1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/intel-gtt.h> 7 8 #include "intel_gt_debugfs.h" 9 10 #include "gem/i915_gem_lmem.h" 11 #include "i915_drv.h" 12 #include "intel_context.h" 13 #include "intel_gt.h" 14 #include "intel_gt_buffer_pool.h" 15 #include "intel_gt_clock_utils.h" 16 #include "intel_gt_pm.h" 17 #include "intel_gt_requests.h" 18 #include "intel_migrate.h" 19 #include "intel_mocs.h" 20 #include "intel_pm.h" 21 #include "intel_rc6.h" 22 #include "intel_renderstate.h" 23 #include "intel_rps.h" 24 #include "intel_uncore.h" 25 #include "shmem_utils.h" 26 #include "pxp/intel_pxp.h" 27 28 void __intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 29 { 30 spin_lock_init(>->irq_lock); 31 32 mutex_init(>->tlb_invalidate_lock); 33 34 INIT_LIST_HEAD(>->closed_vma); 35 spin_lock_init(>->closed_lock); 36 37 init_llist_head(>->watchdog.list); 38 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 39 40 intel_gt_init_buffer_pool(gt); 41 intel_gt_init_reset(gt); 42 intel_gt_init_requests(gt); 43 intel_gt_init_timelines(gt); 44 intel_gt_pm_init_early(gt); 45 46 intel_uc_init_early(>->uc); 47 intel_rps_init_early(>->rps); 48 } 49 50 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 51 { 52 gt->i915 = i915; 53 gt->uncore = &i915->uncore; 54 } 55 56 int intel_gt_probe_lmem(struct intel_gt *gt) 57 { 58 struct drm_i915_private *i915 = gt->i915; 59 struct intel_memory_region *mem; 60 int id; 61 int err; 62 63 mem = intel_gt_setup_lmem(gt); 64 if (mem == ERR_PTR(-ENODEV)) 65 mem = intel_gt_setup_fake_lmem(gt); 66 if (IS_ERR(mem)) { 67 err = PTR_ERR(mem); 68 if (err == -ENODEV) 69 return 0; 70 71 drm_err(&i915->drm, 72 "Failed to setup region(%d) type=%d\n", 73 err, INTEL_MEMORY_LOCAL); 74 return err; 75 } 76 77 id = INTEL_REGION_LMEM; 78 79 mem->id = id; 80 81 intel_memory_region_set_name(mem, "local%u", mem->instance); 82 83 GEM_BUG_ON(!HAS_REGION(i915, id)); 84 GEM_BUG_ON(i915->mm.regions[id]); 85 i915->mm.regions[id] = mem; 86 87 return 0; 88 } 89 90 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt) 91 { 92 gt->ggtt = ggtt; 93 } 94 95 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 96 { 0x00B100, 0x00B3FF }, 97 {}, 98 }; 99 100 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 101 { 0x004000, 0x004AFF }, 102 { 0x00C800, 0x00CFFF }, 103 { 0x00DD00, 0x00DDFF }, 104 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 105 {}, 106 }; 107 108 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 109 { 0x00B000, 0x00B0FF }, 110 { 0x00D800, 0x00D8FF }, 111 {}, 112 }; 113 114 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 115 { 0x00B000, 0x00B0FF }, 116 { 0x00D880, 0x00D8FF }, 117 {}, 118 }; 119 120 static u16 slicemask(struct intel_gt *gt, int count) 121 { 122 u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); 123 124 return intel_slicemask_from_dssmask(dss_mask, count); 125 } 126 127 int intel_gt_init_mmio(struct intel_gt *gt) 128 { 129 struct drm_i915_private *i915 = gt->i915; 130 131 intel_gt_init_clock_frequency(gt); 132 133 intel_uc_init_mmio(>->uc); 134 intel_sseu_info_init(gt); 135 136 /* 137 * An mslice is unavailable only if both the meml3 for the slice is 138 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 139 */ 140 if (HAS_MSLICES(i915)) 141 gt->info.mslice_mask = 142 slicemask(gt, GEN_DSS_PER_MSLICE) | 143 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 144 GEN12_MEML3_EN_MASK); 145 146 if (IS_DG2(i915)) { 147 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 148 gt->steering_table[LNCF] = dg2_lncf_steering_table; 149 } else if (IS_XEHPSDV(i915)) { 150 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 151 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 152 } else if (GRAPHICS_VER(i915) >= 11 && 153 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 154 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 155 gt->info.l3bank_mask = 156 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 157 GEN10_L3BANK_MASK; 158 } else if (HAS_MSLICES(i915)) { 159 MISSING_CASE(INTEL_INFO(i915)->platform); 160 } 161 162 return intel_engines_init_mmio(gt); 163 } 164 165 static void init_unused_ring(struct intel_gt *gt, u32 base) 166 { 167 struct intel_uncore *uncore = gt->uncore; 168 169 intel_uncore_write(uncore, RING_CTL(base), 0); 170 intel_uncore_write(uncore, RING_HEAD(base), 0); 171 intel_uncore_write(uncore, RING_TAIL(base), 0); 172 intel_uncore_write(uncore, RING_START(base), 0); 173 } 174 175 static void init_unused_rings(struct intel_gt *gt) 176 { 177 struct drm_i915_private *i915 = gt->i915; 178 179 if (IS_I830(i915)) { 180 init_unused_ring(gt, PRB1_BASE); 181 init_unused_ring(gt, SRB0_BASE); 182 init_unused_ring(gt, SRB1_BASE); 183 init_unused_ring(gt, SRB2_BASE); 184 init_unused_ring(gt, SRB3_BASE); 185 } else if (GRAPHICS_VER(i915) == 2) { 186 init_unused_ring(gt, SRB0_BASE); 187 init_unused_ring(gt, SRB1_BASE); 188 } else if (GRAPHICS_VER(i915) == 3) { 189 init_unused_ring(gt, PRB1_BASE); 190 init_unused_ring(gt, PRB2_BASE); 191 } 192 } 193 194 int intel_gt_init_hw(struct intel_gt *gt) 195 { 196 struct drm_i915_private *i915 = gt->i915; 197 struct intel_uncore *uncore = gt->uncore; 198 int ret; 199 200 gt->last_init_time = ktime_get(); 201 202 /* Double layer security blanket, see i915_gem_init() */ 203 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 204 205 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 206 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 207 208 if (IS_HASWELL(i915)) 209 intel_uncore_write(uncore, 210 MI_PREDICATE_RESULT_2, 211 IS_HSW_GT3(i915) ? 212 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 213 214 /* Apply the GT workarounds... */ 215 intel_gt_apply_workarounds(gt); 216 /* ...and determine whether they are sticking. */ 217 intel_gt_verify_workarounds(gt, "init"); 218 219 intel_gt_init_swizzling(gt); 220 221 /* 222 * At least 830 can leave some of the unused rings 223 * "active" (ie. head != tail) after resume which 224 * will prevent c3 entry. Makes sure all unused rings 225 * are totally idle. 226 */ 227 init_unused_rings(gt); 228 229 ret = i915_ppgtt_init_hw(gt); 230 if (ret) { 231 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 232 goto out; 233 } 234 235 /* We can't enable contexts until all firmware is loaded */ 236 ret = intel_uc_init_hw(>->uc); 237 if (ret) { 238 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 239 goto out; 240 } 241 242 intel_mocs_init(gt); 243 244 out: 245 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 246 return ret; 247 } 248 249 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 250 { 251 intel_uncore_rmw(uncore, reg, 0, set); 252 } 253 254 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 255 { 256 intel_uncore_rmw(uncore, reg, clr, 0); 257 } 258 259 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 260 { 261 intel_uncore_rmw(uncore, reg, 0, 0); 262 } 263 264 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 265 { 266 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 267 GEN6_RING_FAULT_REG_POSTING_READ(engine); 268 } 269 270 void 271 intel_gt_clear_error_registers(struct intel_gt *gt, 272 intel_engine_mask_t engine_mask) 273 { 274 struct drm_i915_private *i915 = gt->i915; 275 struct intel_uncore *uncore = gt->uncore; 276 u32 eir; 277 278 if (GRAPHICS_VER(i915) != 2) 279 clear_register(uncore, PGTBL_ER); 280 281 if (GRAPHICS_VER(i915) < 4) 282 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 283 else 284 clear_register(uncore, IPEIR_I965); 285 286 clear_register(uncore, EIR); 287 eir = intel_uncore_read(uncore, EIR); 288 if (eir) { 289 /* 290 * some errors might have become stuck, 291 * mask them. 292 */ 293 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 294 rmw_set(uncore, EMR, eir); 295 intel_uncore_write(uncore, GEN2_IIR, 296 I915_MASTER_ERROR_INTERRUPT); 297 } 298 299 if (GRAPHICS_VER(i915) >= 12) { 300 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 301 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 302 } else if (GRAPHICS_VER(i915) >= 8) { 303 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 304 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 305 } else if (GRAPHICS_VER(i915) >= 6) { 306 struct intel_engine_cs *engine; 307 enum intel_engine_id id; 308 309 for_each_engine_masked(engine, gt, engine_mask, id) 310 gen6_clear_engine_error_register(engine); 311 } 312 } 313 314 static void gen6_check_faults(struct intel_gt *gt) 315 { 316 struct intel_engine_cs *engine; 317 enum intel_engine_id id; 318 u32 fault; 319 320 for_each_engine(engine, gt, id) { 321 fault = GEN6_RING_FAULT_REG_READ(engine); 322 if (fault & RING_FAULT_VALID) { 323 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 324 "\tAddr: 0x%08lx\n" 325 "\tAddress space: %s\n" 326 "\tSource ID: %d\n" 327 "\tType: %d\n", 328 fault & PAGE_MASK, 329 fault & RING_FAULT_GTTSEL_MASK ? 330 "GGTT" : "PPGTT", 331 RING_FAULT_SRCID(fault), 332 RING_FAULT_FAULT_TYPE(fault)); 333 } 334 } 335 } 336 337 static void gen8_check_faults(struct intel_gt *gt) 338 { 339 struct intel_uncore *uncore = gt->uncore; 340 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 341 u32 fault; 342 343 if (GRAPHICS_VER(gt->i915) >= 12) { 344 fault_reg = GEN12_RING_FAULT_REG; 345 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 346 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 347 } else { 348 fault_reg = GEN8_RING_FAULT_REG; 349 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 350 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 351 } 352 353 fault = intel_uncore_read(uncore, fault_reg); 354 if (fault & RING_FAULT_VALID) { 355 u32 fault_data0, fault_data1; 356 u64 fault_addr; 357 358 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 359 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 360 361 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 362 ((u64)fault_data0 << 12); 363 364 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 365 "\tAddr: 0x%08x_%08x\n" 366 "\tAddress space: %s\n" 367 "\tEngine ID: %d\n" 368 "\tSource ID: %d\n" 369 "\tType: %d\n", 370 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 371 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 372 GEN8_RING_FAULT_ENGINE_ID(fault), 373 RING_FAULT_SRCID(fault), 374 RING_FAULT_FAULT_TYPE(fault)); 375 } 376 } 377 378 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 379 { 380 struct drm_i915_private *i915 = gt->i915; 381 382 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 383 if (GRAPHICS_VER(i915) >= 8) 384 gen8_check_faults(gt); 385 else if (GRAPHICS_VER(i915) >= 6) 386 gen6_check_faults(gt); 387 else 388 return; 389 390 intel_gt_clear_error_registers(gt, ALL_ENGINES); 391 } 392 393 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 394 { 395 struct intel_uncore *uncore = gt->uncore; 396 intel_wakeref_t wakeref; 397 398 /* 399 * No actual flushing is required for the GTT write domain for reads 400 * from the GTT domain. Writes to it "immediately" go to main memory 401 * as far as we know, so there's no chipset flush. It also doesn't 402 * land in the GPU render cache. 403 * 404 * However, we do have to enforce the order so that all writes through 405 * the GTT land before any writes to the device, such as updates to 406 * the GATT itself. 407 * 408 * We also have to wait a bit for the writes to land from the GTT. 409 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 410 * timing. This issue has only been observed when switching quickly 411 * between GTT writes and CPU reads from inside the kernel on recent hw, 412 * and it appears to only affect discrete GTT blocks (i.e. on LLC 413 * system agents we cannot reproduce this behaviour, until Cannonlake 414 * that was!). 415 */ 416 417 wmb(); 418 419 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 420 return; 421 422 intel_gt_chipset_flush(gt); 423 424 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 425 unsigned long flags; 426 427 spin_lock_irqsave(&uncore->lock, flags); 428 intel_uncore_posting_read_fw(uncore, 429 RING_HEAD(RENDER_RING_BASE)); 430 spin_unlock_irqrestore(&uncore->lock, flags); 431 } 432 } 433 434 void intel_gt_chipset_flush(struct intel_gt *gt) 435 { 436 wmb(); 437 if (GRAPHICS_VER(gt->i915) < 6) 438 intel_gtt_chipset_flush(); 439 } 440 441 void intel_gt_driver_register(struct intel_gt *gt) 442 { 443 intel_rps_driver_register(>->rps); 444 445 intel_gt_debugfs_register(gt); 446 } 447 448 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 449 { 450 struct drm_i915_private *i915 = gt->i915; 451 struct drm_i915_gem_object *obj; 452 struct i915_vma *vma; 453 int ret; 454 455 obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE); 456 if (IS_ERR(obj)) 457 obj = i915_gem_object_create_stolen(i915, size); 458 if (IS_ERR(obj)) 459 obj = i915_gem_object_create_internal(i915, size); 460 if (IS_ERR(obj)) { 461 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 462 return PTR_ERR(obj); 463 } 464 465 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 466 if (IS_ERR(vma)) { 467 ret = PTR_ERR(vma); 468 goto err_unref; 469 } 470 471 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 472 if (ret) 473 goto err_unref; 474 475 gt->scratch = i915_vma_make_unshrinkable(vma); 476 477 return 0; 478 479 err_unref: 480 i915_gem_object_put(obj); 481 return ret; 482 } 483 484 static void intel_gt_fini_scratch(struct intel_gt *gt) 485 { 486 i915_vma_unpin_and_release(>->scratch, 0); 487 } 488 489 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 490 { 491 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 492 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 493 else 494 return i915_vm_get(>->ggtt->vm); 495 } 496 497 static int __engines_record_defaults(struct intel_gt *gt) 498 { 499 struct i915_request *requests[I915_NUM_ENGINES] = {}; 500 struct intel_engine_cs *engine; 501 enum intel_engine_id id; 502 int err = 0; 503 504 /* 505 * As we reset the gpu during very early sanitisation, the current 506 * register state on the GPU should reflect its defaults values. 507 * We load a context onto the hw (with restore-inhibit), then switch 508 * over to a second context to save that default register state. We 509 * can then prime every new context with that state so they all start 510 * from the same default HW values. 511 */ 512 513 for_each_engine(engine, gt, id) { 514 struct intel_renderstate so; 515 struct intel_context *ce; 516 struct i915_request *rq; 517 518 /* We must be able to switch to something! */ 519 GEM_BUG_ON(!engine->kernel_context); 520 521 ce = intel_context_create(engine); 522 if (IS_ERR(ce)) { 523 err = PTR_ERR(ce); 524 goto out; 525 } 526 527 err = intel_renderstate_init(&so, ce); 528 if (err) 529 goto err; 530 531 rq = i915_request_create(ce); 532 if (IS_ERR(rq)) { 533 err = PTR_ERR(rq); 534 goto err_fini; 535 } 536 537 err = intel_engine_emit_ctx_wa(rq); 538 if (err) 539 goto err_rq; 540 541 err = intel_renderstate_emit(&so, rq); 542 if (err) 543 goto err_rq; 544 545 err_rq: 546 requests[id] = i915_request_get(rq); 547 i915_request_add(rq); 548 err_fini: 549 intel_renderstate_fini(&so, ce); 550 err: 551 if (err) { 552 intel_context_put(ce); 553 goto out; 554 } 555 } 556 557 /* Flush the default context image to memory, and enable powersaving. */ 558 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 559 err = -EIO; 560 goto out; 561 } 562 563 for (id = 0; id < ARRAY_SIZE(requests); id++) { 564 struct i915_request *rq; 565 struct file *state; 566 567 rq = requests[id]; 568 if (!rq) 569 continue; 570 571 if (rq->fence.error) { 572 err = -EIO; 573 goto out; 574 } 575 576 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 577 if (!rq->context->state) 578 continue; 579 580 /* Keep a copy of the state's backing pages; free the obj */ 581 state = shmem_create_from_object(rq->context->state->obj); 582 if (IS_ERR(state)) { 583 err = PTR_ERR(state); 584 goto out; 585 } 586 rq->engine->default_state = state; 587 } 588 589 out: 590 /* 591 * If we have to abandon now, we expect the engines to be idle 592 * and ready to be torn-down. The quickest way we can accomplish 593 * this is by declaring ourselves wedged. 594 */ 595 if (err) 596 intel_gt_set_wedged(gt); 597 598 for (id = 0; id < ARRAY_SIZE(requests); id++) { 599 struct intel_context *ce; 600 struct i915_request *rq; 601 602 rq = requests[id]; 603 if (!rq) 604 continue; 605 606 ce = rq->context; 607 i915_request_put(rq); 608 intel_context_put(ce); 609 } 610 return err; 611 } 612 613 static int __engines_verify_workarounds(struct intel_gt *gt) 614 { 615 struct intel_engine_cs *engine; 616 enum intel_engine_id id; 617 int err = 0; 618 619 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 620 return 0; 621 622 for_each_engine(engine, gt, id) { 623 if (intel_engine_verify_workarounds(engine, "load")) 624 err = -EIO; 625 } 626 627 /* Flush and restore the kernel context for safety */ 628 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 629 err = -EIO; 630 631 return err; 632 } 633 634 static void __intel_gt_disable(struct intel_gt *gt) 635 { 636 intel_gt_set_wedged_on_fini(gt); 637 638 intel_gt_suspend_prepare(gt); 639 intel_gt_suspend_late(gt); 640 641 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 642 } 643 644 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 645 { 646 long remaining_timeout; 647 648 /* If the device is asleep, we have no requests outstanding */ 649 if (!intel_gt_pm_is_awake(gt)) 650 return 0; 651 652 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 653 &remaining_timeout)) > 0) { 654 cond_resched(); 655 if (signal_pending(current)) 656 return -EINTR; 657 } 658 659 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 660 remaining_timeout); 661 } 662 663 int intel_gt_init(struct intel_gt *gt) 664 { 665 int err; 666 667 err = i915_inject_probe_error(gt->i915, -ENODEV); 668 if (err) 669 return err; 670 671 intel_gt_init_workarounds(gt); 672 673 /* 674 * This is just a security blanket to placate dragons. 675 * On some systems, we very sporadically observe that the first TLBs 676 * used by the CS may be stale, despite us poking the TLB reset. If 677 * we hold the forcewake during initialisation these problems 678 * just magically go away. 679 */ 680 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 681 682 err = intel_gt_init_scratch(gt, 683 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 684 if (err) 685 goto out_fw; 686 687 intel_gt_pm_init(gt); 688 689 gt->vm = kernel_vm(gt); 690 if (!gt->vm) { 691 err = -ENOMEM; 692 goto err_pm; 693 } 694 695 intel_set_mocs_index(gt); 696 697 err = intel_engines_init(gt); 698 if (err) 699 goto err_engines; 700 701 err = intel_uc_init(>->uc); 702 if (err) 703 goto err_engines; 704 705 err = intel_gt_resume(gt); 706 if (err) 707 goto err_uc_init; 708 709 err = __engines_record_defaults(gt); 710 if (err) 711 goto err_gt; 712 713 err = __engines_verify_workarounds(gt); 714 if (err) 715 goto err_gt; 716 717 intel_uc_init_late(>->uc); 718 719 err = i915_inject_probe_error(gt->i915, -EIO); 720 if (err) 721 goto err_gt; 722 723 intel_migrate_init(>->migrate, gt); 724 725 intel_pxp_init(>->pxp); 726 727 goto out_fw; 728 err_gt: 729 __intel_gt_disable(gt); 730 intel_uc_fini_hw(>->uc); 731 err_uc_init: 732 intel_uc_fini(>->uc); 733 err_engines: 734 intel_engines_release(gt); 735 i915_vm_put(fetch_and_zero(>->vm)); 736 err_pm: 737 intel_gt_pm_fini(gt); 738 intel_gt_fini_scratch(gt); 739 out_fw: 740 if (err) 741 intel_gt_set_wedged_on_init(gt); 742 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 743 return err; 744 } 745 746 void intel_gt_driver_remove(struct intel_gt *gt) 747 { 748 __intel_gt_disable(gt); 749 750 intel_migrate_fini(>->migrate); 751 intel_uc_driver_remove(>->uc); 752 753 intel_engines_release(gt); 754 755 intel_gt_flush_buffer_pool(gt); 756 } 757 758 void intel_gt_driver_unregister(struct intel_gt *gt) 759 { 760 intel_wakeref_t wakeref; 761 762 intel_rps_driver_unregister(>->rps); 763 764 intel_pxp_fini(>->pxp); 765 766 /* 767 * Upon unregistering the device to prevent any new users, cancel 768 * all in-flight requests so that we can quickly unbind the active 769 * resources. 770 */ 771 intel_gt_set_wedged_on_fini(gt); 772 773 /* Scrub all HW state upon release */ 774 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 775 __intel_gt_reset(gt, ALL_ENGINES); 776 } 777 778 void intel_gt_driver_release(struct intel_gt *gt) 779 { 780 struct i915_address_space *vm; 781 782 vm = fetch_and_zero(>->vm); 783 if (vm) /* FIXME being called twice on error paths :( */ 784 i915_vm_put(vm); 785 786 intel_wa_list_free(>->wa_list); 787 intel_gt_pm_fini(gt); 788 intel_gt_fini_scratch(gt); 789 intel_gt_fini_buffer_pool(gt); 790 } 791 792 void intel_gt_driver_late_release(struct intel_gt *gt) 793 { 794 /* We need to wait for inflight RCU frees to release their grip */ 795 rcu_barrier(); 796 797 intel_uc_driver_late_release(>->uc); 798 intel_gt_fini_requests(gt); 799 intel_gt_fini_reset(gt); 800 intel_gt_fini_timelines(gt); 801 intel_engines_free(gt); 802 } 803 804 /** 805 * intel_gt_reg_needs_read_steering - determine whether a register read 806 * requires explicit steering 807 * @gt: GT structure 808 * @reg: the register to check steering requirements for 809 * @type: type of multicast steering to check 810 * 811 * Determines whether @reg needs explicit steering of a specific type for 812 * reads. 813 * 814 * Returns false if @reg does not belong to a register range of the given 815 * steering type, or if the default (subslice-based) steering IDs are suitable 816 * for @type steering too. 817 */ 818 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, 819 i915_reg_t reg, 820 enum intel_steering_type type) 821 { 822 const u32 offset = i915_mmio_reg_offset(reg); 823 const struct intel_mmio_range *entry; 824 825 if (likely(!intel_gt_needs_read_steering(gt, type))) 826 return false; 827 828 for (entry = gt->steering_table[type]; entry->end; entry++) { 829 if (offset >= entry->start && offset <= entry->end) 830 return true; 831 } 832 833 return false; 834 } 835 836 /** 837 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering 838 * @gt: GT structure 839 * @type: multicast register type 840 * @sliceid: Slice ID returned 841 * @subsliceid: Subslice ID returned 842 * 843 * Determines sliceid and subsliceid values that will steer reads 844 * of a specific multicast register class to a valid value. 845 */ 846 static void intel_gt_get_valid_steering(struct intel_gt *gt, 847 enum intel_steering_type type, 848 u8 *sliceid, u8 *subsliceid) 849 { 850 switch (type) { 851 case L3BANK: 852 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ 853 854 *sliceid = 0; /* unused */ 855 *subsliceid = __ffs(gt->info.l3bank_mask); 856 break; 857 case MSLICE: 858 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 859 860 *sliceid = __ffs(gt->info.mslice_mask); 861 *subsliceid = 0; /* unused */ 862 break; 863 case LNCF: 864 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 865 866 /* 867 * An LNCF is always present if its mslice is present, so we 868 * can safely just steer to LNCF 0 in all cases. 869 */ 870 *sliceid = __ffs(gt->info.mslice_mask) << 1; 871 *subsliceid = 0; /* unused */ 872 break; 873 default: 874 MISSING_CASE(type); 875 *sliceid = 0; 876 *subsliceid = 0; 877 } 878 } 879 880 /** 881 * intel_gt_read_register_fw - reads a GT register with support for multicast 882 * @gt: GT structure 883 * @reg: register to read 884 * 885 * This function will read a GT register. If the register is a multicast 886 * register, the read will be steered to a valid instance (i.e., one that 887 * isn't fused off or powered down by power gating). 888 * 889 * Returns the value from a valid instance of @reg. 890 */ 891 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) 892 { 893 int type; 894 u8 sliceid, subsliceid; 895 896 for (type = 0; type < NUM_STEERING_TYPES; type++) { 897 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 898 intel_gt_get_valid_steering(gt, type, &sliceid, 899 &subsliceid); 900 return intel_uncore_read_with_mcr_steering_fw(gt->uncore, 901 reg, 902 sliceid, 903 subsliceid); 904 } 905 } 906 907 return intel_uncore_read_fw(gt->uncore, reg); 908 } 909 910 void intel_gt_info_print(const struct intel_gt_info *info, 911 struct drm_printer *p) 912 { 913 drm_printf(p, "available engines: %x\n", info->engine_mask); 914 915 intel_sseu_dump(&info->sseu, p); 916 } 917 918 struct reg_and_bit { 919 i915_reg_t reg; 920 u32 bit; 921 }; 922 923 static struct reg_and_bit 924 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, 925 const i915_reg_t *regs, const unsigned int num) 926 { 927 const unsigned int class = engine->class; 928 struct reg_and_bit rb = { }; 929 930 if (drm_WARN_ON_ONCE(&engine->i915->drm, 931 class >= num || !regs[class].reg)) 932 return rb; 933 934 rb.reg = regs[class]; 935 if (gen8 && class == VIDEO_DECODE_CLASS) 936 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ 937 else 938 rb.bit = engine->instance; 939 940 rb.bit = BIT(rb.bit); 941 942 return rb; 943 } 944 945 void intel_gt_invalidate_tlbs(struct intel_gt *gt) 946 { 947 static const i915_reg_t gen8_regs[] = { 948 [RENDER_CLASS] = GEN8_RTCR, 949 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ 950 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, 951 [COPY_ENGINE_CLASS] = GEN8_BTCR, 952 }; 953 static const i915_reg_t gen12_regs[] = { 954 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, 955 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, 956 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, 957 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, 958 }; 959 struct drm_i915_private *i915 = gt->i915; 960 struct intel_uncore *uncore = gt->uncore; 961 struct intel_engine_cs *engine; 962 enum intel_engine_id id; 963 const i915_reg_t *regs; 964 unsigned int num = 0; 965 966 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) 967 return; 968 969 if (GRAPHICS_VER(i915) == 12) { 970 regs = gen12_regs; 971 num = ARRAY_SIZE(gen12_regs); 972 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 973 regs = gen8_regs; 974 num = ARRAY_SIZE(gen8_regs); 975 } else if (GRAPHICS_VER(i915) < 8) { 976 return; 977 } 978 979 if (drm_WARN_ONCE(&i915->drm, !num, 980 "Platform does not implement TLB invalidation!")) 981 return; 982 983 GEM_TRACE("\n"); 984 985 assert_rpm_wakelock_held(&i915->runtime_pm); 986 987 mutex_lock(>->tlb_invalidate_lock); 988 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 989 990 for_each_engine(engine, gt, id) { 991 /* 992 * HW architecture suggest typical invalidation time at 40us, 993 * with pessimistic cases up to 100us and a recommendation to 994 * cap at 1ms. We go a bit higher just in case. 995 */ 996 const unsigned int timeout_us = 100; 997 const unsigned int timeout_ms = 4; 998 struct reg_and_bit rb; 999 1000 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1001 if (!i915_mmio_reg_offset(rb.reg)) 1002 continue; 1003 1004 intel_uncore_write_fw(uncore, rb.reg, rb.bit); 1005 if (__intel_wait_for_register_fw(uncore, 1006 rb.reg, rb.bit, 0, 1007 timeout_us, timeout_ms, 1008 NULL)) 1009 drm_err_ratelimited(>->i915->drm, 1010 "%s TLB invalidation did not complete in %ums!\n", 1011 engine->name, timeout_ms); 1012 } 1013 1014 /* 1015 * Use delayed put since a) we mostly expect a flurry of TLB 1016 * invalidations so it is good to avoid paying the forcewake cost and 1017 * b) it works around a bug in Icelake which cannot cope with too rapid 1018 * transitions. 1019 */ 1020 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); 1021 mutex_unlock(>->tlb_invalidate_lock); 1022 } 1023