1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_managed.h> 7 #include <drm/intel-gtt.h> 8 9 #include "gem/i915_gem_internal.h" 10 #include "gem/i915_gem_lmem.h" 11 #include "pxp/intel_pxp.h" 12 13 #include "i915_drv.h" 14 #include "intel_context.h" 15 #include "intel_engine_regs.h" 16 #include "intel_gt.h" 17 #include "intel_gt_buffer_pool.h" 18 #include "intel_gt_clock_utils.h" 19 #include "intel_gt_debugfs.h" 20 #include "intel_gt_pm.h" 21 #include "intel_gt_regs.h" 22 #include "intel_gt_requests.h" 23 #include "intel_migrate.h" 24 #include "intel_mocs.h" 25 #include "intel_pm.h" 26 #include "intel_rc6.h" 27 #include "intel_renderstate.h" 28 #include "intel_rps.h" 29 #include "intel_uncore.h" 30 #include "shmem_utils.h" 31 32 void __intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 33 { 34 spin_lock_init(>->irq_lock); 35 36 mutex_init(>->tlb_invalidate_lock); 37 38 INIT_LIST_HEAD(>->closed_vma); 39 spin_lock_init(>->closed_lock); 40 41 init_llist_head(>->watchdog.list); 42 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 43 44 intel_gt_init_buffer_pool(gt); 45 intel_gt_init_reset(gt); 46 intel_gt_init_requests(gt); 47 intel_gt_init_timelines(gt); 48 intel_gt_pm_init_early(gt); 49 50 intel_uc_init_early(>->uc); 51 intel_rps_init_early(>->rps); 52 } 53 54 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 55 { 56 gt->i915 = i915; 57 gt->uncore = &i915->uncore; 58 } 59 60 int intel_gt_probe_lmem(struct intel_gt *gt) 61 { 62 struct drm_i915_private *i915 = gt->i915; 63 struct intel_memory_region *mem; 64 int id; 65 int err; 66 67 mem = intel_gt_setup_lmem(gt); 68 if (IS_ERR(mem)) { 69 err = PTR_ERR(mem); 70 if (err == -ENODEV) 71 return 0; 72 73 drm_err(&i915->drm, 74 "Failed to setup region(%d) type=%d\n", 75 err, INTEL_MEMORY_LOCAL); 76 return err; 77 } 78 79 id = INTEL_REGION_LMEM; 80 81 mem->id = id; 82 83 intel_memory_region_set_name(mem, "local%u", mem->instance); 84 85 GEM_BUG_ON(!HAS_REGION(i915, id)); 86 GEM_BUG_ON(i915->mm.regions[id]); 87 i915->mm.regions[id] = mem; 88 89 return 0; 90 } 91 92 int intel_gt_assign_ggtt(struct intel_gt *gt) 93 { 94 gt->ggtt = drmm_kzalloc(>->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL); 95 96 return gt->ggtt ? 0 : -ENOMEM; 97 } 98 99 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 100 { 0x00B100, 0x00B3FF }, 101 {}, 102 }; 103 104 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 105 { 0x004000, 0x004AFF }, 106 { 0x00C800, 0x00CFFF }, 107 { 0x00DD00, 0x00DDFF }, 108 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 109 {}, 110 }; 111 112 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 113 { 0x00B000, 0x00B0FF }, 114 { 0x00D800, 0x00D8FF }, 115 {}, 116 }; 117 118 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 119 { 0x00B000, 0x00B0FF }, 120 { 0x00D880, 0x00D8FF }, 121 {}, 122 }; 123 124 static u16 slicemask(struct intel_gt *gt, int count) 125 { 126 u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); 127 128 return intel_slicemask_from_dssmask(dss_mask, count); 129 } 130 131 int intel_gt_init_mmio(struct intel_gt *gt) 132 { 133 struct drm_i915_private *i915 = gt->i915; 134 135 intel_gt_init_clock_frequency(gt); 136 137 intel_uc_init_mmio(>->uc); 138 intel_sseu_info_init(gt); 139 140 /* 141 * An mslice is unavailable only if both the meml3 for the slice is 142 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 143 */ 144 if (HAS_MSLICES(i915)) 145 gt->info.mslice_mask = 146 slicemask(gt, GEN_DSS_PER_MSLICE) | 147 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 148 GEN12_MEML3_EN_MASK); 149 150 if (IS_DG2(i915)) { 151 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 152 gt->steering_table[LNCF] = dg2_lncf_steering_table; 153 } else if (IS_XEHPSDV(i915)) { 154 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 155 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 156 } else if (GRAPHICS_VER(i915) >= 11 && 157 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 158 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 159 gt->info.l3bank_mask = 160 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 161 GEN10_L3BANK_MASK; 162 } else if (HAS_MSLICES(i915)) { 163 MISSING_CASE(INTEL_INFO(i915)->platform); 164 } 165 166 return intel_engines_init_mmio(gt); 167 } 168 169 static void init_unused_ring(struct intel_gt *gt, u32 base) 170 { 171 struct intel_uncore *uncore = gt->uncore; 172 173 intel_uncore_write(uncore, RING_CTL(base), 0); 174 intel_uncore_write(uncore, RING_HEAD(base), 0); 175 intel_uncore_write(uncore, RING_TAIL(base), 0); 176 intel_uncore_write(uncore, RING_START(base), 0); 177 } 178 179 static void init_unused_rings(struct intel_gt *gt) 180 { 181 struct drm_i915_private *i915 = gt->i915; 182 183 if (IS_I830(i915)) { 184 init_unused_ring(gt, PRB1_BASE); 185 init_unused_ring(gt, SRB0_BASE); 186 init_unused_ring(gt, SRB1_BASE); 187 init_unused_ring(gt, SRB2_BASE); 188 init_unused_ring(gt, SRB3_BASE); 189 } else if (GRAPHICS_VER(i915) == 2) { 190 init_unused_ring(gt, SRB0_BASE); 191 init_unused_ring(gt, SRB1_BASE); 192 } else if (GRAPHICS_VER(i915) == 3) { 193 init_unused_ring(gt, PRB1_BASE); 194 init_unused_ring(gt, PRB2_BASE); 195 } 196 } 197 198 int intel_gt_init_hw(struct intel_gt *gt) 199 { 200 struct drm_i915_private *i915 = gt->i915; 201 struct intel_uncore *uncore = gt->uncore; 202 int ret; 203 204 gt->last_init_time = ktime_get(); 205 206 /* Double layer security blanket, see i915_gem_init() */ 207 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 208 209 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 210 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 211 212 if (IS_HASWELL(i915)) 213 intel_uncore_write(uncore, 214 HSW_MI_PREDICATE_RESULT_2, 215 IS_HSW_GT3(i915) ? 216 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 217 218 /* Apply the GT workarounds... */ 219 intel_gt_apply_workarounds(gt); 220 /* ...and determine whether they are sticking. */ 221 intel_gt_verify_workarounds(gt, "init"); 222 223 intel_gt_init_swizzling(gt); 224 225 /* 226 * At least 830 can leave some of the unused rings 227 * "active" (ie. head != tail) after resume which 228 * will prevent c3 entry. Makes sure all unused rings 229 * are totally idle. 230 */ 231 init_unused_rings(gt); 232 233 ret = i915_ppgtt_init_hw(gt); 234 if (ret) { 235 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 236 goto out; 237 } 238 239 /* We can't enable contexts until all firmware is loaded */ 240 ret = intel_uc_init_hw(>->uc); 241 if (ret) { 242 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 243 goto out; 244 } 245 246 intel_mocs_init(gt); 247 248 out: 249 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 250 return ret; 251 } 252 253 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 254 { 255 intel_uncore_rmw(uncore, reg, 0, set); 256 } 257 258 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 259 { 260 intel_uncore_rmw(uncore, reg, clr, 0); 261 } 262 263 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 264 { 265 intel_uncore_rmw(uncore, reg, 0, 0); 266 } 267 268 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 269 { 270 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 271 GEN6_RING_FAULT_REG_POSTING_READ(engine); 272 } 273 274 void 275 intel_gt_clear_error_registers(struct intel_gt *gt, 276 intel_engine_mask_t engine_mask) 277 { 278 struct drm_i915_private *i915 = gt->i915; 279 struct intel_uncore *uncore = gt->uncore; 280 u32 eir; 281 282 if (GRAPHICS_VER(i915) != 2) 283 clear_register(uncore, PGTBL_ER); 284 285 if (GRAPHICS_VER(i915) < 4) 286 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 287 else 288 clear_register(uncore, IPEIR_I965); 289 290 clear_register(uncore, EIR); 291 eir = intel_uncore_read(uncore, EIR); 292 if (eir) { 293 /* 294 * some errors might have become stuck, 295 * mask them. 296 */ 297 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 298 rmw_set(uncore, EMR, eir); 299 intel_uncore_write(uncore, GEN2_IIR, 300 I915_MASTER_ERROR_INTERRUPT); 301 } 302 303 if (GRAPHICS_VER(i915) >= 12) { 304 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 305 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 306 } else if (GRAPHICS_VER(i915) >= 8) { 307 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 308 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 309 } else if (GRAPHICS_VER(i915) >= 6) { 310 struct intel_engine_cs *engine; 311 enum intel_engine_id id; 312 313 for_each_engine_masked(engine, gt, engine_mask, id) 314 gen6_clear_engine_error_register(engine); 315 } 316 } 317 318 static void gen6_check_faults(struct intel_gt *gt) 319 { 320 struct intel_engine_cs *engine; 321 enum intel_engine_id id; 322 u32 fault; 323 324 for_each_engine(engine, gt, id) { 325 fault = GEN6_RING_FAULT_REG_READ(engine); 326 if (fault & RING_FAULT_VALID) { 327 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 328 "\tAddr: 0x%08lx\n" 329 "\tAddress space: %s\n" 330 "\tSource ID: %d\n" 331 "\tType: %d\n", 332 fault & PAGE_MASK, 333 fault & RING_FAULT_GTTSEL_MASK ? 334 "GGTT" : "PPGTT", 335 RING_FAULT_SRCID(fault), 336 RING_FAULT_FAULT_TYPE(fault)); 337 } 338 } 339 } 340 341 static void gen8_check_faults(struct intel_gt *gt) 342 { 343 struct intel_uncore *uncore = gt->uncore; 344 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 345 u32 fault; 346 347 if (GRAPHICS_VER(gt->i915) >= 12) { 348 fault_reg = GEN12_RING_FAULT_REG; 349 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 350 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 351 } else { 352 fault_reg = GEN8_RING_FAULT_REG; 353 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 354 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 355 } 356 357 fault = intel_uncore_read(uncore, fault_reg); 358 if (fault & RING_FAULT_VALID) { 359 u32 fault_data0, fault_data1; 360 u64 fault_addr; 361 362 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 363 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 364 365 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 366 ((u64)fault_data0 << 12); 367 368 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 369 "\tAddr: 0x%08x_%08x\n" 370 "\tAddress space: %s\n" 371 "\tEngine ID: %d\n" 372 "\tSource ID: %d\n" 373 "\tType: %d\n", 374 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 375 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 376 GEN8_RING_FAULT_ENGINE_ID(fault), 377 RING_FAULT_SRCID(fault), 378 RING_FAULT_FAULT_TYPE(fault)); 379 } 380 } 381 382 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 383 { 384 struct drm_i915_private *i915 = gt->i915; 385 386 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 387 if (GRAPHICS_VER(i915) >= 8) 388 gen8_check_faults(gt); 389 else if (GRAPHICS_VER(i915) >= 6) 390 gen6_check_faults(gt); 391 else 392 return; 393 394 intel_gt_clear_error_registers(gt, ALL_ENGINES); 395 } 396 397 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 398 { 399 struct intel_uncore *uncore = gt->uncore; 400 intel_wakeref_t wakeref; 401 402 /* 403 * No actual flushing is required for the GTT write domain for reads 404 * from the GTT domain. Writes to it "immediately" go to main memory 405 * as far as we know, so there's no chipset flush. It also doesn't 406 * land in the GPU render cache. 407 * 408 * However, we do have to enforce the order so that all writes through 409 * the GTT land before any writes to the device, such as updates to 410 * the GATT itself. 411 * 412 * We also have to wait a bit for the writes to land from the GTT. 413 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 414 * timing. This issue has only been observed when switching quickly 415 * between GTT writes and CPU reads from inside the kernel on recent hw, 416 * and it appears to only affect discrete GTT blocks (i.e. on LLC 417 * system agents we cannot reproduce this behaviour, until Cannonlake 418 * that was!). 419 */ 420 421 wmb(); 422 423 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 424 return; 425 426 intel_gt_chipset_flush(gt); 427 428 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 429 unsigned long flags; 430 431 spin_lock_irqsave(&uncore->lock, flags); 432 intel_uncore_posting_read_fw(uncore, 433 RING_HEAD(RENDER_RING_BASE)); 434 spin_unlock_irqrestore(&uncore->lock, flags); 435 } 436 } 437 438 void intel_gt_chipset_flush(struct intel_gt *gt) 439 { 440 wmb(); 441 if (GRAPHICS_VER(gt->i915) < 6) 442 intel_gtt_chipset_flush(); 443 } 444 445 void intel_gt_driver_register(struct intel_gt *gt) 446 { 447 intel_rps_driver_register(>->rps); 448 449 intel_gt_debugfs_register(gt); 450 } 451 452 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 453 { 454 struct drm_i915_private *i915 = gt->i915; 455 struct drm_i915_gem_object *obj; 456 struct i915_vma *vma; 457 int ret; 458 459 obj = i915_gem_object_create_lmem(i915, size, 460 I915_BO_ALLOC_VOLATILE | 461 I915_BO_ALLOC_GPU_ONLY); 462 if (IS_ERR(obj)) 463 obj = i915_gem_object_create_stolen(i915, size); 464 if (IS_ERR(obj)) 465 obj = i915_gem_object_create_internal(i915, size); 466 if (IS_ERR(obj)) { 467 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 468 return PTR_ERR(obj); 469 } 470 471 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 472 if (IS_ERR(vma)) { 473 ret = PTR_ERR(vma); 474 goto err_unref; 475 } 476 477 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 478 if (ret) 479 goto err_unref; 480 481 gt->scratch = i915_vma_make_unshrinkable(vma); 482 483 return 0; 484 485 err_unref: 486 i915_gem_object_put(obj); 487 return ret; 488 } 489 490 static void intel_gt_fini_scratch(struct intel_gt *gt) 491 { 492 i915_vma_unpin_and_release(>->scratch, 0); 493 } 494 495 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 496 { 497 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 498 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 499 else 500 return i915_vm_get(>->ggtt->vm); 501 } 502 503 static int __engines_record_defaults(struct intel_gt *gt) 504 { 505 struct i915_request *requests[I915_NUM_ENGINES] = {}; 506 struct intel_engine_cs *engine; 507 enum intel_engine_id id; 508 int err = 0; 509 510 /* 511 * As we reset the gpu during very early sanitisation, the current 512 * register state on the GPU should reflect its defaults values. 513 * We load a context onto the hw (with restore-inhibit), then switch 514 * over to a second context to save that default register state. We 515 * can then prime every new context with that state so they all start 516 * from the same default HW values. 517 */ 518 519 for_each_engine(engine, gt, id) { 520 struct intel_renderstate so; 521 struct intel_context *ce; 522 struct i915_request *rq; 523 524 /* We must be able to switch to something! */ 525 GEM_BUG_ON(!engine->kernel_context); 526 527 ce = intel_context_create(engine); 528 if (IS_ERR(ce)) { 529 err = PTR_ERR(ce); 530 goto out; 531 } 532 533 err = intel_renderstate_init(&so, ce); 534 if (err) 535 goto err; 536 537 rq = i915_request_create(ce); 538 if (IS_ERR(rq)) { 539 err = PTR_ERR(rq); 540 goto err_fini; 541 } 542 543 err = intel_engine_emit_ctx_wa(rq); 544 if (err) 545 goto err_rq; 546 547 err = intel_renderstate_emit(&so, rq); 548 if (err) 549 goto err_rq; 550 551 err_rq: 552 requests[id] = i915_request_get(rq); 553 i915_request_add(rq); 554 err_fini: 555 intel_renderstate_fini(&so, ce); 556 err: 557 if (err) { 558 intel_context_put(ce); 559 goto out; 560 } 561 } 562 563 /* Flush the default context image to memory, and enable powersaving. */ 564 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 565 err = -EIO; 566 goto out; 567 } 568 569 for (id = 0; id < ARRAY_SIZE(requests); id++) { 570 struct i915_request *rq; 571 struct file *state; 572 573 rq = requests[id]; 574 if (!rq) 575 continue; 576 577 if (rq->fence.error) { 578 err = -EIO; 579 goto out; 580 } 581 582 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 583 if (!rq->context->state) 584 continue; 585 586 /* Keep a copy of the state's backing pages; free the obj */ 587 state = shmem_create_from_object(rq->context->state->obj); 588 if (IS_ERR(state)) { 589 err = PTR_ERR(state); 590 goto out; 591 } 592 rq->engine->default_state = state; 593 } 594 595 out: 596 /* 597 * If we have to abandon now, we expect the engines to be idle 598 * and ready to be torn-down. The quickest way we can accomplish 599 * this is by declaring ourselves wedged. 600 */ 601 if (err) 602 intel_gt_set_wedged(gt); 603 604 for (id = 0; id < ARRAY_SIZE(requests); id++) { 605 struct intel_context *ce; 606 struct i915_request *rq; 607 608 rq = requests[id]; 609 if (!rq) 610 continue; 611 612 ce = rq->context; 613 i915_request_put(rq); 614 intel_context_put(ce); 615 } 616 return err; 617 } 618 619 static int __engines_verify_workarounds(struct intel_gt *gt) 620 { 621 struct intel_engine_cs *engine; 622 enum intel_engine_id id; 623 int err = 0; 624 625 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 626 return 0; 627 628 for_each_engine(engine, gt, id) { 629 if (intel_engine_verify_workarounds(engine, "load")) 630 err = -EIO; 631 } 632 633 /* Flush and restore the kernel context for safety */ 634 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 635 err = -EIO; 636 637 return err; 638 } 639 640 static void __intel_gt_disable(struct intel_gt *gt) 641 { 642 intel_gt_set_wedged_on_fini(gt); 643 644 intel_gt_suspend_prepare(gt); 645 intel_gt_suspend_late(gt); 646 647 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 648 } 649 650 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 651 { 652 long remaining_timeout; 653 654 /* If the device is asleep, we have no requests outstanding */ 655 if (!intel_gt_pm_is_awake(gt)) 656 return 0; 657 658 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 659 &remaining_timeout)) > 0) { 660 cond_resched(); 661 if (signal_pending(current)) 662 return -EINTR; 663 } 664 665 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 666 remaining_timeout); 667 } 668 669 int intel_gt_init(struct intel_gt *gt) 670 { 671 int err; 672 673 err = i915_inject_probe_error(gt->i915, -ENODEV); 674 if (err) 675 return err; 676 677 intel_gt_init_workarounds(gt); 678 679 /* 680 * This is just a security blanket to placate dragons. 681 * On some systems, we very sporadically observe that the first TLBs 682 * used by the CS may be stale, despite us poking the TLB reset. If 683 * we hold the forcewake during initialisation these problems 684 * just magically go away. 685 */ 686 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 687 688 err = intel_gt_init_scratch(gt, 689 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 690 if (err) 691 goto out_fw; 692 693 intel_gt_pm_init(gt); 694 695 gt->vm = kernel_vm(gt); 696 if (!gt->vm) { 697 err = -ENOMEM; 698 goto err_pm; 699 } 700 701 intel_set_mocs_index(gt); 702 703 err = intel_engines_init(gt); 704 if (err) 705 goto err_engines; 706 707 err = intel_uc_init(>->uc); 708 if (err) 709 goto err_engines; 710 711 err = intel_gt_resume(gt); 712 if (err) 713 goto err_uc_init; 714 715 err = __engines_record_defaults(gt); 716 if (err) 717 goto err_gt; 718 719 err = __engines_verify_workarounds(gt); 720 if (err) 721 goto err_gt; 722 723 intel_uc_init_late(>->uc); 724 725 err = i915_inject_probe_error(gt->i915, -EIO); 726 if (err) 727 goto err_gt; 728 729 intel_migrate_init(>->migrate, gt); 730 731 intel_pxp_init(>->pxp); 732 733 goto out_fw; 734 err_gt: 735 __intel_gt_disable(gt); 736 intel_uc_fini_hw(>->uc); 737 err_uc_init: 738 intel_uc_fini(>->uc); 739 err_engines: 740 intel_engines_release(gt); 741 i915_vm_put(fetch_and_zero(>->vm)); 742 err_pm: 743 intel_gt_pm_fini(gt); 744 intel_gt_fini_scratch(gt); 745 out_fw: 746 if (err) 747 intel_gt_set_wedged_on_init(gt); 748 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 749 return err; 750 } 751 752 void intel_gt_driver_remove(struct intel_gt *gt) 753 { 754 __intel_gt_disable(gt); 755 756 intel_migrate_fini(>->migrate); 757 intel_uc_driver_remove(>->uc); 758 759 intel_engines_release(gt); 760 761 intel_gt_flush_buffer_pool(gt); 762 } 763 764 void intel_gt_driver_unregister(struct intel_gt *gt) 765 { 766 intel_wakeref_t wakeref; 767 768 intel_rps_driver_unregister(>->rps); 769 770 intel_pxp_fini(>->pxp); 771 772 /* 773 * Upon unregistering the device to prevent any new users, cancel 774 * all in-flight requests so that we can quickly unbind the active 775 * resources. 776 */ 777 intel_gt_set_wedged_on_fini(gt); 778 779 /* Scrub all HW state upon release */ 780 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 781 __intel_gt_reset(gt, ALL_ENGINES); 782 } 783 784 void intel_gt_driver_release(struct intel_gt *gt) 785 { 786 struct i915_address_space *vm; 787 788 vm = fetch_and_zero(>->vm); 789 if (vm) /* FIXME being called twice on error paths :( */ 790 i915_vm_put(vm); 791 792 intel_wa_list_free(>->wa_list); 793 intel_gt_pm_fini(gt); 794 intel_gt_fini_scratch(gt); 795 intel_gt_fini_buffer_pool(gt); 796 } 797 798 void intel_gt_driver_late_release(struct intel_gt *gt) 799 { 800 /* We need to wait for inflight RCU frees to release their grip */ 801 rcu_barrier(); 802 803 intel_uc_driver_late_release(>->uc); 804 intel_gt_fini_requests(gt); 805 intel_gt_fini_reset(gt); 806 intel_gt_fini_timelines(gt); 807 intel_engines_free(gt); 808 } 809 810 /** 811 * intel_gt_reg_needs_read_steering - determine whether a register read 812 * requires explicit steering 813 * @gt: GT structure 814 * @reg: the register to check steering requirements for 815 * @type: type of multicast steering to check 816 * 817 * Determines whether @reg needs explicit steering of a specific type for 818 * reads. 819 * 820 * Returns false if @reg does not belong to a register range of the given 821 * steering type, or if the default (subslice-based) steering IDs are suitable 822 * for @type steering too. 823 */ 824 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, 825 i915_reg_t reg, 826 enum intel_steering_type type) 827 { 828 const u32 offset = i915_mmio_reg_offset(reg); 829 const struct intel_mmio_range *entry; 830 831 if (likely(!intel_gt_needs_read_steering(gt, type))) 832 return false; 833 834 for (entry = gt->steering_table[type]; entry->end; entry++) { 835 if (offset >= entry->start && offset <= entry->end) 836 return true; 837 } 838 839 return false; 840 } 841 842 /** 843 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering 844 * @gt: GT structure 845 * @type: multicast register type 846 * @sliceid: Slice ID returned 847 * @subsliceid: Subslice ID returned 848 * 849 * Determines sliceid and subsliceid values that will steer reads 850 * of a specific multicast register class to a valid value. 851 */ 852 static void intel_gt_get_valid_steering(struct intel_gt *gt, 853 enum intel_steering_type type, 854 u8 *sliceid, u8 *subsliceid) 855 { 856 switch (type) { 857 case L3BANK: 858 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ 859 860 *sliceid = 0; /* unused */ 861 *subsliceid = __ffs(gt->info.l3bank_mask); 862 break; 863 case MSLICE: 864 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 865 866 *sliceid = __ffs(gt->info.mslice_mask); 867 *subsliceid = 0; /* unused */ 868 break; 869 case LNCF: 870 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 871 872 /* 873 * An LNCF is always present if its mslice is present, so we 874 * can safely just steer to LNCF 0 in all cases. 875 */ 876 *sliceid = __ffs(gt->info.mslice_mask) << 1; 877 *subsliceid = 0; /* unused */ 878 break; 879 default: 880 MISSING_CASE(type); 881 *sliceid = 0; 882 *subsliceid = 0; 883 } 884 } 885 886 /** 887 * intel_gt_read_register_fw - reads a GT register with support for multicast 888 * @gt: GT structure 889 * @reg: register to read 890 * 891 * This function will read a GT register. If the register is a multicast 892 * register, the read will be steered to a valid instance (i.e., one that 893 * isn't fused off or powered down by power gating). 894 * 895 * Returns the value from a valid instance of @reg. 896 */ 897 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) 898 { 899 int type; 900 u8 sliceid, subsliceid; 901 902 for (type = 0; type < NUM_STEERING_TYPES; type++) { 903 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 904 intel_gt_get_valid_steering(gt, type, &sliceid, 905 &subsliceid); 906 return intel_uncore_read_with_mcr_steering_fw(gt->uncore, 907 reg, 908 sliceid, 909 subsliceid); 910 } 911 } 912 913 return intel_uncore_read_fw(gt->uncore, reg); 914 } 915 916 u32 intel_gt_read_register(struct intel_gt *gt, i915_reg_t reg) 917 { 918 int type; 919 u8 sliceid, subsliceid; 920 921 for (type = 0; type < NUM_STEERING_TYPES; type++) { 922 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 923 intel_gt_get_valid_steering(gt, type, &sliceid, 924 &subsliceid); 925 return intel_uncore_read_with_mcr_steering(gt->uncore, 926 reg, 927 sliceid, 928 subsliceid); 929 } 930 } 931 932 return intel_uncore_read(gt->uncore, reg); 933 } 934 935 void intel_gt_info_print(const struct intel_gt_info *info, 936 struct drm_printer *p) 937 { 938 drm_printf(p, "available engines: %x\n", info->engine_mask); 939 940 intel_sseu_dump(&info->sseu, p); 941 } 942 943 struct reg_and_bit { 944 i915_reg_t reg; 945 u32 bit; 946 }; 947 948 static struct reg_and_bit 949 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, 950 const i915_reg_t *regs, const unsigned int num) 951 { 952 const unsigned int class = engine->class; 953 struct reg_and_bit rb = { }; 954 955 if (drm_WARN_ON_ONCE(&engine->i915->drm, 956 class >= num || !regs[class].reg)) 957 return rb; 958 959 rb.reg = regs[class]; 960 if (gen8 && class == VIDEO_DECODE_CLASS) 961 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ 962 else 963 rb.bit = engine->instance; 964 965 rb.bit = BIT(rb.bit); 966 967 return rb; 968 } 969 970 void intel_gt_invalidate_tlbs(struct intel_gt *gt) 971 { 972 static const i915_reg_t gen8_regs[] = { 973 [RENDER_CLASS] = GEN8_RTCR, 974 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ 975 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, 976 [COPY_ENGINE_CLASS] = GEN8_BTCR, 977 }; 978 static const i915_reg_t gen12_regs[] = { 979 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, 980 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, 981 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, 982 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, 983 }; 984 struct drm_i915_private *i915 = gt->i915; 985 struct intel_uncore *uncore = gt->uncore; 986 struct intel_engine_cs *engine; 987 enum intel_engine_id id; 988 const i915_reg_t *regs; 989 unsigned int num = 0; 990 991 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) 992 return; 993 994 if (GRAPHICS_VER(i915) == 12) { 995 regs = gen12_regs; 996 num = ARRAY_SIZE(gen12_regs); 997 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 998 regs = gen8_regs; 999 num = ARRAY_SIZE(gen8_regs); 1000 } else if (GRAPHICS_VER(i915) < 8) { 1001 return; 1002 } 1003 1004 if (drm_WARN_ONCE(&i915->drm, !num, 1005 "Platform does not implement TLB invalidation!")) 1006 return; 1007 1008 GEM_TRACE("\n"); 1009 1010 assert_rpm_wakelock_held(&i915->runtime_pm); 1011 1012 mutex_lock(>->tlb_invalidate_lock); 1013 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 1014 1015 for_each_engine(engine, gt, id) { 1016 /* 1017 * HW architecture suggest typical invalidation time at 40us, 1018 * with pessimistic cases up to 100us and a recommendation to 1019 * cap at 1ms. We go a bit higher just in case. 1020 */ 1021 const unsigned int timeout_us = 100; 1022 const unsigned int timeout_ms = 4; 1023 struct reg_and_bit rb; 1024 1025 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1026 if (!i915_mmio_reg_offset(rb.reg)) 1027 continue; 1028 1029 intel_uncore_write_fw(uncore, rb.reg, rb.bit); 1030 if (__intel_wait_for_register_fw(uncore, 1031 rb.reg, rb.bit, 0, 1032 timeout_us, timeout_ms, 1033 NULL)) 1034 drm_err_ratelimited(>->i915->drm, 1035 "%s TLB invalidation did not complete in %ums!\n", 1036 engine->name, timeout_ms); 1037 } 1038 1039 /* 1040 * Use delayed put since a) we mostly expect a flurry of TLB 1041 * invalidations so it is good to avoid paying the forcewake cost and 1042 * b) it works around a bug in Icelake which cannot cope with too rapid 1043 * transitions. 1044 */ 1045 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); 1046 mutex_unlock(>->tlb_invalidate_lock); 1047 } 1048