1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/intel-gtt.h> 7 8 #include "intel_gt_debugfs.h" 9 10 #include "gem/i915_gem_lmem.h" 11 #include "i915_drv.h" 12 #include "intel_context.h" 13 #include "intel_gt.h" 14 #include "intel_gt_buffer_pool.h" 15 #include "intel_gt_clock_utils.h" 16 #include "intel_gt_pm.h" 17 #include "intel_gt_requests.h" 18 #include "intel_migrate.h" 19 #include "intel_mocs.h" 20 #include "intel_pm.h" 21 #include "intel_rc6.h" 22 #include "intel_renderstate.h" 23 #include "intel_rps.h" 24 #include "intel_uncore.h" 25 #include "shmem_utils.h" 26 #include "pxp/intel_pxp.h" 27 28 void __intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 29 { 30 spin_lock_init(>->irq_lock); 31 32 INIT_LIST_HEAD(>->closed_vma); 33 spin_lock_init(>->closed_lock); 34 35 init_llist_head(>->watchdog.list); 36 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 37 38 intel_gt_init_buffer_pool(gt); 39 intel_gt_init_reset(gt); 40 intel_gt_init_requests(gt); 41 intel_gt_init_timelines(gt); 42 intel_gt_pm_init_early(gt); 43 44 intel_uc_init_early(>->uc); 45 intel_rps_init_early(>->rps); 46 } 47 48 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 49 { 50 gt->i915 = i915; 51 gt->uncore = &i915->uncore; 52 } 53 54 int intel_gt_probe_lmem(struct intel_gt *gt) 55 { 56 struct drm_i915_private *i915 = gt->i915; 57 struct intel_memory_region *mem; 58 int id; 59 int err; 60 61 mem = intel_gt_setup_lmem(gt); 62 if (mem == ERR_PTR(-ENODEV)) 63 mem = intel_gt_setup_fake_lmem(gt); 64 if (IS_ERR(mem)) { 65 err = PTR_ERR(mem); 66 if (err == -ENODEV) 67 return 0; 68 69 drm_err(&i915->drm, 70 "Failed to setup region(%d) type=%d\n", 71 err, INTEL_MEMORY_LOCAL); 72 return err; 73 } 74 75 id = INTEL_REGION_LMEM; 76 77 mem->id = id; 78 79 intel_memory_region_set_name(mem, "local%u", mem->instance); 80 81 GEM_BUG_ON(!HAS_REGION(i915, id)); 82 GEM_BUG_ON(i915->mm.regions[id]); 83 i915->mm.regions[id] = mem; 84 85 return 0; 86 } 87 88 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt) 89 { 90 gt->ggtt = ggtt; 91 } 92 93 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 94 { 0x00B100, 0x00B3FF }, 95 {}, 96 }; 97 98 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 99 { 0x004000, 0x004AFF }, 100 { 0x00C800, 0x00CFFF }, 101 { 0x00DD00, 0x00DDFF }, 102 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 103 {}, 104 }; 105 106 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 107 { 0x00B000, 0x00B0FF }, 108 { 0x00D800, 0x00D8FF }, 109 {}, 110 }; 111 112 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 113 { 0x00B000, 0x00B0FF }, 114 { 0x00D880, 0x00D8FF }, 115 {}, 116 }; 117 118 static u16 slicemask(struct intel_gt *gt, int count) 119 { 120 u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); 121 122 return intel_slicemask_from_dssmask(dss_mask, count); 123 } 124 125 int intel_gt_init_mmio(struct intel_gt *gt) 126 { 127 struct drm_i915_private *i915 = gt->i915; 128 129 intel_gt_init_clock_frequency(gt); 130 131 intel_uc_init_mmio(>->uc); 132 intel_sseu_info_init(gt); 133 134 /* 135 * An mslice is unavailable only if both the meml3 for the slice is 136 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 137 */ 138 if (HAS_MSLICES(i915)) 139 gt->info.mslice_mask = 140 slicemask(gt, GEN_DSS_PER_MSLICE) | 141 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 142 GEN12_MEML3_EN_MASK); 143 144 if (IS_DG2(i915)) { 145 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 146 gt->steering_table[LNCF] = dg2_lncf_steering_table; 147 } else if (IS_XEHPSDV(i915)) { 148 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 149 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 150 } else if (GRAPHICS_VER(i915) >= 11 && 151 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 152 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 153 gt->info.l3bank_mask = 154 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 155 GEN10_L3BANK_MASK; 156 } else if (HAS_MSLICES(i915)) { 157 MISSING_CASE(INTEL_INFO(i915)->platform); 158 } 159 160 return intel_engines_init_mmio(gt); 161 } 162 163 static void init_unused_ring(struct intel_gt *gt, u32 base) 164 { 165 struct intel_uncore *uncore = gt->uncore; 166 167 intel_uncore_write(uncore, RING_CTL(base), 0); 168 intel_uncore_write(uncore, RING_HEAD(base), 0); 169 intel_uncore_write(uncore, RING_TAIL(base), 0); 170 intel_uncore_write(uncore, RING_START(base), 0); 171 } 172 173 static void init_unused_rings(struct intel_gt *gt) 174 { 175 struct drm_i915_private *i915 = gt->i915; 176 177 if (IS_I830(i915)) { 178 init_unused_ring(gt, PRB1_BASE); 179 init_unused_ring(gt, SRB0_BASE); 180 init_unused_ring(gt, SRB1_BASE); 181 init_unused_ring(gt, SRB2_BASE); 182 init_unused_ring(gt, SRB3_BASE); 183 } else if (GRAPHICS_VER(i915) == 2) { 184 init_unused_ring(gt, SRB0_BASE); 185 init_unused_ring(gt, SRB1_BASE); 186 } else if (GRAPHICS_VER(i915) == 3) { 187 init_unused_ring(gt, PRB1_BASE); 188 init_unused_ring(gt, PRB2_BASE); 189 } 190 } 191 192 int intel_gt_init_hw(struct intel_gt *gt) 193 { 194 struct drm_i915_private *i915 = gt->i915; 195 struct intel_uncore *uncore = gt->uncore; 196 int ret; 197 198 gt->last_init_time = ktime_get(); 199 200 /* Double layer security blanket, see i915_gem_init() */ 201 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 202 203 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 204 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 205 206 if (IS_HASWELL(i915)) 207 intel_uncore_write(uncore, 208 MI_PREDICATE_RESULT_2, 209 IS_HSW_GT3(i915) ? 210 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 211 212 /* Apply the GT workarounds... */ 213 intel_gt_apply_workarounds(gt); 214 /* ...and determine whether they are sticking. */ 215 intel_gt_verify_workarounds(gt, "init"); 216 217 intel_gt_init_swizzling(gt); 218 219 /* 220 * At least 830 can leave some of the unused rings 221 * "active" (ie. head != tail) after resume which 222 * will prevent c3 entry. Makes sure all unused rings 223 * are totally idle. 224 */ 225 init_unused_rings(gt); 226 227 ret = i915_ppgtt_init_hw(gt); 228 if (ret) { 229 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 230 goto out; 231 } 232 233 /* We can't enable contexts until all firmware is loaded */ 234 ret = intel_uc_init_hw(>->uc); 235 if (ret) { 236 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 237 goto out; 238 } 239 240 intel_mocs_init(gt); 241 242 out: 243 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 244 return ret; 245 } 246 247 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 248 { 249 intel_uncore_rmw(uncore, reg, 0, set); 250 } 251 252 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 253 { 254 intel_uncore_rmw(uncore, reg, clr, 0); 255 } 256 257 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 258 { 259 intel_uncore_rmw(uncore, reg, 0, 0); 260 } 261 262 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 263 { 264 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 265 GEN6_RING_FAULT_REG_POSTING_READ(engine); 266 } 267 268 void 269 intel_gt_clear_error_registers(struct intel_gt *gt, 270 intel_engine_mask_t engine_mask) 271 { 272 struct drm_i915_private *i915 = gt->i915; 273 struct intel_uncore *uncore = gt->uncore; 274 u32 eir; 275 276 if (GRAPHICS_VER(i915) != 2) 277 clear_register(uncore, PGTBL_ER); 278 279 if (GRAPHICS_VER(i915) < 4) 280 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 281 else 282 clear_register(uncore, IPEIR_I965); 283 284 clear_register(uncore, EIR); 285 eir = intel_uncore_read(uncore, EIR); 286 if (eir) { 287 /* 288 * some errors might have become stuck, 289 * mask them. 290 */ 291 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 292 rmw_set(uncore, EMR, eir); 293 intel_uncore_write(uncore, GEN2_IIR, 294 I915_MASTER_ERROR_INTERRUPT); 295 } 296 297 if (GRAPHICS_VER(i915) >= 12) { 298 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 299 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 300 } else if (GRAPHICS_VER(i915) >= 8) { 301 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 302 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 303 } else if (GRAPHICS_VER(i915) >= 6) { 304 struct intel_engine_cs *engine; 305 enum intel_engine_id id; 306 307 for_each_engine_masked(engine, gt, engine_mask, id) 308 gen6_clear_engine_error_register(engine); 309 } 310 } 311 312 static void gen6_check_faults(struct intel_gt *gt) 313 { 314 struct intel_engine_cs *engine; 315 enum intel_engine_id id; 316 u32 fault; 317 318 for_each_engine(engine, gt, id) { 319 fault = GEN6_RING_FAULT_REG_READ(engine); 320 if (fault & RING_FAULT_VALID) { 321 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 322 "\tAddr: 0x%08lx\n" 323 "\tAddress space: %s\n" 324 "\tSource ID: %d\n" 325 "\tType: %d\n", 326 fault & PAGE_MASK, 327 fault & RING_FAULT_GTTSEL_MASK ? 328 "GGTT" : "PPGTT", 329 RING_FAULT_SRCID(fault), 330 RING_FAULT_FAULT_TYPE(fault)); 331 } 332 } 333 } 334 335 static void gen8_check_faults(struct intel_gt *gt) 336 { 337 struct intel_uncore *uncore = gt->uncore; 338 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 339 u32 fault; 340 341 if (GRAPHICS_VER(gt->i915) >= 12) { 342 fault_reg = GEN12_RING_FAULT_REG; 343 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 344 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 345 } else { 346 fault_reg = GEN8_RING_FAULT_REG; 347 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 348 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 349 } 350 351 fault = intel_uncore_read(uncore, fault_reg); 352 if (fault & RING_FAULT_VALID) { 353 u32 fault_data0, fault_data1; 354 u64 fault_addr; 355 356 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 357 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 358 359 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 360 ((u64)fault_data0 << 12); 361 362 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 363 "\tAddr: 0x%08x_%08x\n" 364 "\tAddress space: %s\n" 365 "\tEngine ID: %d\n" 366 "\tSource ID: %d\n" 367 "\tType: %d\n", 368 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 369 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 370 GEN8_RING_FAULT_ENGINE_ID(fault), 371 RING_FAULT_SRCID(fault), 372 RING_FAULT_FAULT_TYPE(fault)); 373 } 374 } 375 376 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 377 { 378 struct drm_i915_private *i915 = gt->i915; 379 380 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 381 if (GRAPHICS_VER(i915) >= 8) 382 gen8_check_faults(gt); 383 else if (GRAPHICS_VER(i915) >= 6) 384 gen6_check_faults(gt); 385 else 386 return; 387 388 intel_gt_clear_error_registers(gt, ALL_ENGINES); 389 } 390 391 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 392 { 393 struct intel_uncore *uncore = gt->uncore; 394 intel_wakeref_t wakeref; 395 396 /* 397 * No actual flushing is required for the GTT write domain for reads 398 * from the GTT domain. Writes to it "immediately" go to main memory 399 * as far as we know, so there's no chipset flush. It also doesn't 400 * land in the GPU render cache. 401 * 402 * However, we do have to enforce the order so that all writes through 403 * the GTT land before any writes to the device, such as updates to 404 * the GATT itself. 405 * 406 * We also have to wait a bit for the writes to land from the GTT. 407 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 408 * timing. This issue has only been observed when switching quickly 409 * between GTT writes and CPU reads from inside the kernel on recent hw, 410 * and it appears to only affect discrete GTT blocks (i.e. on LLC 411 * system agents we cannot reproduce this behaviour, until Cannonlake 412 * that was!). 413 */ 414 415 wmb(); 416 417 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 418 return; 419 420 intel_gt_chipset_flush(gt); 421 422 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 423 unsigned long flags; 424 425 spin_lock_irqsave(&uncore->lock, flags); 426 intel_uncore_posting_read_fw(uncore, 427 RING_HEAD(RENDER_RING_BASE)); 428 spin_unlock_irqrestore(&uncore->lock, flags); 429 } 430 } 431 432 void intel_gt_chipset_flush(struct intel_gt *gt) 433 { 434 wmb(); 435 if (GRAPHICS_VER(gt->i915) < 6) 436 intel_gtt_chipset_flush(); 437 } 438 439 void intel_gt_driver_register(struct intel_gt *gt) 440 { 441 intel_rps_driver_register(>->rps); 442 443 intel_gt_debugfs_register(gt); 444 } 445 446 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 447 { 448 struct drm_i915_private *i915 = gt->i915; 449 struct drm_i915_gem_object *obj; 450 struct i915_vma *vma; 451 int ret; 452 453 obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE); 454 if (IS_ERR(obj)) 455 obj = i915_gem_object_create_stolen(i915, size); 456 if (IS_ERR(obj)) 457 obj = i915_gem_object_create_internal(i915, size); 458 if (IS_ERR(obj)) { 459 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 460 return PTR_ERR(obj); 461 } 462 463 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 464 if (IS_ERR(vma)) { 465 ret = PTR_ERR(vma); 466 goto err_unref; 467 } 468 469 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 470 if (ret) 471 goto err_unref; 472 473 gt->scratch = i915_vma_make_unshrinkable(vma); 474 475 return 0; 476 477 err_unref: 478 i915_gem_object_put(obj); 479 return ret; 480 } 481 482 static void intel_gt_fini_scratch(struct intel_gt *gt) 483 { 484 i915_vma_unpin_and_release(>->scratch, 0); 485 } 486 487 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 488 { 489 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 490 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 491 else 492 return i915_vm_get(>->ggtt->vm); 493 } 494 495 static int __engines_record_defaults(struct intel_gt *gt) 496 { 497 struct i915_request *requests[I915_NUM_ENGINES] = {}; 498 struct intel_engine_cs *engine; 499 enum intel_engine_id id; 500 int err = 0; 501 502 /* 503 * As we reset the gpu during very early sanitisation, the current 504 * register state on the GPU should reflect its defaults values. 505 * We load a context onto the hw (with restore-inhibit), then switch 506 * over to a second context to save that default register state. We 507 * can then prime every new context with that state so they all start 508 * from the same default HW values. 509 */ 510 511 for_each_engine(engine, gt, id) { 512 struct intel_renderstate so; 513 struct intel_context *ce; 514 struct i915_request *rq; 515 516 /* We must be able to switch to something! */ 517 GEM_BUG_ON(!engine->kernel_context); 518 519 ce = intel_context_create(engine); 520 if (IS_ERR(ce)) { 521 err = PTR_ERR(ce); 522 goto out; 523 } 524 525 err = intel_renderstate_init(&so, ce); 526 if (err) 527 goto err; 528 529 rq = i915_request_create(ce); 530 if (IS_ERR(rq)) { 531 err = PTR_ERR(rq); 532 goto err_fini; 533 } 534 535 err = intel_engine_emit_ctx_wa(rq); 536 if (err) 537 goto err_rq; 538 539 err = intel_renderstate_emit(&so, rq); 540 if (err) 541 goto err_rq; 542 543 err_rq: 544 requests[id] = i915_request_get(rq); 545 i915_request_add(rq); 546 err_fini: 547 intel_renderstate_fini(&so, ce); 548 err: 549 if (err) { 550 intel_context_put(ce); 551 goto out; 552 } 553 } 554 555 /* Flush the default context image to memory, and enable powersaving. */ 556 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 557 err = -EIO; 558 goto out; 559 } 560 561 for (id = 0; id < ARRAY_SIZE(requests); id++) { 562 struct i915_request *rq; 563 struct file *state; 564 565 rq = requests[id]; 566 if (!rq) 567 continue; 568 569 if (rq->fence.error) { 570 err = -EIO; 571 goto out; 572 } 573 574 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 575 if (!rq->context->state) 576 continue; 577 578 /* Keep a copy of the state's backing pages; free the obj */ 579 state = shmem_create_from_object(rq->context->state->obj); 580 if (IS_ERR(state)) { 581 err = PTR_ERR(state); 582 goto out; 583 } 584 rq->engine->default_state = state; 585 } 586 587 out: 588 /* 589 * If we have to abandon now, we expect the engines to be idle 590 * and ready to be torn-down. The quickest way we can accomplish 591 * this is by declaring ourselves wedged. 592 */ 593 if (err) 594 intel_gt_set_wedged(gt); 595 596 for (id = 0; id < ARRAY_SIZE(requests); id++) { 597 struct intel_context *ce; 598 struct i915_request *rq; 599 600 rq = requests[id]; 601 if (!rq) 602 continue; 603 604 ce = rq->context; 605 i915_request_put(rq); 606 intel_context_put(ce); 607 } 608 return err; 609 } 610 611 static int __engines_verify_workarounds(struct intel_gt *gt) 612 { 613 struct intel_engine_cs *engine; 614 enum intel_engine_id id; 615 int err = 0; 616 617 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 618 return 0; 619 620 for_each_engine(engine, gt, id) { 621 if (intel_engine_verify_workarounds(engine, "load")) 622 err = -EIO; 623 } 624 625 /* Flush and restore the kernel context for safety */ 626 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 627 err = -EIO; 628 629 return err; 630 } 631 632 static void __intel_gt_disable(struct intel_gt *gt) 633 { 634 intel_gt_set_wedged_on_fini(gt); 635 636 intel_gt_suspend_prepare(gt); 637 intel_gt_suspend_late(gt); 638 639 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 640 } 641 642 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 643 { 644 long remaining_timeout; 645 646 /* If the device is asleep, we have no requests outstanding */ 647 if (!intel_gt_pm_is_awake(gt)) 648 return 0; 649 650 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 651 &remaining_timeout)) > 0) { 652 cond_resched(); 653 if (signal_pending(current)) 654 return -EINTR; 655 } 656 657 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 658 remaining_timeout); 659 } 660 661 int intel_gt_init(struct intel_gt *gt) 662 { 663 int err; 664 665 err = i915_inject_probe_error(gt->i915, -ENODEV); 666 if (err) 667 return err; 668 669 intel_gt_init_workarounds(gt); 670 671 /* 672 * This is just a security blanket to placate dragons. 673 * On some systems, we very sporadically observe that the first TLBs 674 * used by the CS may be stale, despite us poking the TLB reset. If 675 * we hold the forcewake during initialisation these problems 676 * just magically go away. 677 */ 678 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 679 680 err = intel_gt_init_scratch(gt, 681 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 682 if (err) 683 goto out_fw; 684 685 intel_gt_pm_init(gt); 686 687 gt->vm = kernel_vm(gt); 688 if (!gt->vm) { 689 err = -ENOMEM; 690 goto err_pm; 691 } 692 693 intel_set_mocs_index(gt); 694 695 err = intel_engines_init(gt); 696 if (err) 697 goto err_engines; 698 699 err = intel_uc_init(>->uc); 700 if (err) 701 goto err_engines; 702 703 err = intel_gt_resume(gt); 704 if (err) 705 goto err_uc_init; 706 707 err = __engines_record_defaults(gt); 708 if (err) 709 goto err_gt; 710 711 err = __engines_verify_workarounds(gt); 712 if (err) 713 goto err_gt; 714 715 intel_uc_init_late(>->uc); 716 717 err = i915_inject_probe_error(gt->i915, -EIO); 718 if (err) 719 goto err_gt; 720 721 intel_migrate_init(>->migrate, gt); 722 723 intel_pxp_init(>->pxp); 724 725 goto out_fw; 726 err_gt: 727 __intel_gt_disable(gt); 728 intel_uc_fini_hw(>->uc); 729 err_uc_init: 730 intel_uc_fini(>->uc); 731 err_engines: 732 intel_engines_release(gt); 733 i915_vm_put(fetch_and_zero(>->vm)); 734 err_pm: 735 intel_gt_pm_fini(gt); 736 intel_gt_fini_scratch(gt); 737 out_fw: 738 if (err) 739 intel_gt_set_wedged_on_init(gt); 740 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 741 return err; 742 } 743 744 void intel_gt_driver_remove(struct intel_gt *gt) 745 { 746 __intel_gt_disable(gt); 747 748 intel_migrate_fini(>->migrate); 749 intel_uc_driver_remove(>->uc); 750 751 intel_engines_release(gt); 752 753 intel_gt_flush_buffer_pool(gt); 754 } 755 756 void intel_gt_driver_unregister(struct intel_gt *gt) 757 { 758 intel_wakeref_t wakeref; 759 760 intel_rps_driver_unregister(>->rps); 761 762 intel_pxp_fini(>->pxp); 763 764 /* 765 * Upon unregistering the device to prevent any new users, cancel 766 * all in-flight requests so that we can quickly unbind the active 767 * resources. 768 */ 769 intel_gt_set_wedged_on_fini(gt); 770 771 /* Scrub all HW state upon release */ 772 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 773 __intel_gt_reset(gt, ALL_ENGINES); 774 } 775 776 void intel_gt_driver_release(struct intel_gt *gt) 777 { 778 struct i915_address_space *vm; 779 780 vm = fetch_and_zero(>->vm); 781 if (vm) /* FIXME being called twice on error paths :( */ 782 i915_vm_put(vm); 783 784 intel_wa_list_free(>->wa_list); 785 intel_gt_pm_fini(gt); 786 intel_gt_fini_scratch(gt); 787 intel_gt_fini_buffer_pool(gt); 788 } 789 790 void intel_gt_driver_late_release(struct intel_gt *gt) 791 { 792 /* We need to wait for inflight RCU frees to release their grip */ 793 rcu_barrier(); 794 795 intel_uc_driver_late_release(>->uc); 796 intel_gt_fini_requests(gt); 797 intel_gt_fini_reset(gt); 798 intel_gt_fini_timelines(gt); 799 intel_engines_free(gt); 800 } 801 802 /** 803 * intel_gt_reg_needs_read_steering - determine whether a register read 804 * requires explicit steering 805 * @gt: GT structure 806 * @reg: the register to check steering requirements for 807 * @type: type of multicast steering to check 808 * 809 * Determines whether @reg needs explicit steering of a specific type for 810 * reads. 811 * 812 * Returns false if @reg does not belong to a register range of the given 813 * steering type, or if the default (subslice-based) steering IDs are suitable 814 * for @type steering too. 815 */ 816 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, 817 i915_reg_t reg, 818 enum intel_steering_type type) 819 { 820 const u32 offset = i915_mmio_reg_offset(reg); 821 const struct intel_mmio_range *entry; 822 823 if (likely(!intel_gt_needs_read_steering(gt, type))) 824 return false; 825 826 for (entry = gt->steering_table[type]; entry->end; entry++) { 827 if (offset >= entry->start && offset <= entry->end) 828 return true; 829 } 830 831 return false; 832 } 833 834 /** 835 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering 836 * @gt: GT structure 837 * @type: multicast register type 838 * @sliceid: Slice ID returned 839 * @subsliceid: Subslice ID returned 840 * 841 * Determines sliceid and subsliceid values that will steer reads 842 * of a specific multicast register class to a valid value. 843 */ 844 static void intel_gt_get_valid_steering(struct intel_gt *gt, 845 enum intel_steering_type type, 846 u8 *sliceid, u8 *subsliceid) 847 { 848 switch (type) { 849 case L3BANK: 850 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ 851 852 *sliceid = 0; /* unused */ 853 *subsliceid = __ffs(gt->info.l3bank_mask); 854 break; 855 case MSLICE: 856 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 857 858 *sliceid = __ffs(gt->info.mslice_mask); 859 *subsliceid = 0; /* unused */ 860 break; 861 case LNCF: 862 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 863 864 /* 865 * An LNCF is always present if its mslice is present, so we 866 * can safely just steer to LNCF 0 in all cases. 867 */ 868 *sliceid = __ffs(gt->info.mslice_mask) << 1; 869 *subsliceid = 0; /* unused */ 870 break; 871 default: 872 MISSING_CASE(type); 873 *sliceid = 0; 874 *subsliceid = 0; 875 } 876 } 877 878 /** 879 * intel_gt_read_register_fw - reads a GT register with support for multicast 880 * @gt: GT structure 881 * @reg: register to read 882 * 883 * This function will read a GT register. If the register is a multicast 884 * register, the read will be steered to a valid instance (i.e., one that 885 * isn't fused off or powered down by power gating). 886 * 887 * Returns the value from a valid instance of @reg. 888 */ 889 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) 890 { 891 int type; 892 u8 sliceid, subsliceid; 893 894 for (type = 0; type < NUM_STEERING_TYPES; type++) { 895 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 896 intel_gt_get_valid_steering(gt, type, &sliceid, 897 &subsliceid); 898 return intel_uncore_read_with_mcr_steering_fw(gt->uncore, 899 reg, 900 sliceid, 901 subsliceid); 902 } 903 } 904 905 return intel_uncore_read_fw(gt->uncore, reg); 906 } 907 908 void intel_gt_info_print(const struct intel_gt_info *info, 909 struct drm_printer *p) 910 { 911 drm_printf(p, "available engines: %x\n", info->engine_mask); 912 913 intel_sseu_dump(&info->sseu, p); 914 } 915