xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision dc6a81c3)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include "debugfs_gt.h"
7 #include "i915_drv.h"
8 #include "intel_context.h"
9 #include "intel_gt.h"
10 #include "intel_gt_pm.h"
11 #include "intel_gt_requests.h"
12 #include "intel_mocs.h"
13 #include "intel_rc6.h"
14 #include "intel_renderstate.h"
15 #include "intel_rps.h"
16 #include "intel_uncore.h"
17 #include "intel_pm.h"
18 
19 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
20 {
21 	gt->i915 = i915;
22 	gt->uncore = &i915->uncore;
23 
24 	spin_lock_init(&gt->irq_lock);
25 
26 	INIT_LIST_HEAD(&gt->closed_vma);
27 	spin_lock_init(&gt->closed_lock);
28 
29 	intel_gt_init_reset(gt);
30 	intel_gt_init_requests(gt);
31 	intel_gt_init_timelines(gt);
32 	intel_gt_pm_init_early(gt);
33 
34 	intel_rps_init_early(&gt->rps);
35 	intel_uc_init_early(&gt->uc);
36 }
37 
38 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
39 {
40 	gt->ggtt = ggtt;
41 }
42 
43 static void init_unused_ring(struct intel_gt *gt, u32 base)
44 {
45 	struct intel_uncore *uncore = gt->uncore;
46 
47 	intel_uncore_write(uncore, RING_CTL(base), 0);
48 	intel_uncore_write(uncore, RING_HEAD(base), 0);
49 	intel_uncore_write(uncore, RING_TAIL(base), 0);
50 	intel_uncore_write(uncore, RING_START(base), 0);
51 }
52 
53 static void init_unused_rings(struct intel_gt *gt)
54 {
55 	struct drm_i915_private *i915 = gt->i915;
56 
57 	if (IS_I830(i915)) {
58 		init_unused_ring(gt, PRB1_BASE);
59 		init_unused_ring(gt, SRB0_BASE);
60 		init_unused_ring(gt, SRB1_BASE);
61 		init_unused_ring(gt, SRB2_BASE);
62 		init_unused_ring(gt, SRB3_BASE);
63 	} else if (IS_GEN(i915, 2)) {
64 		init_unused_ring(gt, SRB0_BASE);
65 		init_unused_ring(gt, SRB1_BASE);
66 	} else if (IS_GEN(i915, 3)) {
67 		init_unused_ring(gt, PRB1_BASE);
68 		init_unused_ring(gt, PRB2_BASE);
69 	}
70 }
71 
72 int intel_gt_init_hw(struct intel_gt *gt)
73 {
74 	struct drm_i915_private *i915 = gt->i915;
75 	struct intel_uncore *uncore = gt->uncore;
76 	int ret;
77 
78 	gt->last_init_time = ktime_get();
79 
80 	/* Double layer security blanket, see i915_gem_init() */
81 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
82 
83 	if (HAS_EDRAM(i915) && INTEL_GEN(i915) < 9)
84 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
85 
86 	if (IS_HASWELL(i915))
87 		intel_uncore_write(uncore,
88 				   MI_PREDICATE_RESULT_2,
89 				   IS_HSW_GT3(i915) ?
90 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
91 
92 	/* Apply the GT workarounds... */
93 	intel_gt_apply_workarounds(gt);
94 	/* ...and determine whether they are sticking. */
95 	intel_gt_verify_workarounds(gt, "init");
96 
97 	intel_gt_init_swizzling(gt);
98 
99 	/*
100 	 * At least 830 can leave some of the unused rings
101 	 * "active" (ie. head != tail) after resume which
102 	 * will prevent c3 entry. Makes sure all unused rings
103 	 * are totally idle.
104 	 */
105 	init_unused_rings(gt);
106 
107 	ret = i915_ppgtt_init_hw(gt);
108 	if (ret) {
109 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
110 		goto out;
111 	}
112 
113 	/* We can't enable contexts until all firmware is loaded */
114 	ret = intel_uc_init_hw(&gt->uc);
115 	if (ret) {
116 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
117 		goto out;
118 	}
119 
120 	intel_mocs_init(gt);
121 
122 out:
123 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
124 	return ret;
125 }
126 
127 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
128 {
129 	intel_uncore_rmw(uncore, reg, 0, set);
130 }
131 
132 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
133 {
134 	intel_uncore_rmw(uncore, reg, clr, 0);
135 }
136 
137 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
138 {
139 	intel_uncore_rmw(uncore, reg, 0, 0);
140 }
141 
142 static void gen8_clear_engine_error_register(struct intel_engine_cs *engine)
143 {
144 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
145 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
146 }
147 
148 void
149 intel_gt_clear_error_registers(struct intel_gt *gt,
150 			       intel_engine_mask_t engine_mask)
151 {
152 	struct drm_i915_private *i915 = gt->i915;
153 	struct intel_uncore *uncore = gt->uncore;
154 	u32 eir;
155 
156 	if (!IS_GEN(i915, 2))
157 		clear_register(uncore, PGTBL_ER);
158 
159 	if (INTEL_GEN(i915) < 4)
160 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
161 	else
162 		clear_register(uncore, IPEIR_I965);
163 
164 	clear_register(uncore, EIR);
165 	eir = intel_uncore_read(uncore, EIR);
166 	if (eir) {
167 		/*
168 		 * some errors might have become stuck,
169 		 * mask them.
170 		 */
171 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
172 		rmw_set(uncore, EMR, eir);
173 		intel_uncore_write(uncore, GEN2_IIR,
174 				   I915_MASTER_ERROR_INTERRUPT);
175 	}
176 
177 	if (INTEL_GEN(i915) >= 12) {
178 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
179 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
180 	} else if (INTEL_GEN(i915) >= 8) {
181 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
182 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
183 	} else if (INTEL_GEN(i915) >= 6) {
184 		struct intel_engine_cs *engine;
185 		enum intel_engine_id id;
186 
187 		for_each_engine_masked(engine, gt, engine_mask, id)
188 			gen8_clear_engine_error_register(engine);
189 	}
190 }
191 
192 static void gen6_check_faults(struct intel_gt *gt)
193 {
194 	struct intel_engine_cs *engine;
195 	enum intel_engine_id id;
196 	u32 fault;
197 
198 	for_each_engine(engine, gt, id) {
199 		fault = GEN6_RING_FAULT_REG_READ(engine);
200 		if (fault & RING_FAULT_VALID) {
201 			DRM_DEBUG_DRIVER("Unexpected fault\n"
202 					 "\tAddr: 0x%08lx\n"
203 					 "\tAddress space: %s\n"
204 					 "\tSource ID: %d\n"
205 					 "\tType: %d\n",
206 					 fault & PAGE_MASK,
207 					 fault & RING_FAULT_GTTSEL_MASK ?
208 					 "GGTT" : "PPGTT",
209 					 RING_FAULT_SRCID(fault),
210 					 RING_FAULT_FAULT_TYPE(fault));
211 		}
212 	}
213 }
214 
215 static void gen8_check_faults(struct intel_gt *gt)
216 {
217 	struct intel_uncore *uncore = gt->uncore;
218 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
219 	u32 fault;
220 
221 	if (INTEL_GEN(gt->i915) >= 12) {
222 		fault_reg = GEN12_RING_FAULT_REG;
223 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
224 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
225 	} else {
226 		fault_reg = GEN8_RING_FAULT_REG;
227 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
228 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
229 	}
230 
231 	fault = intel_uncore_read(uncore, fault_reg);
232 	if (fault & RING_FAULT_VALID) {
233 		u32 fault_data0, fault_data1;
234 		u64 fault_addr;
235 
236 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
237 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
238 
239 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
240 			     ((u64)fault_data0 << 12);
241 
242 		DRM_DEBUG_DRIVER("Unexpected fault\n"
243 				 "\tAddr: 0x%08x_%08x\n"
244 				 "\tAddress space: %s\n"
245 				 "\tEngine ID: %d\n"
246 				 "\tSource ID: %d\n"
247 				 "\tType: %d\n",
248 				 upper_32_bits(fault_addr),
249 				 lower_32_bits(fault_addr),
250 				 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
251 				 GEN8_RING_FAULT_ENGINE_ID(fault),
252 				 RING_FAULT_SRCID(fault),
253 				 RING_FAULT_FAULT_TYPE(fault));
254 	}
255 }
256 
257 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
258 {
259 	struct drm_i915_private *i915 = gt->i915;
260 
261 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
262 	if (INTEL_GEN(i915) >= 8)
263 		gen8_check_faults(gt);
264 	else if (INTEL_GEN(i915) >= 6)
265 		gen6_check_faults(gt);
266 	else
267 		return;
268 
269 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
270 }
271 
272 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
273 {
274 	struct intel_uncore *uncore = gt->uncore;
275 	intel_wakeref_t wakeref;
276 
277 	/*
278 	 * No actual flushing is required for the GTT write domain for reads
279 	 * from the GTT domain. Writes to it "immediately" go to main memory
280 	 * as far as we know, so there's no chipset flush. It also doesn't
281 	 * land in the GPU render cache.
282 	 *
283 	 * However, we do have to enforce the order so that all writes through
284 	 * the GTT land before any writes to the device, such as updates to
285 	 * the GATT itself.
286 	 *
287 	 * We also have to wait a bit for the writes to land from the GTT.
288 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
289 	 * timing. This issue has only been observed when switching quickly
290 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
291 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
292 	 * system agents we cannot reproduce this behaviour, until Cannonlake
293 	 * that was!).
294 	 */
295 
296 	wmb();
297 
298 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
299 		return;
300 
301 	intel_gt_chipset_flush(gt);
302 
303 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
304 		unsigned long flags;
305 
306 		spin_lock_irqsave(&uncore->lock, flags);
307 		intel_uncore_posting_read_fw(uncore,
308 					     RING_HEAD(RENDER_RING_BASE));
309 		spin_unlock_irqrestore(&uncore->lock, flags);
310 	}
311 }
312 
313 void intel_gt_chipset_flush(struct intel_gt *gt)
314 {
315 	wmb();
316 	if (INTEL_GEN(gt->i915) < 6)
317 		intel_gtt_chipset_flush();
318 }
319 
320 void intel_gt_driver_register(struct intel_gt *gt)
321 {
322 	intel_rps_driver_register(&gt->rps);
323 
324 	debugfs_gt_register(gt);
325 }
326 
327 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
328 {
329 	struct drm_i915_private *i915 = gt->i915;
330 	struct drm_i915_gem_object *obj;
331 	struct i915_vma *vma;
332 	int ret;
333 
334 	obj = i915_gem_object_create_stolen(i915, size);
335 	if (IS_ERR(obj))
336 		obj = i915_gem_object_create_internal(i915, size);
337 	if (IS_ERR(obj)) {
338 		DRM_ERROR("Failed to allocate scratch page\n");
339 		return PTR_ERR(obj);
340 	}
341 
342 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
343 	if (IS_ERR(vma)) {
344 		ret = PTR_ERR(vma);
345 		goto err_unref;
346 	}
347 
348 	ret = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
349 	if (ret)
350 		goto err_unref;
351 
352 	gt->scratch = i915_vma_make_unshrinkable(vma);
353 
354 	return 0;
355 
356 err_unref:
357 	i915_gem_object_put(obj);
358 	return ret;
359 }
360 
361 static void intel_gt_fini_scratch(struct intel_gt *gt)
362 {
363 	i915_vma_unpin_and_release(&gt->scratch, 0);
364 }
365 
366 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
367 {
368 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
369 		return &i915_ppgtt_create(gt)->vm;
370 	else
371 		return i915_vm_get(&gt->ggtt->vm);
372 }
373 
374 static int __intel_context_flush_retire(struct intel_context *ce)
375 {
376 	struct intel_timeline *tl;
377 
378 	tl = intel_context_timeline_lock(ce);
379 	if (IS_ERR(tl))
380 		return PTR_ERR(tl);
381 
382 	intel_context_timeline_unlock(tl);
383 	return 0;
384 }
385 
386 static int __engines_record_defaults(struct intel_gt *gt)
387 {
388 	struct i915_request *requests[I915_NUM_ENGINES] = {};
389 	struct intel_engine_cs *engine;
390 	enum intel_engine_id id;
391 	int err = 0;
392 
393 	/*
394 	 * As we reset the gpu during very early sanitisation, the current
395 	 * register state on the GPU should reflect its defaults values.
396 	 * We load a context onto the hw (with restore-inhibit), then switch
397 	 * over to a second context to save that default register state. We
398 	 * can then prime every new context with that state so they all start
399 	 * from the same default HW values.
400 	 */
401 
402 	for_each_engine(engine, gt, id) {
403 		struct intel_renderstate so;
404 		struct intel_context *ce;
405 		struct i915_request *rq;
406 
407 		/* We must be able to switch to something! */
408 		GEM_BUG_ON(!engine->kernel_context);
409 
410 		err = intel_renderstate_init(&so, engine);
411 		if (err)
412 			goto out;
413 
414 		ce = intel_context_create(engine);
415 		if (IS_ERR(ce)) {
416 			err = PTR_ERR(ce);
417 			goto out;
418 		}
419 
420 		rq = intel_context_create_request(ce);
421 		if (IS_ERR(rq)) {
422 			err = PTR_ERR(rq);
423 			intel_context_put(ce);
424 			goto out;
425 		}
426 
427 		err = intel_engine_emit_ctx_wa(rq);
428 		if (err)
429 			goto err_rq;
430 
431 		err = intel_renderstate_emit(&so, rq);
432 		if (err)
433 			goto err_rq;
434 
435 err_rq:
436 		requests[id] = i915_request_get(rq);
437 		i915_request_add(rq);
438 		intel_renderstate_fini(&so);
439 		if (err)
440 			goto out;
441 	}
442 
443 	/* Flush the default context image to memory, and enable powersaving. */
444 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
445 		err = -EIO;
446 		goto out;
447 	}
448 
449 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
450 		struct i915_request *rq;
451 		struct i915_vma *state;
452 		void *vaddr;
453 
454 		rq = requests[id];
455 		if (!rq)
456 			continue;
457 
458 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
459 		state = rq->context->state;
460 		if (!state)
461 			continue;
462 
463 		/* Serialise with retirement on another CPU */
464 		GEM_BUG_ON(!i915_request_completed(rq));
465 		err = __intel_context_flush_retire(rq->context);
466 		if (err)
467 			goto out;
468 
469 		/* We want to be able to unbind the state from the GGTT */
470 		GEM_BUG_ON(intel_context_is_pinned(rq->context));
471 
472 		/*
473 		 * As we will hold a reference to the logical state, it will
474 		 * not be torn down with the context, and importantly the
475 		 * object will hold onto its vma (making it possible for a
476 		 * stray GTT write to corrupt our defaults). Unmap the vma
477 		 * from the GTT to prevent such accidents and reclaim the
478 		 * space.
479 		 */
480 		err = i915_vma_unbind(state);
481 		if (err)
482 			goto out;
483 
484 		i915_gem_object_lock(state->obj);
485 		err = i915_gem_object_set_to_cpu_domain(state->obj, false);
486 		i915_gem_object_unlock(state->obj);
487 		if (err)
488 			goto out;
489 
490 		i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
491 
492 		/* Check we can acquire the image of the context state */
493 		vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
494 		if (IS_ERR(vaddr)) {
495 			err = PTR_ERR(vaddr);
496 			goto out;
497 		}
498 
499 		rq->engine->default_state = i915_gem_object_get(state->obj);
500 		i915_gem_object_unpin_map(state->obj);
501 	}
502 
503 out:
504 	/*
505 	 * If we have to abandon now, we expect the engines to be idle
506 	 * and ready to be torn-down. The quickest way we can accomplish
507 	 * this is by declaring ourselves wedged.
508 	 */
509 	if (err)
510 		intel_gt_set_wedged(gt);
511 
512 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
513 		struct intel_context *ce;
514 		struct i915_request *rq;
515 
516 		rq = requests[id];
517 		if (!rq)
518 			continue;
519 
520 		ce = rq->context;
521 		i915_request_put(rq);
522 		intel_context_put(ce);
523 	}
524 	return err;
525 }
526 
527 static int __engines_verify_workarounds(struct intel_gt *gt)
528 {
529 	struct intel_engine_cs *engine;
530 	enum intel_engine_id id;
531 	int err = 0;
532 
533 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
534 		return 0;
535 
536 	for_each_engine(engine, gt, id) {
537 		if (intel_engine_verify_workarounds(engine, "load"))
538 			err = -EIO;
539 	}
540 
541 	return err;
542 }
543 
544 static void __intel_gt_disable(struct intel_gt *gt)
545 {
546 	intel_gt_set_wedged_on_init(gt);
547 
548 	intel_gt_suspend_prepare(gt);
549 	intel_gt_suspend_late(gt);
550 
551 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
552 }
553 
554 int intel_gt_init(struct intel_gt *gt)
555 {
556 	int err;
557 
558 	err = i915_inject_probe_error(gt->i915, -ENODEV);
559 	if (err)
560 		return err;
561 
562 	/*
563 	 * This is just a security blanket to placate dragons.
564 	 * On some systems, we very sporadically observe that the first TLBs
565 	 * used by the CS may be stale, despite us poking the TLB reset. If
566 	 * we hold the forcewake during initialisation these problems
567 	 * just magically go away.
568 	 */
569 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
570 
571 	err = intel_gt_init_scratch(gt, IS_GEN(gt->i915, 2) ? SZ_256K : SZ_4K);
572 	if (err)
573 		goto out_fw;
574 
575 	intel_gt_pm_init(gt);
576 
577 	gt->vm = kernel_vm(gt);
578 	if (!gt->vm) {
579 		err = -ENOMEM;
580 		goto err_pm;
581 	}
582 
583 	err = intel_engines_init(gt);
584 	if (err)
585 		goto err_engines;
586 
587 	intel_uc_init(&gt->uc);
588 
589 	err = intel_gt_resume(gt);
590 	if (err)
591 		goto err_uc_init;
592 
593 	err = __engines_record_defaults(gt);
594 	if (err)
595 		goto err_gt;
596 
597 	err = __engines_verify_workarounds(gt);
598 	if (err)
599 		goto err_gt;
600 
601 	err = i915_inject_probe_error(gt->i915, -EIO);
602 	if (err)
603 		goto err_gt;
604 
605 	goto out_fw;
606 err_gt:
607 	__intel_gt_disable(gt);
608 	intel_uc_fini_hw(&gt->uc);
609 err_uc_init:
610 	intel_uc_fini(&gt->uc);
611 err_engines:
612 	intel_engines_release(gt);
613 	i915_vm_put(fetch_and_zero(&gt->vm));
614 err_pm:
615 	intel_gt_pm_fini(gt);
616 	intel_gt_fini_scratch(gt);
617 out_fw:
618 	if (err)
619 		intel_gt_set_wedged_on_init(gt);
620 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
621 	return err;
622 }
623 
624 void intel_gt_driver_remove(struct intel_gt *gt)
625 {
626 	__intel_gt_disable(gt);
627 
628 	intel_uc_fini_hw(&gt->uc);
629 	intel_uc_fini(&gt->uc);
630 
631 	intel_engines_release(gt);
632 }
633 
634 void intel_gt_driver_unregister(struct intel_gt *gt)
635 {
636 	intel_rps_driver_unregister(&gt->rps);
637 }
638 
639 void intel_gt_driver_release(struct intel_gt *gt)
640 {
641 	struct i915_address_space *vm;
642 
643 	vm = fetch_and_zero(&gt->vm);
644 	if (vm) /* FIXME being called twice on error paths :( */
645 		i915_vm_put(vm);
646 
647 	intel_gt_pm_fini(gt);
648 	intel_gt_fini_scratch(gt);
649 }
650 
651 void intel_gt_driver_late_release(struct intel_gt *gt)
652 {
653 	intel_uc_driver_late_release(&gt->uc);
654 	intel_gt_fini_requests(gt);
655 	intel_gt_fini_reset(gt);
656 	intel_gt_fini_timelines(gt);
657 	intel_engines_free(gt);
658 }
659