproduce this behaviour, until Cannonlake 304 * that was!). 305 */ 306 307 wmb(); 308 309 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 310 return; 311 312 intel_gt_chipset_flush(gt); 313 314 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 315 unsigned long flags; 316 317 spin_lock_irqsave(&uncore->lock, flags); 318 intel_uncore_posting_read_fw(uncore, 319 RING_HEAD(RENDER_RING_BASE)); 320 spin_unlock_irqrestore(&uncore->lock, flags); 321 } 322 } 323 324 void intel_gt_chipset_flush(struct intel_gt *gt) 325 { 326 wmb(); 327 if (INTEL_GEN(gt->i915) < 6) 328 intel_gtt_chipset_flush(); 329 } 330 331 void intel_gt_driver_register(struct intel_gt *gt) 332 { 333 intel_rps_driver_register(>->rps); 334 335 debugfs_gt_register(gt); 336 } 337 338 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 339 { 340 struct drm_i915_private *i915 = gt->i915; 341 struct drm_i915_gem_object *obj; 342 struct i915_vma *vma; 343 int ret; 344 345 obj = i915_gem_object_create_stolen(i915, size); 346 if (IS_ERR(obj)) 347 obj = i915_gem_object_create_internal(i915, size); 348 if (IS_ERR(obj)) { 349 DRM_ERROR("Failed to allocate scratch page\n"); 350 return PTR_ERR(obj); 351 } 352 353 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 354 if (IS_ERR(vma)) { 355 ret = PTR_ERR(vma); 356 goto err_unref; 357 } 358 359 ret = i915_ggtt_pin(vma, 0, PIN_HIGH); 360 if (ret) 361 goto err_unref; 362 363 gt->scratch = i915_vma_make_unshrinkable(vma); 364 365 return 0; 366 367 err_unref: 368 i915_gem_object_put(obj); 369 return ret; 370 } 371 372 static void intel_gt_fini_scratch(struct intel_gt *gt) 373 { 374 i915_vma_unpin_and_release(>->scratch, 0); 375 } 376 377 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 378 { 379 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 380 return &i915_ppgtt_create(gt)->vm; 381 else 382 return i915_vm_get(>->ggtt->vm); 383 } 384 385 static int __engines_record_defaults(struct intel_gt *gt) 386 { 387 struct i915_request *requests[I915_NUM_ENGINES] = {}; 388 struct intel_engine_cs *engine; 389 enum intel_engine_id id; 390 int err = 0; 391 392 /* 393 * As we reset the gpu during very early sanitisation, the current 394 * register state on the GPU should reflect its defaults values. 395 * We load a context onto the hw (with restore-inhibit), then switch 396 * over to a second context to save that default register state. We 397 * can then prime every new context with that state so they all start 398 * from the same default HW values. 399 */ 400 401 for_each_engine(engine, gt, id) { 402 struct intel_renderstate so; 403 struct intel_context *ce; 404 struct i915_request *rq; 405 406 /* We must be able to switch to something! */ 407 GEM_BUG_ON(!engine->kernel_context); 408 409 err = intel_renderstate_init(&so, engine); 410 if (err) 411 goto out; 412 413 ce = intel_context_create(engine); 414 if (IS_ERR(ce)) { 415 err = PTR_ERR(ce); 416 goto out; 417 } 418 419 rq = intel_context_create_request(ce); 420 if (IS_ERR(rq)) { 421 err = PTR_ERR(rq); 422 intel_context_put(ce); 423 goto out; 424 } 425 426 err = intel_engine_emit_ctx_wa(rq); 427 if (err) 428 goto err_rq; 429 430 err = intel_renderstate_emit(&so, rq); 431 if (err) 432 goto err_rq; 433 434 err_rq: 435 requests[id] = i915_request_get(rq); 436 i915_request_add(rq); 437 intel_renderstate_fini(&so); 438 if (err) 439 goto out; 440 } 441 442 /* Flush the default context image to memory, and enable powersaving. */ 443 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 444 err = -EIO; 445 goto out; 446 } 447 448 for (id = 0; id < ARRAY_SIZE(requests); id++) { 449 struct i915_request *rq; 450 struct file *state; 451 452 rq = requests[id]; 453 if (!rq) 454 continue; 455 456 if (rq->fence.error) { 457 err = -EIO; 458 goto out; 459 } 460 461 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 462 if (!rq->context->state) 463 continue; 464 465 /* Keep a copy of the state's backing pages; free the obj */ 466 state = shmem_create_from_object(rq->context->state->obj); 467 if (IS_ERR(state)) { 468 err = PTR_ERR(state); 469 goto out; 470 } 471 rq->engine->default_state = state; 472 } 473 474 out: 475 /* 476 * If we have to abandon now, we expect the engines to be idle 477 * and ready to be torn-down. The quickest way we can accomplish 478 * this is by declaring ourselves wedged. 479 */ 480 if (err) 481 intel_gt_set_wedged(gt); 482 483 for (id = 0; id < ARRAY_SIZE(requests); id++) { 484 struct intel_context *ce; 485 struct i915_request *rq; 486 487 rq = requests[id]; 488 if (!rq) 489 continue; 490 491 ce = rq->context; 492 i915_request_put(rq); 493 intel_context_put(ce); 494 } 495 return err; 496 } 497 498 static int __engines_verify_workarounds(struct intel_gt *gt) 499 { 500 struct intel_engine_cs *engine; 501 enum intel_engine_id id; 502 int err = 0; 503 504 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 505 return 0; 506 507 for_each_engine(engine, gt, id) { 508 if (intel_engine_verify_workarounds(engine, "load")) 509 err = -EIO; 510 } 511 512 /* Flush and restore the kernel context for safety */ 513 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 514 err = -EIO; 515 516 return err; 517 } 518 519 static void __intel_gt_disable(struct intel_gt *gt) 520 { 521 intel_gt_set_wedged_on_fini(gt); 522 523 intel_gt_suspend_prepare(gt); 524 intel_gt_suspend_late(gt); 525 526 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 527 } 528 529 int intel_gt_init(struct intel_gt *gt) 530 { 531 int err; 532 533 err = i915_inject_probe_error(gt->i915, -ENODEV); 534 if (err) 535 return err; 536 537 /* 538 * This is just a security blanket to placate dragons. 539 * On some systems, we very sporadically observe that the first TLBs 540 * used by the CS may be stale, despite us poking the TLB reset. If 541 * we hold the forcewake during initialisation these problems 542 * just magically go away. 543 */ 544 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 545 546 intel_gt_init_clock_frequency(gt); 547 548 err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K); 549 if (err) 550 goto out_fw; 551 552 intel_gt_pm_init(gt); 553 554 gt->vm = kernel_vm(gt); 555 if (!gt->vm) { 556 err = -ENOMEM; 557 goto err_pm; 558 } 559 560 err = intel_engines_init(gt); 561 if (err) 562 goto err_engines; 563 564 err = intel_uc_init(>->uc); 565 if (err) 566 goto err_engines; 567 568 err = intel_gt_resume(gt); 569 if (err) 570 goto err_uc_init; 571 572 err = __engines_record_defaults(gt); 573 if (err) 574 goto err_gt; 575 576 err = __engines_verify_workarounds(gt); 577 if (err) 578 goto err_gt; 579 580 err = i915_inject_probe_error(gt->i915, -EIO); 581 if (err) 582 goto err_gt; 583 584 goto out_fw; 585 err_gt: 586 __intel_gt_disable(gt); 587 intel_uc_fini_hw(>->uc); 588 err_uc_init: 589 intel_uc_fini(>->uc); 590 err_engines: 591 intel_engines_release(gt); 592 i915_vm_put(fetch_and_zero(>->vm)); 593 err_pm: 594 intel_gt_pm_fini(gt); 595 intel_gt_fini_scratch(gt); 596 out_fw: 597 if (err) 598 intel_gt_set_wedged_on_init(gt); 599 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 600 return err; 601 } 602 603 void intel_gt_driver_remove(struct intel_gt *gt) 604 { 605 __intel_gt_disable(gt); 606 607 intel_uc_driver_remove(>->uc); 608 609 intel_engines_release(gt); 610 } 611 612 void intel_gt_driver_unregister(struct intel_gt *gt) 613 { 614 intel_rps_driver_unregister(>->rps); 615 616 /* 617 * Upon unregistering the device to prevent any new users, cancel 618 * all in-flight requests so that we can quickly unbind the active 619 * resources. 620 */ 621 intel_gt_set_wedged(gt); 622 } 623 624 void intel_gt_driver_release(struct intel_gt *gt) 625 { 626 struct i915_address_space *vm; 627 intel_wakeref_t wakeref; 628 629 /* Scrub all HW state upon release */ 630 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 631 __intel_gt_reset(gt, ALL_ENGINES); 632 633 vm = fetch_and_zero(>->vm); 634 if (vm) /* FIXME being called twice on error paths :( */ 635 i915_vm_put(vm); 636 637 intel_gt_pm_fini(gt); 638 intel_gt_fini_scratch(gt); 639 intel_gt_fini_buffer_pool(gt); 640 } 641 642 void intel_gt_driver_late_release(struct intel_gt *gt) 643 { 644 /* We need to wait for inflight RCU frees to release their grip */ 645 rcu_barrier(); 646 647 intel_uc_driver_late_release(>->uc); 648 intel_gt_fini_requests(gt); 649 intel_gt_fini_reset(gt); 650 intel_gt_fini_timelines(gt); 651 intel_engines_free(gt); 652 } 653 654 void intel_gt_info_print(const struct intel_gt_info *info, 655 struct drm_printer *p) 656 { 657 drm_printf(p, "available engines: %x\n", info->engine_mask); 658 659 intel_sseu_dump(&info->sseu, p); 660 } 661