xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision b48dbb99)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_managed.h>
7 
8 #include "gem/i915_gem_internal.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "pxp/intel_pxp.h"
11 
12 #include "i915_drv.h"
13 #include "intel_context.h"
14 #include "intel_engine_regs.h"
15 #include "intel_gt.h"
16 #include "intel_gt_buffer_pool.h"
17 #include "intel_gt_clock_utils.h"
18 #include "intel_gt_debugfs.h"
19 #include "intel_gt_gmch.h"
20 #include "intel_gt_pm.h"
21 #include "intel_gt_regs.h"
22 #include "intel_gt_requests.h"
23 #include "intel_migrate.h"
24 #include "intel_mocs.h"
25 #include "intel_pm.h"
26 #include "intel_rc6.h"
27 #include "intel_renderstate.h"
28 #include "intel_rps.h"
29 #include "intel_gt_sysfs.h"
30 #include "intel_uncore.h"
31 #include "shmem_utils.h"
32 
33 static void __intel_gt_init_early(struct intel_gt *gt)
34 {
35 	spin_lock_init(&gt->irq_lock);
36 
37 	mutex_init(&gt->tlb_invalidate_lock);
38 
39 	INIT_LIST_HEAD(&gt->closed_vma);
40 	spin_lock_init(&gt->closed_lock);
41 
42 	init_llist_head(&gt->watchdog.list);
43 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
44 
45 	intel_gt_init_buffer_pool(gt);
46 	intel_gt_init_reset(gt);
47 	intel_gt_init_requests(gt);
48 	intel_gt_init_timelines(gt);
49 	intel_gt_pm_init_early(gt);
50 
51 	intel_uc_init_early(&gt->uc);
52 	intel_rps_init_early(&gt->rps);
53 }
54 
55 /* Preliminary initialization of Tile 0 */
56 void intel_root_gt_init_early(struct drm_i915_private *i915)
57 {
58 	struct intel_gt *gt = to_gt(i915);
59 
60 	gt->i915 = i915;
61 	gt->uncore = &i915->uncore;
62 
63 	__intel_gt_init_early(gt);
64 }
65 
66 static int intel_gt_probe_lmem(struct intel_gt *gt)
67 {
68 	struct drm_i915_private *i915 = gt->i915;
69 	unsigned int instance = gt->info.id;
70 	int id = INTEL_REGION_LMEM_0 + instance;
71 	struct intel_memory_region *mem;
72 	int err;
73 
74 	mem = intel_gt_setup_lmem(gt);
75 	if (IS_ERR(mem)) {
76 		err = PTR_ERR(mem);
77 		if (err == -ENODEV)
78 			return 0;
79 
80 		drm_err(&i915->drm,
81 			"Failed to setup region(%d) type=%d\n",
82 			err, INTEL_MEMORY_LOCAL);
83 		return err;
84 	}
85 
86 	mem->id = id;
87 	mem->instance = instance;
88 
89 	intel_memory_region_set_name(mem, "local%u", mem->instance);
90 
91 	GEM_BUG_ON(!HAS_REGION(i915, id));
92 	GEM_BUG_ON(i915->mm.regions[id]);
93 	i915->mm.regions[id] = mem;
94 
95 	return 0;
96 }
97 
98 int intel_gt_assign_ggtt(struct intel_gt *gt)
99 {
100 	gt->ggtt = drmm_kzalloc(&gt->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL);
101 
102 	return gt->ggtt ? 0 : -ENOMEM;
103 }
104 
105 static const char * const intel_steering_types[] = {
106 	"L3BANK",
107 	"MSLICE",
108 	"LNCF",
109 };
110 
111 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
112 	{ 0x00B100, 0x00B3FF },
113 	{},
114 };
115 
116 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
117 	{ 0x004000, 0x004AFF },
118 	{ 0x00C800, 0x00CFFF },
119 	{ 0x00DD00, 0x00DDFF },
120 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
121 	{},
122 };
123 
124 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
125 	{ 0x00B000, 0x00B0FF },
126 	{ 0x00D800, 0x00D8FF },
127 	{},
128 };
129 
130 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
131 	{ 0x00B000, 0x00B0FF },
132 	{ 0x00D880, 0x00D8FF },
133 	{},
134 };
135 
136 static u16 slicemask(struct intel_gt *gt, int count)
137 {
138 	u64 dss_mask = intel_sseu_get_subslices(&gt->info.sseu, 0);
139 
140 	return intel_slicemask_from_dssmask(dss_mask, count);
141 }
142 
143 int intel_gt_init_mmio(struct intel_gt *gt)
144 {
145 	struct drm_i915_private *i915 = gt->i915;
146 
147 	intel_gt_init_clock_frequency(gt);
148 
149 	intel_uc_init_mmio(&gt->uc);
150 	intel_sseu_info_init(gt);
151 
152 	/*
153 	 * An mslice is unavailable only if both the meml3 for the slice is
154 	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
155 	 */
156 	if (HAS_MSLICES(i915))
157 		gt->info.mslice_mask =
158 			slicemask(gt, GEN_DSS_PER_MSLICE) |
159 			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
160 			 GEN12_MEML3_EN_MASK);
161 
162 	if (IS_DG2(i915)) {
163 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
164 		gt->steering_table[LNCF] = dg2_lncf_steering_table;
165 	} else if (IS_XEHPSDV(i915)) {
166 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
167 		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
168 	} else if (GRAPHICS_VER(i915) >= 11 &&
169 		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
170 		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
171 		gt->info.l3bank_mask =
172 			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
173 			GEN10_L3BANK_MASK;
174 	} else if (HAS_MSLICES(i915)) {
175 		MISSING_CASE(INTEL_INFO(i915)->platform);
176 	}
177 
178 	return intel_engines_init_mmio(gt);
179 }
180 
181 static void init_unused_ring(struct intel_gt *gt, u32 base)
182 {
183 	struct intel_uncore *uncore = gt->uncore;
184 
185 	intel_uncore_write(uncore, RING_CTL(base), 0);
186 	intel_uncore_write(uncore, RING_HEAD(base), 0);
187 	intel_uncore_write(uncore, RING_TAIL(base), 0);
188 	intel_uncore_write(uncore, RING_START(base), 0);
189 }
190 
191 static void init_unused_rings(struct intel_gt *gt)
192 {
193 	struct drm_i915_private *i915 = gt->i915;
194 
195 	if (IS_I830(i915)) {
196 		init_unused_ring(gt, PRB1_BASE);
197 		init_unused_ring(gt, SRB0_BASE);
198 		init_unused_ring(gt, SRB1_BASE);
199 		init_unused_ring(gt, SRB2_BASE);
200 		init_unused_ring(gt, SRB3_BASE);
201 	} else if (GRAPHICS_VER(i915) == 2) {
202 		init_unused_ring(gt, SRB0_BASE);
203 		init_unused_ring(gt, SRB1_BASE);
204 	} else if (GRAPHICS_VER(i915) == 3) {
205 		init_unused_ring(gt, PRB1_BASE);
206 		init_unused_ring(gt, PRB2_BASE);
207 	}
208 }
209 
210 int intel_gt_init_hw(struct intel_gt *gt)
211 {
212 	struct drm_i915_private *i915 = gt->i915;
213 	struct intel_uncore *uncore = gt->uncore;
214 	int ret;
215 
216 	gt->last_init_time = ktime_get();
217 
218 	/* Double layer security blanket, see i915_gem_init() */
219 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
220 
221 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
222 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
223 
224 	if (IS_HASWELL(i915))
225 		intel_uncore_write(uncore,
226 				   HSW_MI_PREDICATE_RESULT_2,
227 				   IS_HSW_GT3(i915) ?
228 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
229 
230 	/* Apply the GT workarounds... */
231 	intel_gt_apply_workarounds(gt);
232 	/* ...and determine whether they are sticking. */
233 	intel_gt_verify_workarounds(gt, "init");
234 
235 	intel_gt_init_swizzling(gt);
236 
237 	/*
238 	 * At least 830 can leave some of the unused rings
239 	 * "active" (ie. head != tail) after resume which
240 	 * will prevent c3 entry. Makes sure all unused rings
241 	 * are totally idle.
242 	 */
243 	init_unused_rings(gt);
244 
245 	ret = i915_ppgtt_init_hw(gt);
246 	if (ret) {
247 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
248 		goto out;
249 	}
250 
251 	/* We can't enable contexts until all firmware is loaded */
252 	ret = intel_uc_init_hw(&gt->uc);
253 	if (ret) {
254 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
255 		goto out;
256 	}
257 
258 	intel_mocs_init(gt);
259 
260 out:
261 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
262 	return ret;
263 }
264 
265 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
266 {
267 	intel_uncore_rmw(uncore, reg, 0, set);
268 }
269 
270 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
271 {
272 	intel_uncore_rmw(uncore, reg, clr, 0);
273 }
274 
275 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
276 {
277 	intel_uncore_rmw(uncore, reg, 0, 0);
278 }
279 
280 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
281 {
282 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
283 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
284 }
285 
286 void
287 intel_gt_clear_error_registers(struct intel_gt *gt,
288 			       intel_engine_mask_t engine_mask)
289 {
290 	struct drm_i915_private *i915 = gt->i915;
291 	struct intel_uncore *uncore = gt->uncore;
292 	u32 eir;
293 
294 	if (GRAPHICS_VER(i915) != 2)
295 		clear_register(uncore, PGTBL_ER);
296 
297 	if (GRAPHICS_VER(i915) < 4)
298 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
299 	else
300 		clear_register(uncore, IPEIR_I965);
301 
302 	clear_register(uncore, EIR);
303 	eir = intel_uncore_read(uncore, EIR);
304 	if (eir) {
305 		/*
306 		 * some errors might have become stuck,
307 		 * mask them.
308 		 */
309 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
310 		rmw_set(uncore, EMR, eir);
311 		intel_uncore_write(uncore, GEN2_IIR,
312 				   I915_MASTER_ERROR_INTERRUPT);
313 	}
314 
315 	if (GRAPHICS_VER(i915) >= 12) {
316 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
317 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
318 	} else if (GRAPHICS_VER(i915) >= 8) {
319 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
320 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
321 	} else if (GRAPHICS_VER(i915) >= 6) {
322 		struct intel_engine_cs *engine;
323 		enum intel_engine_id id;
324 
325 		for_each_engine_masked(engine, gt, engine_mask, id)
326 			gen6_clear_engine_error_register(engine);
327 	}
328 }
329 
330 static void gen6_check_faults(struct intel_gt *gt)
331 {
332 	struct intel_engine_cs *engine;
333 	enum intel_engine_id id;
334 	u32 fault;
335 
336 	for_each_engine(engine, gt, id) {
337 		fault = GEN6_RING_FAULT_REG_READ(engine);
338 		if (fault & RING_FAULT_VALID) {
339 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
340 				"\tAddr: 0x%08lx\n"
341 				"\tAddress space: %s\n"
342 				"\tSource ID: %d\n"
343 				"\tType: %d\n",
344 				fault & PAGE_MASK,
345 				fault & RING_FAULT_GTTSEL_MASK ?
346 				"GGTT" : "PPGTT",
347 				RING_FAULT_SRCID(fault),
348 				RING_FAULT_FAULT_TYPE(fault));
349 		}
350 	}
351 }
352 
353 static void gen8_check_faults(struct intel_gt *gt)
354 {
355 	struct intel_uncore *uncore = gt->uncore;
356 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
357 	u32 fault;
358 
359 	if (GRAPHICS_VER(gt->i915) >= 12) {
360 		fault_reg = GEN12_RING_FAULT_REG;
361 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
362 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
363 	} else {
364 		fault_reg = GEN8_RING_FAULT_REG;
365 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
366 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
367 	}
368 
369 	fault = intel_uncore_read(uncore, fault_reg);
370 	if (fault & RING_FAULT_VALID) {
371 		u32 fault_data0, fault_data1;
372 		u64 fault_addr;
373 
374 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
375 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
376 
377 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
378 			     ((u64)fault_data0 << 12);
379 
380 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
381 			"\tAddr: 0x%08x_%08x\n"
382 			"\tAddress space: %s\n"
383 			"\tEngine ID: %d\n"
384 			"\tSource ID: %d\n"
385 			"\tType: %d\n",
386 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
387 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
388 			GEN8_RING_FAULT_ENGINE_ID(fault),
389 			RING_FAULT_SRCID(fault),
390 			RING_FAULT_FAULT_TYPE(fault));
391 	}
392 }
393 
394 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
395 {
396 	struct drm_i915_private *i915 = gt->i915;
397 
398 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
399 	if (GRAPHICS_VER(i915) >= 8)
400 		gen8_check_faults(gt);
401 	else if (GRAPHICS_VER(i915) >= 6)
402 		gen6_check_faults(gt);
403 	else
404 		return;
405 
406 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
407 }
408 
409 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
410 {
411 	struct intel_uncore *uncore = gt->uncore;
412 	intel_wakeref_t wakeref;
413 
414 	/*
415 	 * No actual flushing is required for the GTT write domain for reads
416 	 * from the GTT domain. Writes to it "immediately" go to main memory
417 	 * as far as we know, so there's no chipset flush. It also doesn't
418 	 * land in the GPU render cache.
419 	 *
420 	 * However, we do have to enforce the order so that all writes through
421 	 * the GTT land before any writes to the device, such as updates to
422 	 * the GATT itself.
423 	 *
424 	 * We also have to wait a bit for the writes to land from the GTT.
425 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
426 	 * timing. This issue has only been observed when switching quickly
427 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
428 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
429 	 * system agents we cannot reproduce this behaviour, until Cannonlake
430 	 * that was!).
431 	 */
432 
433 	wmb();
434 
435 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
436 		return;
437 
438 	intel_gt_chipset_flush(gt);
439 
440 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
441 		unsigned long flags;
442 
443 		spin_lock_irqsave(&uncore->lock, flags);
444 		intel_uncore_posting_read_fw(uncore,
445 					     RING_HEAD(RENDER_RING_BASE));
446 		spin_unlock_irqrestore(&uncore->lock, flags);
447 	}
448 }
449 
450 void intel_gt_chipset_flush(struct intel_gt *gt)
451 {
452 	wmb();
453 	if (GRAPHICS_VER(gt->i915) < 6)
454 		intel_gt_gmch_gen5_chipset_flush(gt);
455 }
456 
457 void intel_gt_driver_register(struct intel_gt *gt)
458 {
459 	intel_gsc_init(&gt->gsc, gt->i915);
460 
461 	intel_rps_driver_register(&gt->rps);
462 
463 	intel_gt_debugfs_register(gt);
464 	intel_gt_sysfs_register(gt);
465 }
466 
467 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
468 {
469 	struct drm_i915_private *i915 = gt->i915;
470 	struct drm_i915_gem_object *obj;
471 	struct i915_vma *vma;
472 	int ret;
473 
474 	obj = i915_gem_object_create_lmem(i915, size,
475 					  I915_BO_ALLOC_VOLATILE |
476 					  I915_BO_ALLOC_GPU_ONLY);
477 	if (IS_ERR(obj))
478 		obj = i915_gem_object_create_stolen(i915, size);
479 	if (IS_ERR(obj))
480 		obj = i915_gem_object_create_internal(i915, size);
481 	if (IS_ERR(obj)) {
482 		drm_err(&i915->drm, "Failed to allocate scratch page\n");
483 		return PTR_ERR(obj);
484 	}
485 
486 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
487 	if (IS_ERR(vma)) {
488 		ret = PTR_ERR(vma);
489 		goto err_unref;
490 	}
491 
492 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
493 	if (ret)
494 		goto err_unref;
495 
496 	gt->scratch = i915_vma_make_unshrinkable(vma);
497 
498 	return 0;
499 
500 err_unref:
501 	i915_gem_object_put(obj);
502 	return ret;
503 }
504 
505 static void intel_gt_fini_scratch(struct intel_gt *gt)
506 {
507 	i915_vma_unpin_and_release(&gt->scratch, 0);
508 }
509 
510 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
511 {
512 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
513 		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
514 	else
515 		return i915_vm_get(&gt->ggtt->vm);
516 }
517 
518 static int __engines_record_defaults(struct intel_gt *gt)
519 {
520 	struct i915_request *requests[I915_NUM_ENGINES] = {};
521 	struct intel_engine_cs *engine;
522 	enum intel_engine_id id;
523 	int err = 0;
524 
525 	/*
526 	 * As we reset the gpu during very early sanitisation, the current
527 	 * register state on the GPU should reflect its defaults values.
528 	 * We load a context onto the hw (with restore-inhibit), then switch
529 	 * over to a second context to save that default register state. We
530 	 * can then prime every new context with that state so they all start
531 	 * from the same default HW values.
532 	 */
533 
534 	for_each_engine(engine, gt, id) {
535 		struct intel_renderstate so;
536 		struct intel_context *ce;
537 		struct i915_request *rq;
538 
539 		/* We must be able to switch to something! */
540 		GEM_BUG_ON(!engine->kernel_context);
541 
542 		ce = intel_context_create(engine);
543 		if (IS_ERR(ce)) {
544 			err = PTR_ERR(ce);
545 			goto out;
546 		}
547 
548 		err = intel_renderstate_init(&so, ce);
549 		if (err)
550 			goto err;
551 
552 		rq = i915_request_create(ce);
553 		if (IS_ERR(rq)) {
554 			err = PTR_ERR(rq);
555 			goto err_fini;
556 		}
557 
558 		err = intel_engine_emit_ctx_wa(rq);
559 		if (err)
560 			goto err_rq;
561 
562 		err = intel_renderstate_emit(&so, rq);
563 		if (err)
564 			goto err_rq;
565 
566 err_rq:
567 		requests[id] = i915_request_get(rq);
568 		i915_request_add(rq);
569 err_fini:
570 		intel_renderstate_fini(&so, ce);
571 err:
572 		if (err) {
573 			intel_context_put(ce);
574 			goto out;
575 		}
576 	}
577 
578 	/* Flush the default context image to memory, and enable powersaving. */
579 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
580 		err = -EIO;
581 		goto out;
582 	}
583 
584 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
585 		struct i915_request *rq;
586 		struct file *state;
587 
588 		rq = requests[id];
589 		if (!rq)
590 			continue;
591 
592 		if (rq->fence.error) {
593 			err = -EIO;
594 			goto out;
595 		}
596 
597 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
598 		if (!rq->context->state)
599 			continue;
600 
601 		/* Keep a copy of the state's backing pages; free the obj */
602 		state = shmem_create_from_object(rq->context->state->obj);
603 		if (IS_ERR(state)) {
604 			err = PTR_ERR(state);
605 			goto out;
606 		}
607 		rq->engine->default_state = state;
608 	}
609 
610 out:
611 	/*
612 	 * If we have to abandon now, we expect the engines to be idle
613 	 * and ready to be torn-down. The quickest way we can accomplish
614 	 * this is by declaring ourselves wedged.
615 	 */
616 	if (err)
617 		intel_gt_set_wedged(gt);
618 
619 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
620 		struct intel_context *ce;
621 		struct i915_request *rq;
622 
623 		rq = requests[id];
624 		if (!rq)
625 			continue;
626 
627 		ce = rq->context;
628 		i915_request_put(rq);
629 		intel_context_put(ce);
630 	}
631 	return err;
632 }
633 
634 static int __engines_verify_workarounds(struct intel_gt *gt)
635 {
636 	struct intel_engine_cs *engine;
637 	enum intel_engine_id id;
638 	int err = 0;
639 
640 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
641 		return 0;
642 
643 	for_each_engine(engine, gt, id) {
644 		if (intel_engine_verify_workarounds(engine, "load"))
645 			err = -EIO;
646 	}
647 
648 	/* Flush and restore the kernel context for safety */
649 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
650 		err = -EIO;
651 
652 	return err;
653 }
654 
655 static void __intel_gt_disable(struct intel_gt *gt)
656 {
657 	intel_gt_set_wedged_on_fini(gt);
658 
659 	intel_gt_suspend_prepare(gt);
660 	intel_gt_suspend_late(gt);
661 
662 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
663 }
664 
665 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
666 {
667 	long remaining_timeout;
668 
669 	/* If the device is asleep, we have no requests outstanding */
670 	if (!intel_gt_pm_is_awake(gt))
671 		return 0;
672 
673 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
674 							   &remaining_timeout)) > 0) {
675 		cond_resched();
676 		if (signal_pending(current))
677 			return -EINTR;
678 	}
679 
680 	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
681 							  remaining_timeout);
682 }
683 
684 int intel_gt_init(struct intel_gt *gt)
685 {
686 	int err;
687 
688 	err = i915_inject_probe_error(gt->i915, -ENODEV);
689 	if (err)
690 		return err;
691 
692 	intel_gt_init_workarounds(gt);
693 
694 	/*
695 	 * This is just a security blanket to placate dragons.
696 	 * On some systems, we very sporadically observe that the first TLBs
697 	 * used by the CS may be stale, despite us poking the TLB reset. If
698 	 * we hold the forcewake during initialisation these problems
699 	 * just magically go away.
700 	 */
701 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
702 
703 	err = intel_gt_init_scratch(gt,
704 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
705 	if (err)
706 		goto out_fw;
707 
708 	intel_gt_pm_init(gt);
709 
710 	gt->vm = kernel_vm(gt);
711 	if (!gt->vm) {
712 		err = -ENOMEM;
713 		goto err_pm;
714 	}
715 
716 	intel_set_mocs_index(gt);
717 
718 	err = intel_engines_init(gt);
719 	if (err)
720 		goto err_engines;
721 
722 	err = intel_uc_init(&gt->uc);
723 	if (err)
724 		goto err_engines;
725 
726 	err = intel_gt_resume(gt);
727 	if (err)
728 		goto err_uc_init;
729 
730 	err = intel_gt_init_hwconfig(gt);
731 	if (err)
732 		drm_err(&gt->i915->drm, "Failed to retrieve hwconfig table: %pe\n",
733 			ERR_PTR(err));
734 
735 	err = __engines_record_defaults(gt);
736 	if (err)
737 		goto err_gt;
738 
739 	err = __engines_verify_workarounds(gt);
740 	if (err)
741 		goto err_gt;
742 
743 	intel_uc_init_late(&gt->uc);
744 
745 	err = i915_inject_probe_error(gt->i915, -EIO);
746 	if (err)
747 		goto err_gt;
748 
749 	intel_migrate_init(&gt->migrate, gt);
750 
751 	intel_pxp_init(&gt->pxp);
752 
753 	goto out_fw;
754 err_gt:
755 	__intel_gt_disable(gt);
756 	intel_uc_fini_hw(&gt->uc);
757 err_uc_init:
758 	intel_uc_fini(&gt->uc);
759 err_engines:
760 	intel_engines_release(gt);
761 	i915_vm_put(fetch_and_zero(&gt->vm));
762 err_pm:
763 	intel_gt_pm_fini(gt);
764 	intel_gt_fini_scratch(gt);
765 out_fw:
766 	if (err)
767 		intel_gt_set_wedged_on_init(gt);
768 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
769 	return err;
770 }
771 
772 void intel_gt_driver_remove(struct intel_gt *gt)
773 {
774 	__intel_gt_disable(gt);
775 
776 	intel_migrate_fini(&gt->migrate);
777 	intel_uc_driver_remove(&gt->uc);
778 
779 	intel_engines_release(gt);
780 
781 	intel_gt_flush_buffer_pool(gt);
782 }
783 
784 void intel_gt_driver_unregister(struct intel_gt *gt)
785 {
786 	intel_wakeref_t wakeref;
787 
788 	intel_gt_sysfs_unregister(gt);
789 	intel_rps_driver_unregister(&gt->rps);
790 	intel_gsc_fini(&gt->gsc);
791 
792 	intel_pxp_fini(&gt->pxp);
793 
794 	/*
795 	 * Upon unregistering the device to prevent any new users, cancel
796 	 * all in-flight requests so that we can quickly unbind the active
797 	 * resources.
798 	 */
799 	intel_gt_set_wedged_on_fini(gt);
800 
801 	/* Scrub all HW state upon release */
802 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
803 		__intel_gt_reset(gt, ALL_ENGINES);
804 }
805 
806 void intel_gt_driver_release(struct intel_gt *gt)
807 {
808 	struct i915_address_space *vm;
809 
810 	vm = fetch_and_zero(&gt->vm);
811 	if (vm) /* FIXME being called twice on error paths :( */
812 		i915_vm_put(vm);
813 
814 	intel_wa_list_free(&gt->wa_list);
815 	intel_gt_pm_fini(gt);
816 	intel_gt_fini_scratch(gt);
817 	intel_gt_fini_buffer_pool(gt);
818 	intel_gt_fini_hwconfig(gt);
819 }
820 
821 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
822 {
823 	struct intel_gt *gt;
824 	unsigned int id;
825 
826 	/* We need to wait for inflight RCU frees to release their grip */
827 	rcu_barrier();
828 
829 	for_each_gt(gt, i915, id) {
830 		intel_uc_driver_late_release(&gt->uc);
831 		intel_gt_fini_requests(gt);
832 		intel_gt_fini_reset(gt);
833 		intel_gt_fini_timelines(gt);
834 		intel_engines_free(gt);
835 	}
836 }
837 
838 /**
839  * intel_gt_reg_needs_read_steering - determine whether a register read
840  *     requires explicit steering
841  * @gt: GT structure
842  * @reg: the register to check steering requirements for
843  * @type: type of multicast steering to check
844  *
845  * Determines whether @reg needs explicit steering of a specific type for
846  * reads.
847  *
848  * Returns false if @reg does not belong to a register range of the given
849  * steering type, or if the default (subslice-based) steering IDs are suitable
850  * for @type steering too.
851  */
852 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
853 					     i915_reg_t reg,
854 					     enum intel_steering_type type)
855 {
856 	const u32 offset = i915_mmio_reg_offset(reg);
857 	const struct intel_mmio_range *entry;
858 
859 	if (likely(!intel_gt_needs_read_steering(gt, type)))
860 		return false;
861 
862 	for (entry = gt->steering_table[type]; entry->end; entry++) {
863 		if (offset >= entry->start && offset <= entry->end)
864 			return true;
865 	}
866 
867 	return false;
868 }
869 
870 /**
871  * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
872  * @gt: GT structure
873  * @type: multicast register type
874  * @sliceid: Slice ID returned
875  * @subsliceid: Subslice ID returned
876  *
877  * Determines sliceid and subsliceid values that will steer reads
878  * of a specific multicast register class to a valid value.
879  */
880 static void intel_gt_get_valid_steering(struct intel_gt *gt,
881 					enum intel_steering_type type,
882 					u8 *sliceid, u8 *subsliceid)
883 {
884 	switch (type) {
885 	case L3BANK:
886 		GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */
887 
888 		*sliceid = 0;		/* unused */
889 		*subsliceid = __ffs(gt->info.l3bank_mask);
890 		break;
891 	case MSLICE:
892 		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
893 
894 		*sliceid = __ffs(gt->info.mslice_mask);
895 		*subsliceid = 0;	/* unused */
896 		break;
897 	case LNCF:
898 		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
899 
900 		/*
901 		 * An LNCF is always present if its mslice is present, so we
902 		 * can safely just steer to LNCF 0 in all cases.
903 		 */
904 		*sliceid = __ffs(gt->info.mslice_mask) << 1;
905 		*subsliceid = 0;	/* unused */
906 		break;
907 	default:
908 		MISSING_CASE(type);
909 		*sliceid = 0;
910 		*subsliceid = 0;
911 	}
912 }
913 
914 /**
915  * intel_gt_read_register_fw - reads a GT register with support for multicast
916  * @gt: GT structure
917  * @reg: register to read
918  *
919  * This function will read a GT register.  If the register is a multicast
920  * register, the read will be steered to a valid instance (i.e., one that
921  * isn't fused off or powered down by power gating).
922  *
923  * Returns the value from a valid instance of @reg.
924  */
925 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
926 {
927 	int type;
928 	u8 sliceid, subsliceid;
929 
930 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
931 		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
932 			intel_gt_get_valid_steering(gt, type, &sliceid,
933 						    &subsliceid);
934 			return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
935 								      reg,
936 								      sliceid,
937 								      subsliceid);
938 		}
939 	}
940 
941 	return intel_uncore_read_fw(gt->uncore, reg);
942 }
943 
944 /**
945  * intel_gt_get_valid_steering_for_reg - get a valid steering for a register
946  * @gt: GT structure
947  * @reg: register for which the steering is required
948  * @sliceid: return variable for slice steering
949  * @subsliceid: return variable for subslice steering
950  *
951  * This function returns a slice/subslice pair that is guaranteed to work for
952  * read steering of the given register. Note that a value will be returned even
953  * if the register is not replicated and therefore does not actually require
954  * steering.
955  */
956 void intel_gt_get_valid_steering_for_reg(struct intel_gt *gt, i915_reg_t reg,
957 					 u8 *sliceid, u8 *subsliceid)
958 {
959 	int type;
960 
961 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
962 		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
963 			intel_gt_get_valid_steering(gt, type, sliceid,
964 						    subsliceid);
965 			return;
966 		}
967 	}
968 
969 	*sliceid = gt->default_steering.groupid;
970 	*subsliceid = gt->default_steering.instanceid;
971 }
972 
973 u32 intel_gt_read_register(struct intel_gt *gt, i915_reg_t reg)
974 {
975 	int type;
976 	u8 sliceid, subsliceid;
977 
978 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
979 		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
980 			intel_gt_get_valid_steering(gt, type, &sliceid,
981 						    &subsliceid);
982 			return intel_uncore_read_with_mcr_steering(gt->uncore,
983 								   reg,
984 								   sliceid,
985 								   subsliceid);
986 		}
987 	}
988 
989 	return intel_uncore_read(gt->uncore, reg);
990 }
991 
992 static void report_steering_type(struct drm_printer *p,
993 				 struct intel_gt *gt,
994 				 enum intel_steering_type type,
995 				 bool dump_table)
996 {
997 	const struct intel_mmio_range *entry;
998 	u8 slice, subslice;
999 
1000 	BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
1001 
1002 	if (!gt->steering_table[type]) {
1003 		drm_printf(p, "%s steering: uses default steering\n",
1004 			   intel_steering_types[type]);
1005 		return;
1006 	}
1007 
1008 	intel_gt_get_valid_steering(gt, type, &slice, &subslice);
1009 	drm_printf(p, "%s steering: sliceid=0x%x, subsliceid=0x%x\n",
1010 		   intel_steering_types[type], slice, subslice);
1011 
1012 	if (!dump_table)
1013 		return;
1014 
1015 	for (entry = gt->steering_table[type]; entry->end; entry++)
1016 		drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
1017 }
1018 
1019 void intel_gt_report_steering(struct drm_printer *p, struct intel_gt *gt,
1020 			      bool dump_table)
1021 {
1022 	drm_printf(p, "Default steering: sliceid=0x%x, subsliceid=0x%x\n",
1023 		   gt->default_steering.groupid,
1024 		   gt->default_steering.instanceid);
1025 
1026 	if (HAS_MSLICES(gt->i915)) {
1027 		report_steering_type(p, gt, MSLICE, dump_table);
1028 		report_steering_type(p, gt, LNCF, dump_table);
1029 	}
1030 }
1031 
1032 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
1033 {
1034 	int ret;
1035 
1036 	if (!gt_is_root(gt)) {
1037 		struct intel_uncore_mmio_debug *mmio_debug;
1038 		struct intel_uncore *uncore;
1039 
1040 		uncore = kzalloc(sizeof(*uncore), GFP_KERNEL);
1041 		if (!uncore)
1042 			return -ENOMEM;
1043 
1044 		mmio_debug = kzalloc(sizeof(*mmio_debug), GFP_KERNEL);
1045 		if (!mmio_debug) {
1046 			kfree(uncore);
1047 			return -ENOMEM;
1048 		}
1049 
1050 		gt->uncore = uncore;
1051 		gt->uncore->debug = mmio_debug;
1052 
1053 		__intel_gt_init_early(gt);
1054 	}
1055 
1056 	intel_uncore_init_early(gt->uncore, gt);
1057 
1058 	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
1059 	if (ret)
1060 		return ret;
1061 
1062 	gt->phys_addr = phys_addr;
1063 
1064 	return 0;
1065 }
1066 
1067 static void
1068 intel_gt_tile_cleanup(struct intel_gt *gt)
1069 {
1070 	intel_uncore_cleanup_mmio(gt->uncore);
1071 
1072 	if (!gt_is_root(gt)) {
1073 		kfree(gt->uncore->debug);
1074 		kfree(gt->uncore);
1075 		kfree(gt);
1076 	}
1077 }
1078 
1079 int intel_gt_probe_all(struct drm_i915_private *i915)
1080 {
1081 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1082 	struct intel_gt *gt = &i915->gt0;
1083 	phys_addr_t phys_addr;
1084 	unsigned int mmio_bar;
1085 	int ret;
1086 
1087 	mmio_bar = GRAPHICS_VER(i915) == 2 ? 1 : 0;
1088 	phys_addr = pci_resource_start(pdev, mmio_bar);
1089 
1090 	/*
1091 	 * We always have at least one primary GT on any device
1092 	 * and it has been already initialized early during probe
1093 	 * in i915_driver_probe()
1094 	 */
1095 	ret = intel_gt_tile_setup(gt, phys_addr);
1096 	if (ret)
1097 		return ret;
1098 
1099 	i915->gt[0] = gt;
1100 
1101 	/* TODO: add more tiles */
1102 	return 0;
1103 }
1104 
1105 int intel_gt_tiles_init(struct drm_i915_private *i915)
1106 {
1107 	struct intel_gt *gt;
1108 	unsigned int id;
1109 	int ret;
1110 
1111 	for_each_gt(gt, i915, id) {
1112 		ret = intel_gt_probe_lmem(gt);
1113 		if (ret)
1114 			return ret;
1115 	}
1116 
1117 	return 0;
1118 }
1119 
1120 void intel_gt_release_all(struct drm_i915_private *i915)
1121 {
1122 	struct intel_gt *gt;
1123 	unsigned int id;
1124 
1125 	for_each_gt(gt, i915, id) {
1126 		intel_gt_tile_cleanup(gt);
1127 		i915->gt[id] = NULL;
1128 	}
1129 }
1130 
1131 void intel_gt_info_print(const struct intel_gt_info *info,
1132 			 struct drm_printer *p)
1133 {
1134 	drm_printf(p, "available engines: %x\n", info->engine_mask);
1135 
1136 	intel_sseu_dump(&info->sseu, p);
1137 }
1138 
1139 struct reg_and_bit {
1140 	i915_reg_t reg;
1141 	u32 bit;
1142 };
1143 
1144 static struct reg_and_bit
1145 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
1146 		const i915_reg_t *regs, const unsigned int num)
1147 {
1148 	const unsigned int class = engine->class;
1149 	struct reg_and_bit rb = { };
1150 
1151 	if (drm_WARN_ON_ONCE(&engine->i915->drm,
1152 			     class >= num || !regs[class].reg))
1153 		return rb;
1154 
1155 	rb.reg = regs[class];
1156 	if (gen8 && class == VIDEO_DECODE_CLASS)
1157 		rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
1158 	else
1159 		rb.bit = engine->instance;
1160 
1161 	rb.bit = BIT(rb.bit);
1162 
1163 	return rb;
1164 }
1165 
1166 void intel_gt_invalidate_tlbs(struct intel_gt *gt)
1167 {
1168 	static const i915_reg_t gen8_regs[] = {
1169 		[RENDER_CLASS]			= GEN8_RTCR,
1170 		[VIDEO_DECODE_CLASS]		= GEN8_M1TCR, /* , GEN8_M2TCR */
1171 		[VIDEO_ENHANCEMENT_CLASS]	= GEN8_VTCR,
1172 		[COPY_ENGINE_CLASS]		= GEN8_BTCR,
1173 	};
1174 	static const i915_reg_t gen12_regs[] = {
1175 		[RENDER_CLASS]			= GEN12_GFX_TLB_INV_CR,
1176 		[VIDEO_DECODE_CLASS]		= GEN12_VD_TLB_INV_CR,
1177 		[VIDEO_ENHANCEMENT_CLASS]	= GEN12_VE_TLB_INV_CR,
1178 		[COPY_ENGINE_CLASS]		= GEN12_BLT_TLB_INV_CR,
1179 		[COMPUTE_CLASS]			= GEN12_COMPCTX_TLB_INV_CR,
1180 	};
1181 	struct drm_i915_private *i915 = gt->i915;
1182 	struct intel_uncore *uncore = gt->uncore;
1183 	struct intel_engine_cs *engine;
1184 	enum intel_engine_id id;
1185 	const i915_reg_t *regs;
1186 	unsigned int num = 0;
1187 
1188 	if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
1189 		return;
1190 
1191 	if (GRAPHICS_VER(i915) == 12) {
1192 		regs = gen12_regs;
1193 		num = ARRAY_SIZE(gen12_regs);
1194 	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1195 		regs = gen8_regs;
1196 		num = ARRAY_SIZE(gen8_regs);
1197 	} else if (GRAPHICS_VER(i915) < 8) {
1198 		return;
1199 	}
1200 
1201 	if (drm_WARN_ONCE(&i915->drm, !num,
1202 			  "Platform does not implement TLB invalidation!"))
1203 		return;
1204 
1205 	GEM_TRACE("\n");
1206 
1207 	assert_rpm_wakelock_held(&i915->runtime_pm);
1208 
1209 	mutex_lock(&gt->tlb_invalidate_lock);
1210 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1211 
1212 	for_each_engine(engine, gt, id) {
1213 		/*
1214 		 * HW architecture suggest typical invalidation time at 40us,
1215 		 * with pessimistic cases up to 100us and a recommendation to
1216 		 * cap at 1ms. We go a bit higher just in case.
1217 		 */
1218 		const unsigned int timeout_us = 100;
1219 		const unsigned int timeout_ms = 4;
1220 		struct reg_and_bit rb;
1221 
1222 		rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1223 		if (!i915_mmio_reg_offset(rb.reg))
1224 			continue;
1225 
1226 		intel_uncore_write_fw(uncore, rb.reg, rb.bit);
1227 		if (__intel_wait_for_register_fw(uncore,
1228 						 rb.reg, rb.bit, 0,
1229 						 timeout_us, timeout_ms,
1230 						 NULL))
1231 			drm_err_ratelimited(&gt->i915->drm,
1232 					    "%s TLB invalidation did not complete in %ums!\n",
1233 					    engine->name, timeout_ms);
1234 	}
1235 
1236 	/*
1237 	 * Use delayed put since a) we mostly expect a flurry of TLB
1238 	 * invalidations so it is good to avoid paying the forcewake cost and
1239 	 * b) it works around a bug in Icelake which cannot cope with too rapid
1240 	 * transitions.
1241 	 */
1242 	intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
1243 	mutex_unlock(&gt->tlb_invalidate_lock);
1244 }
1245