xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision e330fb14)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include "debugfs_gt.h"
7 
8 #include "gem/i915_gem_lmem.h"
9 #include "i915_drv.h"
10 #include "intel_context.h"
11 #include "intel_gt.h"
12 #include "intel_gt_buffer_pool.h"
13 #include "intel_gt_clock_utils.h"
14 #include "intel_gt_pm.h"
15 #include "intel_gt_requests.h"
16 #include "intel_migrate.h"
17 #include "intel_mocs.h"
18 #include "intel_rc6.h"
19 #include "intel_renderstate.h"
20 #include "intel_rps.h"
21 #include "intel_uncore.h"
22 #include "intel_pm.h"
23 #include "shmem_utils.h"
24 
25 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
26 {
27 	gt->i915 = i915;
28 	gt->uncore = &i915->uncore;
29 
30 	spin_lock_init(&gt->irq_lock);
31 
32 	INIT_LIST_HEAD(&gt->closed_vma);
33 	spin_lock_init(&gt->closed_lock);
34 
35 	init_llist_head(&gt->watchdog.list);
36 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
37 
38 	intel_gt_init_buffer_pool(gt);
39 	intel_gt_init_reset(gt);
40 	intel_gt_init_requests(gt);
41 	intel_gt_init_timelines(gt);
42 	intel_gt_pm_init_early(gt);
43 
44 	intel_uc_init_early(&gt->uc);
45 	intel_rps_init_early(&gt->rps);
46 }
47 
48 int intel_gt_probe_lmem(struct intel_gt *gt)
49 {
50 	struct drm_i915_private *i915 = gt->i915;
51 	struct intel_memory_region *mem;
52 	int id;
53 	int err;
54 
55 	mem = intel_gt_setup_lmem(gt);
56 	if (mem == ERR_PTR(-ENODEV))
57 		mem = intel_gt_setup_fake_lmem(gt);
58 	if (IS_ERR(mem)) {
59 		err = PTR_ERR(mem);
60 		if (err == -ENODEV)
61 			return 0;
62 
63 		drm_err(&i915->drm,
64 			"Failed to setup region(%d) type=%d\n",
65 			err, INTEL_MEMORY_LOCAL);
66 		return err;
67 	}
68 
69 	id = INTEL_REGION_LMEM;
70 
71 	mem->id = id;
72 
73 	intel_memory_region_set_name(mem, "local%u", mem->instance);
74 
75 	GEM_BUG_ON(!HAS_REGION(i915, id));
76 	GEM_BUG_ON(i915->mm.regions[id]);
77 	i915->mm.regions[id] = mem;
78 
79 	return 0;
80 }
81 
82 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
83 {
84 	gt->ggtt = ggtt;
85 }
86 
87 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
88 	{ 0x00B100, 0x00B3FF },
89 	{},
90 };
91 
92 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
93 	{ 0x004000, 0x004AFF },
94 	{ 0x00C800, 0x00CFFF },
95 	{ 0x00DD00, 0x00DDFF },
96 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
97 	{},
98 };
99 
100 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
101 	{ 0x00B000, 0x00B0FF },
102 	{ 0x00D800, 0x00D8FF },
103 	{},
104 };
105 
106 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
107 	{ 0x00B000, 0x00B0FF },
108 	{ 0x00D880, 0x00D8FF },
109 	{},
110 };
111 
112 static u16 slicemask(struct intel_gt *gt, int count)
113 {
114 	u64 dss_mask = intel_sseu_get_subslices(&gt->info.sseu, 0);
115 
116 	return intel_slicemask_from_dssmask(dss_mask, count);
117 }
118 
119 int intel_gt_init_mmio(struct intel_gt *gt)
120 {
121 	struct drm_i915_private *i915 = gt->i915;
122 
123 	intel_gt_init_clock_frequency(gt);
124 
125 	intel_uc_init_mmio(&gt->uc);
126 	intel_sseu_info_init(gt);
127 
128 	/*
129 	 * An mslice is unavailable only if both the meml3 for the slice is
130 	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
131 	 */
132 	if (HAS_MSLICES(i915))
133 		gt->info.mslice_mask =
134 			slicemask(gt, GEN_DSS_PER_MSLICE) |
135 			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
136 			 GEN12_MEML3_EN_MASK);
137 
138 	if (IS_DG2(i915)) {
139 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
140 		gt->steering_table[LNCF] = dg2_lncf_steering_table;
141 	} else if (IS_XEHPSDV(i915)) {
142 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
143 		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
144 	} else if (GRAPHICS_VER(i915) >= 11 &&
145 		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
146 		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
147 		gt->info.l3bank_mask =
148 			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
149 			GEN10_L3BANK_MASK;
150 	} else if (HAS_MSLICES(i915)) {
151 		MISSING_CASE(INTEL_INFO(i915)->platform);
152 	}
153 
154 	return intel_engines_init_mmio(gt);
155 }
156 
157 static void init_unused_ring(struct intel_gt *gt, u32 base)
158 {
159 	struct intel_uncore *uncore = gt->uncore;
160 
161 	intel_uncore_write(uncore, RING_CTL(base), 0);
162 	intel_uncore_write(uncore, RING_HEAD(base), 0);
163 	intel_uncore_write(uncore, RING_TAIL(base), 0);
164 	intel_uncore_write(uncore, RING_START(base), 0);
165 }
166 
167 static void init_unused_rings(struct intel_gt *gt)
168 {
169 	struct drm_i915_private *i915 = gt->i915;
170 
171 	if (IS_I830(i915)) {
172 		init_unused_ring(gt, PRB1_BASE);
173 		init_unused_ring(gt, SRB0_BASE);
174 		init_unused_ring(gt, SRB1_BASE);
175 		init_unused_ring(gt, SRB2_BASE);
176 		init_unused_ring(gt, SRB3_BASE);
177 	} else if (GRAPHICS_VER(i915) == 2) {
178 		init_unused_ring(gt, SRB0_BASE);
179 		init_unused_ring(gt, SRB1_BASE);
180 	} else if (GRAPHICS_VER(i915) == 3) {
181 		init_unused_ring(gt, PRB1_BASE);
182 		init_unused_ring(gt, PRB2_BASE);
183 	}
184 }
185 
186 int intel_gt_init_hw(struct intel_gt *gt)
187 {
188 	struct drm_i915_private *i915 = gt->i915;
189 	struct intel_uncore *uncore = gt->uncore;
190 	int ret;
191 
192 	gt->last_init_time = ktime_get();
193 
194 	/* Double layer security blanket, see i915_gem_init() */
195 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
196 
197 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
198 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
199 
200 	if (IS_HASWELL(i915))
201 		intel_uncore_write(uncore,
202 				   MI_PREDICATE_RESULT_2,
203 				   IS_HSW_GT3(i915) ?
204 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
205 
206 	/* Apply the GT workarounds... */
207 	intel_gt_apply_workarounds(gt);
208 	/* ...and determine whether they are sticking. */
209 	intel_gt_verify_workarounds(gt, "init");
210 
211 	intel_gt_init_swizzling(gt);
212 
213 	/*
214 	 * At least 830 can leave some of the unused rings
215 	 * "active" (ie. head != tail) after resume which
216 	 * will prevent c3 entry. Makes sure all unused rings
217 	 * are totally idle.
218 	 */
219 	init_unused_rings(gt);
220 
221 	ret = i915_ppgtt_init_hw(gt);
222 	if (ret) {
223 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
224 		goto out;
225 	}
226 
227 	/* We can't enable contexts until all firmware is loaded */
228 	ret = intel_uc_init_hw(&gt->uc);
229 	if (ret) {
230 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
231 		goto out;
232 	}
233 
234 	intel_mocs_init(gt);
235 
236 out:
237 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
238 	return ret;
239 }
240 
241 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
242 {
243 	intel_uncore_rmw(uncore, reg, 0, set);
244 }
245 
246 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
247 {
248 	intel_uncore_rmw(uncore, reg, clr, 0);
249 }
250 
251 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
252 {
253 	intel_uncore_rmw(uncore, reg, 0, 0);
254 }
255 
256 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
257 {
258 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
259 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
260 }
261 
262 void
263 intel_gt_clear_error_registers(struct intel_gt *gt,
264 			       intel_engine_mask_t engine_mask)
265 {
266 	struct drm_i915_private *i915 = gt->i915;
267 	struct intel_uncore *uncore = gt->uncore;
268 	u32 eir;
269 
270 	if (GRAPHICS_VER(i915) != 2)
271 		clear_register(uncore, PGTBL_ER);
272 
273 	if (GRAPHICS_VER(i915) < 4)
274 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
275 	else
276 		clear_register(uncore, IPEIR_I965);
277 
278 	clear_register(uncore, EIR);
279 	eir = intel_uncore_read(uncore, EIR);
280 	if (eir) {
281 		/*
282 		 * some errors might have become stuck,
283 		 * mask them.
284 		 */
285 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
286 		rmw_set(uncore, EMR, eir);
287 		intel_uncore_write(uncore, GEN2_IIR,
288 				   I915_MASTER_ERROR_INTERRUPT);
289 	}
290 
291 	if (GRAPHICS_VER(i915) >= 12) {
292 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
293 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
294 	} else if (GRAPHICS_VER(i915) >= 8) {
295 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
296 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
297 	} else if (GRAPHICS_VER(i915) >= 6) {
298 		struct intel_engine_cs *engine;
299 		enum intel_engine_id id;
300 
301 		for_each_engine_masked(engine, gt, engine_mask, id)
302 			gen6_clear_engine_error_register(engine);
303 	}
304 }
305 
306 static void gen6_check_faults(struct intel_gt *gt)
307 {
308 	struct intel_engine_cs *engine;
309 	enum intel_engine_id id;
310 	u32 fault;
311 
312 	for_each_engine(engine, gt, id) {
313 		fault = GEN6_RING_FAULT_REG_READ(engine);
314 		if (fault & RING_FAULT_VALID) {
315 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
316 				"\tAddr: 0x%08lx\n"
317 				"\tAddress space: %s\n"
318 				"\tSource ID: %d\n"
319 				"\tType: %d\n",
320 				fault & PAGE_MASK,
321 				fault & RING_FAULT_GTTSEL_MASK ?
322 				"GGTT" : "PPGTT",
323 				RING_FAULT_SRCID(fault),
324 				RING_FAULT_FAULT_TYPE(fault));
325 		}
326 	}
327 }
328 
329 static void gen8_check_faults(struct intel_gt *gt)
330 {
331 	struct intel_uncore *uncore = gt->uncore;
332 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
333 	u32 fault;
334 
335 	if (GRAPHICS_VER(gt->i915) >= 12) {
336 		fault_reg = GEN12_RING_FAULT_REG;
337 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
338 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
339 	} else {
340 		fault_reg = GEN8_RING_FAULT_REG;
341 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
342 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
343 	}
344 
345 	fault = intel_uncore_read(uncore, fault_reg);
346 	if (fault & RING_FAULT_VALID) {
347 		u32 fault_data0, fault_data1;
348 		u64 fault_addr;
349 
350 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
351 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
352 
353 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
354 			     ((u64)fault_data0 << 12);
355 
356 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
357 			"\tAddr: 0x%08x_%08x\n"
358 			"\tAddress space: %s\n"
359 			"\tEngine ID: %d\n"
360 			"\tSource ID: %d\n"
361 			"\tType: %d\n",
362 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
363 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
364 			GEN8_RING_FAULT_ENGINE_ID(fault),
365 			RING_FAULT_SRCID(fault),
366 			RING_FAULT_FAULT_TYPE(fault));
367 	}
368 }
369 
370 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
371 {
372 	struct drm_i915_private *i915 = gt->i915;
373 
374 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
375 	if (GRAPHICS_VER(i915) >= 8)
376 		gen8_check_faults(gt);
377 	else if (GRAPHICS_VER(i915) >= 6)
378 		gen6_check_faults(gt);
379 	else
380 		return;
381 
382 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
383 }
384 
385 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
386 {
387 	struct intel_uncore *uncore = gt->uncore;
388 	intel_wakeref_t wakeref;
389 
390 	/*
391 	 * No actual flushing is required for the GTT write domain for reads
392 	 * from the GTT domain. Writes to it "immediately" go to main memory
393 	 * as far as we know, so there's no chipset flush. It also doesn't
394 	 * land in the GPU render cache.
395 	 *
396 	 * However, we do have to enforce the order so that all writes through
397 	 * the GTT land before any writes to the device, such as updates to
398 	 * the GATT itself.
399 	 *
400 	 * We also have to wait a bit for the writes to land from the GTT.
401 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
402 	 * timing. This issue has only been observed when switching quickly
403 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
404 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
405 	 * system agents we cannot reproduce this behaviour, until Cannonlake
406 	 * that was!).
407 	 */
408 
409 	wmb();
410 
411 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
412 		return;
413 
414 	intel_gt_chipset_flush(gt);
415 
416 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
417 		unsigned long flags;
418 
419 		spin_lock_irqsave(&uncore->lock, flags);
420 		intel_uncore_posting_read_fw(uncore,
421 					     RING_HEAD(RENDER_RING_BASE));
422 		spin_unlock_irqrestore(&uncore->lock, flags);
423 	}
424 }
425 
426 void intel_gt_chipset_flush(struct intel_gt *gt)
427 {
428 	wmb();
429 	if (GRAPHICS_VER(gt->i915) < 6)
430 		intel_gtt_chipset_flush();
431 }
432 
433 void intel_gt_driver_register(struct intel_gt *gt)
434 {
435 	intel_rps_driver_register(&gt->rps);
436 
437 	debugfs_gt_register(gt);
438 }
439 
440 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
441 {
442 	struct drm_i915_private *i915 = gt->i915;
443 	struct drm_i915_gem_object *obj;
444 	struct i915_vma *vma;
445 	int ret;
446 
447 	obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE);
448 	if (IS_ERR(obj))
449 		obj = i915_gem_object_create_stolen(i915, size);
450 	if (IS_ERR(obj))
451 		obj = i915_gem_object_create_internal(i915, size);
452 	if (IS_ERR(obj)) {
453 		drm_err(&i915->drm, "Failed to allocate scratch page\n");
454 		return PTR_ERR(obj);
455 	}
456 
457 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
458 	if (IS_ERR(vma)) {
459 		ret = PTR_ERR(vma);
460 		goto err_unref;
461 	}
462 
463 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
464 	if (ret)
465 		goto err_unref;
466 
467 	gt->scratch = i915_vma_make_unshrinkable(vma);
468 
469 	return 0;
470 
471 err_unref:
472 	i915_gem_object_put(obj);
473 	return ret;
474 }
475 
476 static void intel_gt_fini_scratch(struct intel_gt *gt)
477 {
478 	i915_vma_unpin_and_release(&gt->scratch, 0);
479 }
480 
481 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
482 {
483 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
484 		return &i915_ppgtt_create(gt)->vm;
485 	else
486 		return i915_vm_get(&gt->ggtt->vm);
487 }
488 
489 static int __engines_record_defaults(struct intel_gt *gt)
490 {
491 	struct i915_request *requests[I915_NUM_ENGINES] = {};
492 	struct intel_engine_cs *engine;
493 	enum intel_engine_id id;
494 	int err = 0;
495 
496 	/*
497 	 * As we reset the gpu during very early sanitisation, the current
498 	 * register state on the GPU should reflect its defaults values.
499 	 * We load a context onto the hw (with restore-inhibit), then switch
500 	 * over to a second context to save that default register state. We
501 	 * can then prime every new context with that state so they all start
502 	 * from the same default HW values.
503 	 */
504 
505 	for_each_engine(engine, gt, id) {
506 		struct intel_renderstate so;
507 		struct intel_context *ce;
508 		struct i915_request *rq;
509 
510 		/* We must be able to switch to something! */
511 		GEM_BUG_ON(!engine->kernel_context);
512 
513 		ce = intel_context_create(engine);
514 		if (IS_ERR(ce)) {
515 			err = PTR_ERR(ce);
516 			goto out;
517 		}
518 
519 		err = intel_renderstate_init(&so, ce);
520 		if (err)
521 			goto err;
522 
523 		rq = i915_request_create(ce);
524 		if (IS_ERR(rq)) {
525 			err = PTR_ERR(rq);
526 			goto err_fini;
527 		}
528 
529 		err = intel_engine_emit_ctx_wa(rq);
530 		if (err)
531 			goto err_rq;
532 
533 		err = intel_renderstate_emit(&so, rq);
534 		if (err)
535 			goto err_rq;
536 
537 err_rq:
538 		requests[id] = i915_request_get(rq);
539 		i915_request_add(rq);
540 err_fini:
541 		intel_renderstate_fini(&so, ce);
542 err:
543 		if (err) {
544 			intel_context_put(ce);
545 			goto out;
546 		}
547 	}
548 
549 	/* Flush the default context image to memory, and enable powersaving. */
550 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
551 		err = -EIO;
552 		goto out;
553 	}
554 
555 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
556 		struct i915_request *rq;
557 		struct file *state;
558 
559 		rq = requests[id];
560 		if (!rq)
561 			continue;
562 
563 		if (rq->fence.error) {
564 			err = -EIO;
565 			goto out;
566 		}
567 
568 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
569 		if (!rq->context->state)
570 			continue;
571 
572 		/* Keep a copy of the state's backing pages; free the obj */
573 		state = shmem_create_from_object(rq->context->state->obj);
574 		if (IS_ERR(state)) {
575 			err = PTR_ERR(state);
576 			goto out;
577 		}
578 		rq->engine->default_state = state;
579 	}
580 
581 out:
582 	/*
583 	 * If we have to abandon now, we expect the engines to be idle
584 	 * and ready to be torn-down. The quickest way we can accomplish
585 	 * this is by declaring ourselves wedged.
586 	 */
587 	if (err)
588 		intel_gt_set_wedged(gt);
589 
590 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
591 		struct intel_context *ce;
592 		struct i915_request *rq;
593 
594 		rq = requests[id];
595 		if (!rq)
596 			continue;
597 
598 		ce = rq->context;
599 		i915_request_put(rq);
600 		intel_context_put(ce);
601 	}
602 	return err;
603 }
604 
605 static int __engines_verify_workarounds(struct intel_gt *gt)
606 {
607 	struct intel_engine_cs *engine;
608 	enum intel_engine_id id;
609 	int err = 0;
610 
611 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
612 		return 0;
613 
614 	for_each_engine(engine, gt, id) {
615 		if (intel_engine_verify_workarounds(engine, "load"))
616 			err = -EIO;
617 	}
618 
619 	/* Flush and restore the kernel context for safety */
620 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
621 		err = -EIO;
622 
623 	return err;
624 }
625 
626 static void __intel_gt_disable(struct intel_gt *gt)
627 {
628 	intel_gt_set_wedged_on_fini(gt);
629 
630 	intel_gt_suspend_prepare(gt);
631 	intel_gt_suspend_late(gt);
632 
633 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
634 }
635 
636 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
637 {
638 	long remaining_timeout;
639 
640 	/* If the device is asleep, we have no requests outstanding */
641 	if (!intel_gt_pm_is_awake(gt))
642 		return 0;
643 
644 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
645 							   &remaining_timeout)) > 0) {
646 		cond_resched();
647 		if (signal_pending(current))
648 			return -EINTR;
649 	}
650 
651 	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
652 							  remaining_timeout);
653 }
654 
655 int intel_gt_init(struct intel_gt *gt)
656 {
657 	int err;
658 
659 	err = i915_inject_probe_error(gt->i915, -ENODEV);
660 	if (err)
661 		return err;
662 
663 	/*
664 	 * This is just a security blanket to placate dragons.
665 	 * On some systems, we very sporadically observe that the first TLBs
666 	 * used by the CS may be stale, despite us poking the TLB reset. If
667 	 * we hold the forcewake during initialisation these problems
668 	 * just magically go away.
669 	 */
670 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
671 
672 	err = intel_gt_init_scratch(gt,
673 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
674 	if (err)
675 		goto out_fw;
676 
677 	intel_gt_pm_init(gt);
678 
679 	gt->vm = kernel_vm(gt);
680 	if (!gt->vm) {
681 		err = -ENOMEM;
682 		goto err_pm;
683 	}
684 
685 	err = intel_engines_init(gt);
686 	if (err)
687 		goto err_engines;
688 
689 	err = intel_uc_init(&gt->uc);
690 	if (err)
691 		goto err_engines;
692 
693 	err = intel_gt_resume(gt);
694 	if (err)
695 		goto err_uc_init;
696 
697 	err = __engines_record_defaults(gt);
698 	if (err)
699 		goto err_gt;
700 
701 	err = __engines_verify_workarounds(gt);
702 	if (err)
703 		goto err_gt;
704 
705 	intel_uc_init_late(&gt->uc);
706 
707 	err = i915_inject_probe_error(gt->i915, -EIO);
708 	if (err)
709 		goto err_gt;
710 
711 	intel_migrate_init(&gt->migrate, gt);
712 
713 	goto out_fw;
714 err_gt:
715 	__intel_gt_disable(gt);
716 	intel_uc_fini_hw(&gt->uc);
717 err_uc_init:
718 	intel_uc_fini(&gt->uc);
719 err_engines:
720 	intel_engines_release(gt);
721 	i915_vm_put(fetch_and_zero(&gt->vm));
722 err_pm:
723 	intel_gt_pm_fini(gt);
724 	intel_gt_fini_scratch(gt);
725 out_fw:
726 	if (err)
727 		intel_gt_set_wedged_on_init(gt);
728 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
729 	return err;
730 }
731 
732 void intel_gt_driver_remove(struct intel_gt *gt)
733 {
734 	__intel_gt_disable(gt);
735 
736 	intel_migrate_fini(&gt->migrate);
737 	intel_uc_driver_remove(&gt->uc);
738 
739 	intel_engines_release(gt);
740 }
741 
742 void intel_gt_driver_unregister(struct intel_gt *gt)
743 {
744 	intel_wakeref_t wakeref;
745 
746 	intel_rps_driver_unregister(&gt->rps);
747 
748 	/*
749 	 * Upon unregistering the device to prevent any new users, cancel
750 	 * all in-flight requests so that we can quickly unbind the active
751 	 * resources.
752 	 */
753 	intel_gt_set_wedged(gt);
754 
755 	/* Scrub all HW state upon release */
756 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
757 		__intel_gt_reset(gt, ALL_ENGINES);
758 }
759 
760 void intel_gt_driver_release(struct intel_gt *gt)
761 {
762 	struct i915_address_space *vm;
763 
764 	vm = fetch_and_zero(&gt->vm);
765 	if (vm) /* FIXME being called twice on error paths :( */
766 		i915_vm_put(vm);
767 
768 	intel_gt_pm_fini(gt);
769 	intel_gt_fini_scratch(gt);
770 	intel_gt_fini_buffer_pool(gt);
771 }
772 
773 void intel_gt_driver_late_release(struct intel_gt *gt)
774 {
775 	/* We need to wait for inflight RCU frees to release their grip */
776 	rcu_barrier();
777 
778 	intel_uc_driver_late_release(&gt->uc);
779 	intel_gt_fini_requests(gt);
780 	intel_gt_fini_reset(gt);
781 	intel_gt_fini_timelines(gt);
782 	intel_engines_free(gt);
783 }
784 
785 /**
786  * intel_gt_reg_needs_read_steering - determine whether a register read
787  *     requires explicit steering
788  * @gt: GT structure
789  * @reg: the register to check steering requirements for
790  * @type: type of multicast steering to check
791  *
792  * Determines whether @reg needs explicit steering of a specific type for
793  * reads.
794  *
795  * Returns false if @reg does not belong to a register range of the given
796  * steering type, or if the default (subslice-based) steering IDs are suitable
797  * for @type steering too.
798  */
799 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
800 					     i915_reg_t reg,
801 					     enum intel_steering_type type)
802 {
803 	const u32 offset = i915_mmio_reg_offset(reg);
804 	const struct intel_mmio_range *entry;
805 
806 	if (likely(!intel_gt_needs_read_steering(gt, type)))
807 		return false;
808 
809 	for (entry = gt->steering_table[type]; entry->end; entry++) {
810 		if (offset >= entry->start && offset <= entry->end)
811 			return true;
812 	}
813 
814 	return false;
815 }
816 
817 /**
818  * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
819  * @gt: GT structure
820  * @type: multicast register type
821  * @sliceid: Slice ID returned
822  * @subsliceid: Subslice ID returned
823  *
824  * Determines sliceid and subsliceid values that will steer reads
825  * of a specific multicast register class to a valid value.
826  */
827 static void intel_gt_get_valid_steering(struct intel_gt *gt,
828 					enum intel_steering_type type,
829 					u8 *sliceid, u8 *subsliceid)
830 {
831 	switch (type) {
832 	case L3BANK:
833 		GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */
834 
835 		*sliceid = 0;		/* unused */
836 		*subsliceid = __ffs(gt->info.l3bank_mask);
837 		break;
838 	case MSLICE:
839 		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
840 
841 		*sliceid = __ffs(gt->info.mslice_mask);
842 		*subsliceid = 0;	/* unused */
843 		break;
844 	case LNCF:
845 		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
846 
847 		/*
848 		 * An LNCF is always present if its mslice is present, so we
849 		 * can safely just steer to LNCF 0 in all cases.
850 		 */
851 		*sliceid = __ffs(gt->info.mslice_mask) << 1;
852 		*subsliceid = 0;	/* unused */
853 		break;
854 	default:
855 		MISSING_CASE(type);
856 		*sliceid = 0;
857 		*subsliceid = 0;
858 	}
859 }
860 
861 /**
862  * intel_gt_read_register_fw - reads a GT register with support for multicast
863  * @gt: GT structure
864  * @reg: register to read
865  *
866  * This function will read a GT register.  If the register is a multicast
867  * register, the read will be steered to a valid instance (i.e., one that
868  * isn't fused off or powered down by power gating).
869  *
870  * Returns the value from a valid instance of @reg.
871  */
872 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
873 {
874 	int type;
875 	u8 sliceid, subsliceid;
876 
877 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
878 		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
879 			intel_gt_get_valid_steering(gt, type, &sliceid,
880 						    &subsliceid);
881 			return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
882 								      reg,
883 								      sliceid,
884 								      subsliceid);
885 		}
886 	}
887 
888 	return intel_uncore_read_fw(gt->uncore, reg);
889 }
890 
891 void intel_gt_info_print(const struct intel_gt_info *info,
892 			 struct drm_printer *p)
893 {
894 	drm_printf(p, "available engines: %x\n", info->engine_mask);
895 
896 	intel_sseu_dump(&info->sseu, p);
897 }
898