1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_managed.h> 7 #include <drm/intel-gtt.h> 8 9 #include "gem/i915_gem_internal.h" 10 #include "gem/i915_gem_lmem.h" 11 #include "pxp/intel_pxp.h" 12 13 #include "i915_drv.h" 14 #include "i915_perf_oa_regs.h" 15 #include "intel_context.h" 16 #include "intel_engine_pm.h" 17 #include "intel_engine_regs.h" 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gt.h" 20 #include "intel_gt_buffer_pool.h" 21 #include "intel_gt_clock_utils.h" 22 #include "intel_gt_debugfs.h" 23 #include "intel_gt_mcr.h" 24 #include "intel_gt_pm.h" 25 #include "intel_gt_regs.h" 26 #include "intel_gt_requests.h" 27 #include "intel_migrate.h" 28 #include "intel_mocs.h" 29 #include "intel_pci_config.h" 30 #include "intel_pm.h" 31 #include "intel_rc6.h" 32 #include "intel_renderstate.h" 33 #include "intel_rps.h" 34 #include "intel_sa_media.h" 35 #include "intel_gt_sysfs.h" 36 #include "intel_uncore.h" 37 #include "shmem_utils.h" 38 39 void intel_gt_common_init_early(struct intel_gt *gt) 40 { 41 spin_lock_init(gt->irq_lock); 42 43 INIT_LIST_HEAD(>->closed_vma); 44 spin_lock_init(>->closed_lock); 45 46 init_llist_head(>->watchdog.list); 47 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 48 49 intel_gt_init_buffer_pool(gt); 50 intel_gt_init_reset(gt); 51 intel_gt_init_requests(gt); 52 intel_gt_init_timelines(gt); 53 mutex_init(>->tlb.invalidate_lock); 54 seqcount_mutex_init(>->tlb.seqno, >->tlb.invalidate_lock); 55 intel_gt_pm_init_early(gt); 56 57 intel_uc_init_early(>->uc); 58 intel_rps_init_early(>->rps); 59 } 60 61 /* Preliminary initialization of Tile 0 */ 62 int intel_root_gt_init_early(struct drm_i915_private *i915) 63 { 64 struct intel_gt *gt = to_gt(i915); 65 66 gt->i915 = i915; 67 gt->uncore = &i915->uncore; 68 gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL); 69 if (!gt->irq_lock) 70 return -ENOMEM; 71 72 intel_gt_common_init_early(gt); 73 74 return 0; 75 } 76 77 static int intel_gt_probe_lmem(struct intel_gt *gt) 78 { 79 struct drm_i915_private *i915 = gt->i915; 80 unsigned int instance = gt->info.id; 81 int id = INTEL_REGION_LMEM_0 + instance; 82 struct intel_memory_region *mem; 83 int err; 84 85 mem = intel_gt_setup_lmem(gt); 86 if (IS_ERR(mem)) { 87 err = PTR_ERR(mem); 88 if (err == -ENODEV) 89 return 0; 90 91 drm_err(&i915->drm, 92 "Failed to setup region(%d) type=%d\n", 93 err, INTEL_MEMORY_LOCAL); 94 return err; 95 } 96 97 mem->id = id; 98 mem->instance = instance; 99 100 intel_memory_region_set_name(mem, "local%u", mem->instance); 101 102 GEM_BUG_ON(!HAS_REGION(i915, id)); 103 GEM_BUG_ON(i915->mm.regions[id]); 104 i915->mm.regions[id] = mem; 105 106 return 0; 107 } 108 109 int intel_gt_assign_ggtt(struct intel_gt *gt) 110 { 111 gt->ggtt = drmm_kzalloc(>->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL); 112 113 return gt->ggtt ? 0 : -ENOMEM; 114 } 115 116 int intel_gt_init_mmio(struct intel_gt *gt) 117 { 118 intel_gt_init_clock_frequency(gt); 119 120 intel_uc_init_mmio(>->uc); 121 intel_sseu_info_init(gt); 122 intel_gt_mcr_init(gt); 123 124 return intel_engines_init_mmio(gt); 125 } 126 127 static void init_unused_ring(struct intel_gt *gt, u32 base) 128 { 129 struct intel_uncore *uncore = gt->uncore; 130 131 intel_uncore_write(uncore, RING_CTL(base), 0); 132 intel_uncore_write(uncore, RING_HEAD(base), 0); 133 intel_uncore_write(uncore, RING_TAIL(base), 0); 134 intel_uncore_write(uncore, RING_START(base), 0); 135 } 136 137 static void init_unused_rings(struct intel_gt *gt) 138 { 139 struct drm_i915_private *i915 = gt->i915; 140 141 if (IS_I830(i915)) { 142 init_unused_ring(gt, PRB1_BASE); 143 init_unused_ring(gt, SRB0_BASE); 144 init_unused_ring(gt, SRB1_BASE); 145 init_unused_ring(gt, SRB2_BASE); 146 init_unused_ring(gt, SRB3_BASE); 147 } else if (GRAPHICS_VER(i915) == 2) { 148 init_unused_ring(gt, SRB0_BASE); 149 init_unused_ring(gt, SRB1_BASE); 150 } else if (GRAPHICS_VER(i915) == 3) { 151 init_unused_ring(gt, PRB1_BASE); 152 init_unused_ring(gt, PRB2_BASE); 153 } 154 } 155 156 int intel_gt_init_hw(struct intel_gt *gt) 157 { 158 struct drm_i915_private *i915 = gt->i915; 159 struct intel_uncore *uncore = gt->uncore; 160 int ret; 161 162 gt->last_init_time = ktime_get(); 163 164 /* Double layer security blanket, see i915_gem_init() */ 165 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 166 167 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 168 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 169 170 if (IS_HASWELL(i915)) 171 intel_uncore_write(uncore, 172 HSW_MI_PREDICATE_RESULT_2, 173 IS_HSW_GT3(i915) ? 174 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 175 176 /* Apply the GT workarounds... */ 177 intel_gt_apply_workarounds(gt); 178 /* ...and determine whether they are sticking. */ 179 intel_gt_verify_workarounds(gt, "init"); 180 181 intel_gt_init_swizzling(gt); 182 183 /* 184 * At least 830 can leave some of the unused rings 185 * "active" (ie. head != tail) after resume which 186 * will prevent c3 entry. Makes sure all unused rings 187 * are totally idle. 188 */ 189 init_unused_rings(gt); 190 191 ret = i915_ppgtt_init_hw(gt); 192 if (ret) { 193 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 194 goto out; 195 } 196 197 /* We can't enable contexts until all firmware is loaded */ 198 ret = intel_uc_init_hw(>->uc); 199 if (ret) { 200 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 201 goto out; 202 } 203 204 intel_mocs_init(gt); 205 206 out: 207 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 208 return ret; 209 } 210 211 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 212 { 213 intel_uncore_rmw(uncore, reg, 0, set); 214 } 215 216 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 217 { 218 intel_uncore_rmw(uncore, reg, clr, 0); 219 } 220 221 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 222 { 223 intel_uncore_rmw(uncore, reg, 0, 0); 224 } 225 226 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 227 { 228 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 229 GEN6_RING_FAULT_REG_POSTING_READ(engine); 230 } 231 232 i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt) 233 { 234 /* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */ 235 if (GRAPHICS_VER(gt->i915) < 11) 236 return INVALID_MMIO_REG; 237 238 return gt->type == GT_MEDIA ? 239 MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS; 240 } 241 242 void 243 intel_gt_clear_error_registers(struct intel_gt *gt, 244 intel_engine_mask_t engine_mask) 245 { 246 struct drm_i915_private *i915 = gt->i915; 247 struct intel_uncore *uncore = gt->uncore; 248 u32 eir; 249 250 if (GRAPHICS_VER(i915) != 2) 251 clear_register(uncore, PGTBL_ER); 252 253 if (GRAPHICS_VER(i915) < 4) 254 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 255 else 256 clear_register(uncore, IPEIR_I965); 257 258 clear_register(uncore, EIR); 259 eir = intel_uncore_read(uncore, EIR); 260 if (eir) { 261 /* 262 * some errors might have become stuck, 263 * mask them. 264 */ 265 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 266 rmw_set(uncore, EMR, eir); 267 intel_uncore_write(uncore, GEN2_IIR, 268 I915_MASTER_ERROR_INTERRUPT); 269 } 270 271 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { 272 intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG, 273 RING_FAULT_VALID, 0); 274 intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG); 275 } else if (GRAPHICS_VER(i915) >= 12) { 276 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 277 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 278 } else if (GRAPHICS_VER(i915) >= 8) { 279 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 280 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 281 } else if (GRAPHICS_VER(i915) >= 6) { 282 struct intel_engine_cs *engine; 283 enum intel_engine_id id; 284 285 for_each_engine_masked(engine, gt, engine_mask, id) 286 gen6_clear_engine_error_register(engine); 287 } 288 } 289 290 static void gen6_check_faults(struct intel_gt *gt) 291 { 292 struct intel_engine_cs *engine; 293 enum intel_engine_id id; 294 u32 fault; 295 296 for_each_engine(engine, gt, id) { 297 fault = GEN6_RING_FAULT_REG_READ(engine); 298 if (fault & RING_FAULT_VALID) { 299 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 300 "\tAddr: 0x%08lx\n" 301 "\tAddress space: %s\n" 302 "\tSource ID: %d\n" 303 "\tType: %d\n", 304 fault & PAGE_MASK, 305 fault & RING_FAULT_GTTSEL_MASK ? 306 "GGTT" : "PPGTT", 307 RING_FAULT_SRCID(fault), 308 RING_FAULT_FAULT_TYPE(fault)); 309 } 310 } 311 } 312 313 static void xehp_check_faults(struct intel_gt *gt) 314 { 315 u32 fault; 316 317 /* 318 * Although the fault register now lives in an MCR register range, 319 * the GAM registers are special and we only truly need to read 320 * the "primary" GAM instance rather than handling each instance 321 * individually. intel_gt_mcr_read_any() will automatically steer 322 * toward the primary instance. 323 */ 324 fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG); 325 if (fault & RING_FAULT_VALID) { 326 u32 fault_data0, fault_data1; 327 u64 fault_addr; 328 329 fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0); 330 fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1); 331 332 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 333 ((u64)fault_data0 << 12); 334 335 drm_dbg(>->i915->drm, "Unexpected fault\n" 336 "\tAddr: 0x%08x_%08x\n" 337 "\tAddress space: %s\n" 338 "\tEngine ID: %d\n" 339 "\tSource ID: %d\n" 340 "\tType: %d\n", 341 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 342 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 343 GEN8_RING_FAULT_ENGINE_ID(fault), 344 RING_FAULT_SRCID(fault), 345 RING_FAULT_FAULT_TYPE(fault)); 346 } 347 } 348 349 static void gen8_check_faults(struct intel_gt *gt) 350 { 351 struct intel_uncore *uncore = gt->uncore; 352 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 353 u32 fault; 354 355 if (GRAPHICS_VER(gt->i915) >= 12) { 356 fault_reg = GEN12_RING_FAULT_REG; 357 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 358 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 359 } else { 360 fault_reg = GEN8_RING_FAULT_REG; 361 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 362 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 363 } 364 365 fault = intel_uncore_read(uncore, fault_reg); 366 if (fault & RING_FAULT_VALID) { 367 u32 fault_data0, fault_data1; 368 u64 fault_addr; 369 370 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 371 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 372 373 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 374 ((u64)fault_data0 << 12); 375 376 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 377 "\tAddr: 0x%08x_%08x\n" 378 "\tAddress space: %s\n" 379 "\tEngine ID: %d\n" 380 "\tSource ID: %d\n" 381 "\tType: %d\n", 382 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 383 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 384 GEN8_RING_FAULT_ENGINE_ID(fault), 385 RING_FAULT_SRCID(fault), 386 RING_FAULT_FAULT_TYPE(fault)); 387 } 388 } 389 390 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 391 { 392 struct drm_i915_private *i915 = gt->i915; 393 394 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 395 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 396 xehp_check_faults(gt); 397 else if (GRAPHICS_VER(i915) >= 8) 398 gen8_check_faults(gt); 399 else if (GRAPHICS_VER(i915) >= 6) 400 gen6_check_faults(gt); 401 else 402 return; 403 404 intel_gt_clear_error_registers(gt, ALL_ENGINES); 405 } 406 407 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 408 { 409 struct intel_uncore *uncore = gt->uncore; 410 intel_wakeref_t wakeref; 411 412 /* 413 * No actual flushing is required for the GTT write domain for reads 414 * from the GTT domain. Writes to it "immediately" go to main memory 415 * as far as we know, so there's no chipset flush. It also doesn't 416 * land in the GPU render cache. 417 * 418 * However, we do have to enforce the order so that all writes through 419 * the GTT land before any writes to the device, such as updates to 420 * the GATT itself. 421 * 422 * We also have to wait a bit for the writes to land from the GTT. 423 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 424 * timing. This issue has only been observed when switching quickly 425 * between GTT writes and CPU reads from inside the kernel on recent hw, 426 * and it appears to only affect discrete GTT blocks (i.e. on LLC 427 * system agents we cannot reproduce this behaviour, until Cannonlake 428 * that was!). 429 */ 430 431 wmb(); 432 433 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 434 return; 435 436 intel_gt_chipset_flush(gt); 437 438 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 439 unsigned long flags; 440 441 spin_lock_irqsave(&uncore->lock, flags); 442 intel_uncore_posting_read_fw(uncore, 443 RING_HEAD(RENDER_RING_BASE)); 444 spin_unlock_irqrestore(&uncore->lock, flags); 445 } 446 } 447 448 void intel_gt_chipset_flush(struct intel_gt *gt) 449 { 450 wmb(); 451 if (GRAPHICS_VER(gt->i915) < 6) 452 intel_ggtt_gmch_flush(); 453 } 454 455 void intel_gt_driver_register(struct intel_gt *gt) 456 { 457 intel_gsc_init(>->gsc, gt->i915); 458 459 intel_rps_driver_register(>->rps); 460 461 intel_gt_debugfs_register(gt); 462 intel_gt_sysfs_register(gt); 463 } 464 465 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 466 { 467 struct drm_i915_private *i915 = gt->i915; 468 struct drm_i915_gem_object *obj; 469 struct i915_vma *vma; 470 int ret; 471 472 obj = i915_gem_object_create_lmem(i915, size, 473 I915_BO_ALLOC_VOLATILE | 474 I915_BO_ALLOC_GPU_ONLY); 475 if (IS_ERR(obj)) 476 obj = i915_gem_object_create_stolen(i915, size); 477 if (IS_ERR(obj)) 478 obj = i915_gem_object_create_internal(i915, size); 479 if (IS_ERR(obj)) { 480 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 481 return PTR_ERR(obj); 482 } 483 484 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 485 if (IS_ERR(vma)) { 486 ret = PTR_ERR(vma); 487 goto err_unref; 488 } 489 490 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 491 if (ret) 492 goto err_unref; 493 494 gt->scratch = i915_vma_make_unshrinkable(vma); 495 496 return 0; 497 498 err_unref: 499 i915_gem_object_put(obj); 500 return ret; 501 } 502 503 static void intel_gt_fini_scratch(struct intel_gt *gt) 504 { 505 i915_vma_unpin_and_release(>->scratch, 0); 506 } 507 508 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 509 { 510 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 511 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 512 else 513 return i915_vm_get(>->ggtt->vm); 514 } 515 516 static int __engines_record_defaults(struct intel_gt *gt) 517 { 518 struct i915_request *requests[I915_NUM_ENGINES] = {}; 519 struct intel_engine_cs *engine; 520 enum intel_engine_id id; 521 int err = 0; 522 523 /* 524 * As we reset the gpu during very early sanitisation, the current 525 * register state on the GPU should reflect its defaults values. 526 * We load a context onto the hw (with restore-inhibit), then switch 527 * over to a second context to save that default register state. We 528 * can then prime every new context with that state so they all start 529 * from the same default HW values. 530 */ 531 532 for_each_engine(engine, gt, id) { 533 struct intel_renderstate so; 534 struct intel_context *ce; 535 struct i915_request *rq; 536 537 /* We must be able to switch to something! */ 538 GEM_BUG_ON(!engine->kernel_context); 539 540 ce = intel_context_create(engine); 541 if (IS_ERR(ce)) { 542 err = PTR_ERR(ce); 543 goto out; 544 } 545 546 err = intel_renderstate_init(&so, ce); 547 if (err) 548 goto err; 549 550 rq = i915_request_create(ce); 551 if (IS_ERR(rq)) { 552 err = PTR_ERR(rq); 553 goto err_fini; 554 } 555 556 err = intel_engine_emit_ctx_wa(rq); 557 if (err) 558 goto err_rq; 559 560 err = intel_renderstate_emit(&so, rq); 561 if (err) 562 goto err_rq; 563 564 err_rq: 565 requests[id] = i915_request_get(rq); 566 i915_request_add(rq); 567 err_fini: 568 intel_renderstate_fini(&so, ce); 569 err: 570 if (err) { 571 intel_context_put(ce); 572 goto out; 573 } 574 } 575 576 /* Flush the default context image to memory, and enable powersaving. */ 577 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 578 err = -EIO; 579 goto out; 580 } 581 582 for (id = 0; id < ARRAY_SIZE(requests); id++) { 583 struct i915_request *rq; 584 struct file *state; 585 586 rq = requests[id]; 587 if (!rq) 588 continue; 589 590 if (rq->fence.error) { 591 err = -EIO; 592 goto out; 593 } 594 595 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 596 if (!rq->context->state) 597 continue; 598 599 /* Keep a copy of the state's backing pages; free the obj */ 600 state = shmem_create_from_object(rq->context->state->obj); 601 if (IS_ERR(state)) { 602 err = PTR_ERR(state); 603 goto out; 604 } 605 rq->engine->default_state = state; 606 } 607 608 out: 609 /* 610 * If we have to abandon now, we expect the engines to be idle 611 * and ready to be torn-down. The quickest way we can accomplish 612 * this is by declaring ourselves wedged. 613 */ 614 if (err) 615 intel_gt_set_wedged(gt); 616 617 for (id = 0; id < ARRAY_SIZE(requests); id++) { 618 struct intel_context *ce; 619 struct i915_request *rq; 620 621 rq = requests[id]; 622 if (!rq) 623 continue; 624 625 ce = rq->context; 626 i915_request_put(rq); 627 intel_context_put(ce); 628 } 629 return err; 630 } 631 632 static int __engines_verify_workarounds(struct intel_gt *gt) 633 { 634 struct intel_engine_cs *engine; 635 enum intel_engine_id id; 636 int err = 0; 637 638 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 639 return 0; 640 641 for_each_engine(engine, gt, id) { 642 if (intel_engine_verify_workarounds(engine, "load")) 643 err = -EIO; 644 } 645 646 /* Flush and restore the kernel context for safety */ 647 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 648 err = -EIO; 649 650 return err; 651 } 652 653 static void __intel_gt_disable(struct intel_gt *gt) 654 { 655 intel_gt_set_wedged_on_fini(gt); 656 657 intel_gt_suspend_prepare(gt); 658 intel_gt_suspend_late(gt); 659 660 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 661 } 662 663 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 664 { 665 long remaining_timeout; 666 667 /* If the device is asleep, we have no requests outstanding */ 668 if (!intel_gt_pm_is_awake(gt)) 669 return 0; 670 671 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 672 &remaining_timeout)) > 0) { 673 cond_resched(); 674 if (signal_pending(current)) 675 return -EINTR; 676 } 677 678 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 679 remaining_timeout); 680 } 681 682 int intel_gt_init(struct intel_gt *gt) 683 { 684 int err; 685 686 err = i915_inject_probe_error(gt->i915, -ENODEV); 687 if (err) 688 return err; 689 690 intel_gt_init_workarounds(gt); 691 692 /* 693 * This is just a security blanket to placate dragons. 694 * On some systems, we very sporadically observe that the first TLBs 695 * used by the CS may be stale, despite us poking the TLB reset. If 696 * we hold the forcewake during initialisation these problems 697 * just magically go away. 698 */ 699 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 700 701 err = intel_gt_init_scratch(gt, 702 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 703 if (err) 704 goto out_fw; 705 706 intel_gt_pm_init(gt); 707 708 gt->vm = kernel_vm(gt); 709 if (!gt->vm) { 710 err = -ENOMEM; 711 goto err_pm; 712 } 713 714 intel_set_mocs_index(gt); 715 716 err = intel_engines_init(gt); 717 if (err) 718 goto err_engines; 719 720 err = intel_uc_init(>->uc); 721 if (err) 722 goto err_engines; 723 724 err = intel_gt_resume(gt); 725 if (err) 726 goto err_uc_init; 727 728 err = intel_gt_init_hwconfig(gt); 729 if (err) 730 drm_err(>->i915->drm, "Failed to retrieve hwconfig table: %pe\n", 731 ERR_PTR(err)); 732 733 err = __engines_record_defaults(gt); 734 if (err) 735 goto err_gt; 736 737 err = __engines_verify_workarounds(gt); 738 if (err) 739 goto err_gt; 740 741 intel_uc_init_late(>->uc); 742 743 err = i915_inject_probe_error(gt->i915, -EIO); 744 if (err) 745 goto err_gt; 746 747 intel_migrate_init(>->migrate, gt); 748 749 intel_pxp_init(>->pxp); 750 751 goto out_fw; 752 err_gt: 753 __intel_gt_disable(gt); 754 intel_uc_fini_hw(>->uc); 755 err_uc_init: 756 intel_uc_fini(>->uc); 757 err_engines: 758 intel_engines_release(gt); 759 i915_vm_put(fetch_and_zero(>->vm)); 760 err_pm: 761 intel_gt_pm_fini(gt); 762 intel_gt_fini_scratch(gt); 763 out_fw: 764 if (err) 765 intel_gt_set_wedged_on_init(gt); 766 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 767 return err; 768 } 769 770 void intel_gt_driver_remove(struct intel_gt *gt) 771 { 772 __intel_gt_disable(gt); 773 774 intel_migrate_fini(>->migrate); 775 intel_uc_driver_remove(>->uc); 776 777 intel_engines_release(gt); 778 779 intel_gt_flush_buffer_pool(gt); 780 } 781 782 void intel_gt_driver_unregister(struct intel_gt *gt) 783 { 784 intel_wakeref_t wakeref; 785 786 intel_gt_sysfs_unregister(gt); 787 intel_rps_driver_unregister(>->rps); 788 intel_gsc_fini(>->gsc); 789 790 intel_pxp_fini(>->pxp); 791 792 /* 793 * Upon unregistering the device to prevent any new users, cancel 794 * all in-flight requests so that we can quickly unbind the active 795 * resources. 796 */ 797 intel_gt_set_wedged_on_fini(gt); 798 799 /* Scrub all HW state upon release */ 800 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 801 __intel_gt_reset(gt, ALL_ENGINES); 802 } 803 804 void intel_gt_driver_release(struct intel_gt *gt) 805 { 806 struct i915_address_space *vm; 807 808 vm = fetch_and_zero(>->vm); 809 if (vm) /* FIXME being called twice on error paths :( */ 810 i915_vm_put(vm); 811 812 intel_wa_list_free(>->wa_list); 813 intel_gt_pm_fini(gt); 814 intel_gt_fini_scratch(gt); 815 intel_gt_fini_buffer_pool(gt); 816 intel_gt_fini_hwconfig(gt); 817 } 818 819 void intel_gt_driver_late_release_all(struct drm_i915_private *i915) 820 { 821 struct intel_gt *gt; 822 unsigned int id; 823 824 /* We need to wait for inflight RCU frees to release their grip */ 825 rcu_barrier(); 826 827 for_each_gt(gt, i915, id) { 828 intel_uc_driver_late_release(>->uc); 829 intel_gt_fini_requests(gt); 830 intel_gt_fini_reset(gt); 831 intel_gt_fini_timelines(gt); 832 mutex_destroy(>->tlb.invalidate_lock); 833 intel_engines_free(gt); 834 } 835 } 836 837 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr) 838 { 839 int ret; 840 841 if (!gt_is_root(gt)) { 842 struct intel_uncore *uncore; 843 spinlock_t *irq_lock; 844 845 uncore = drmm_kzalloc(>->i915->drm, sizeof(*uncore), GFP_KERNEL); 846 if (!uncore) 847 return -ENOMEM; 848 849 irq_lock = drmm_kzalloc(>->i915->drm, sizeof(*irq_lock), GFP_KERNEL); 850 if (!irq_lock) 851 return -ENOMEM; 852 853 gt->uncore = uncore; 854 gt->irq_lock = irq_lock; 855 856 intel_gt_common_init_early(gt); 857 } 858 859 intel_uncore_init_early(gt->uncore, gt); 860 861 ret = intel_uncore_setup_mmio(gt->uncore, phys_addr); 862 if (ret) 863 return ret; 864 865 gt->phys_addr = phys_addr; 866 867 return 0; 868 } 869 870 int intel_gt_probe_all(struct drm_i915_private *i915) 871 { 872 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 873 struct intel_gt *gt = &i915->gt0; 874 const struct intel_gt_definition *gtdef; 875 phys_addr_t phys_addr; 876 unsigned int mmio_bar; 877 unsigned int i; 878 int ret; 879 880 mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915)); 881 phys_addr = pci_resource_start(pdev, mmio_bar); 882 883 /* 884 * We always have at least one primary GT on any device 885 * and it has been already initialized early during probe 886 * in i915_driver_probe() 887 */ 888 gt->i915 = i915; 889 gt->name = "Primary GT"; 890 gt->info.engine_mask = RUNTIME_INFO(i915)->platform_engine_mask; 891 892 drm_dbg(&i915->drm, "Setting up %s\n", gt->name); 893 ret = intel_gt_tile_setup(gt, phys_addr); 894 if (ret) 895 return ret; 896 897 i915->gt[0] = gt; 898 899 if (!HAS_EXTRA_GT_LIST(i915)) 900 return 0; 901 902 for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]; 903 gtdef->name != NULL; 904 i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) { 905 gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL); 906 if (!gt) { 907 ret = -ENOMEM; 908 goto err; 909 } 910 911 gt->i915 = i915; 912 gt->name = gtdef->name; 913 gt->type = gtdef->type; 914 gt->info.engine_mask = gtdef->engine_mask; 915 gt->info.id = i; 916 917 drm_dbg(&i915->drm, "Setting up %s\n", gt->name); 918 if (GEM_WARN_ON(range_overflows_t(resource_size_t, 919 gtdef->mapping_base, 920 SZ_16M, 921 pci_resource_len(pdev, mmio_bar)))) { 922 ret = -ENODEV; 923 goto err; 924 } 925 926 switch (gtdef->type) { 927 case GT_TILE: 928 ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base); 929 break; 930 931 case GT_MEDIA: 932 ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base, 933 gtdef->gsi_offset); 934 break; 935 936 case GT_PRIMARY: 937 /* Primary GT should not appear in extra GT list */ 938 default: 939 MISSING_CASE(gtdef->type); 940 ret = -ENODEV; 941 } 942 943 if (ret) 944 goto err; 945 946 i915->gt[i] = gt; 947 } 948 949 return 0; 950 951 err: 952 i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret); 953 intel_gt_release_all(i915); 954 955 return ret; 956 } 957 958 int intel_gt_tiles_init(struct drm_i915_private *i915) 959 { 960 struct intel_gt *gt; 961 unsigned int id; 962 int ret; 963 964 for_each_gt(gt, i915, id) { 965 ret = intel_gt_probe_lmem(gt); 966 if (ret) 967 return ret; 968 } 969 970 return 0; 971 } 972 973 void intel_gt_release_all(struct drm_i915_private *i915) 974 { 975 struct intel_gt *gt; 976 unsigned int id; 977 978 for_each_gt(gt, i915, id) 979 i915->gt[id] = NULL; 980 } 981 982 void intel_gt_info_print(const struct intel_gt_info *info, 983 struct drm_printer *p) 984 { 985 drm_printf(p, "available engines: %x\n", info->engine_mask); 986 987 intel_sseu_dump(&info->sseu, p); 988 } 989 990 struct reg_and_bit { 991 union { 992 i915_reg_t reg; 993 i915_mcr_reg_t mcr_reg; 994 }; 995 u32 bit; 996 }; 997 998 static struct reg_and_bit 999 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, 1000 const i915_reg_t *regs, const unsigned int num) 1001 { 1002 const unsigned int class = engine->class; 1003 struct reg_and_bit rb = { }; 1004 1005 if (drm_WARN_ON_ONCE(&engine->i915->drm, 1006 class >= num || !regs[class].reg)) 1007 return rb; 1008 1009 rb.reg = regs[class]; 1010 if (gen8 && class == VIDEO_DECODE_CLASS) 1011 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ 1012 else 1013 rb.bit = engine->instance; 1014 1015 rb.bit = BIT(rb.bit); 1016 1017 return rb; 1018 } 1019 1020 /* 1021 * HW architecture suggest typical invalidation time at 40us, 1022 * with pessimistic cases up to 100us and a recommendation to 1023 * cap at 1ms. We go a bit higher just in case. 1024 */ 1025 #define TLB_INVAL_TIMEOUT_US 100 1026 #define TLB_INVAL_TIMEOUT_MS 4 1027 1028 /* 1029 * On Xe_HP the TLB invalidation registers are located at the same MMIO offsets 1030 * but are now considered MCR registers. Since they exist within a GAM range, 1031 * the primary instance of the register rolls up the status from each unit. 1032 */ 1033 static int wait_for_invalidate(struct intel_gt *gt, struct reg_and_bit rb) 1034 { 1035 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) 1036 return intel_gt_mcr_wait_for_reg_fw(gt, rb.mcr_reg, rb.bit, 0, 1037 TLB_INVAL_TIMEOUT_US, 1038 TLB_INVAL_TIMEOUT_MS); 1039 else 1040 return __intel_wait_for_register_fw(gt->uncore, rb.reg, rb.bit, 0, 1041 TLB_INVAL_TIMEOUT_US, 1042 TLB_INVAL_TIMEOUT_MS, 1043 NULL); 1044 } 1045 1046 static void mmio_invalidate_full(struct intel_gt *gt) 1047 { 1048 static const i915_reg_t gen8_regs[] = { 1049 [RENDER_CLASS] = GEN8_RTCR, 1050 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ 1051 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, 1052 [COPY_ENGINE_CLASS] = GEN8_BTCR, 1053 }; 1054 static const i915_reg_t gen12_regs[] = { 1055 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, 1056 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, 1057 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, 1058 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, 1059 [COMPUTE_CLASS] = GEN12_COMPCTX_TLB_INV_CR, 1060 }; 1061 static const i915_mcr_reg_t xehp_regs[] = { 1062 [RENDER_CLASS] = XEHP_GFX_TLB_INV_CR, 1063 [VIDEO_DECODE_CLASS] = XEHP_VD_TLB_INV_CR, 1064 [VIDEO_ENHANCEMENT_CLASS] = XEHP_VE_TLB_INV_CR, 1065 [COPY_ENGINE_CLASS] = XEHP_BLT_TLB_INV_CR, 1066 [COMPUTE_CLASS] = XEHP_COMPCTX_TLB_INV_CR, 1067 }; 1068 struct drm_i915_private *i915 = gt->i915; 1069 struct intel_uncore *uncore = gt->uncore; 1070 struct intel_engine_cs *engine; 1071 intel_engine_mask_t awake, tmp; 1072 enum intel_engine_id id; 1073 const i915_reg_t *regs; 1074 unsigned int num = 0; 1075 1076 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { 1077 regs = NULL; 1078 num = ARRAY_SIZE(xehp_regs); 1079 } else if (GRAPHICS_VER(i915) == 12) { 1080 regs = gen12_regs; 1081 num = ARRAY_SIZE(gen12_regs); 1082 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 1083 regs = gen8_regs; 1084 num = ARRAY_SIZE(gen8_regs); 1085 } else if (GRAPHICS_VER(i915) < 8) { 1086 return; 1087 } 1088 1089 if (drm_WARN_ONCE(&i915->drm, !num, 1090 "Platform does not implement TLB invalidation!")) 1091 return; 1092 1093 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 1094 1095 spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */ 1096 1097 awake = 0; 1098 for_each_engine(engine, gt, id) { 1099 struct reg_and_bit rb; 1100 1101 if (!intel_engine_pm_is_awake(engine)) 1102 continue; 1103 1104 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { 1105 intel_gt_mcr_multicast_write_fw(gt, 1106 xehp_regs[engine->class], 1107 BIT(engine->instance)); 1108 } else { 1109 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1110 if (!i915_mmio_reg_offset(rb.reg)) 1111 continue; 1112 1113 intel_uncore_write_fw(uncore, rb.reg, rb.bit); 1114 } 1115 awake |= engine->mask; 1116 } 1117 1118 GT_TRACE(gt, "invalidated engines %08x\n", awake); 1119 1120 /* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */ 1121 if (awake && 1122 (IS_TIGERLAKE(i915) || 1123 IS_DG1(i915) || 1124 IS_ROCKETLAKE(i915) || 1125 IS_ALDERLAKE_S(i915) || 1126 IS_ALDERLAKE_P(i915))) 1127 intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1); 1128 1129 spin_unlock_irq(&uncore->lock); 1130 1131 for_each_engine_masked(engine, gt, awake, tmp) { 1132 struct reg_and_bit rb; 1133 1134 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { 1135 rb.mcr_reg = xehp_regs[engine->class]; 1136 rb.bit = BIT(engine->instance); 1137 } else { 1138 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1139 } 1140 1141 if (wait_for_invalidate(gt, rb)) 1142 drm_err_ratelimited(>->i915->drm, 1143 "%s TLB invalidation did not complete in %ums!\n", 1144 engine->name, TLB_INVAL_TIMEOUT_MS); 1145 } 1146 1147 /* 1148 * Use delayed put since a) we mostly expect a flurry of TLB 1149 * invalidations so it is good to avoid paying the forcewake cost and 1150 * b) it works around a bug in Icelake which cannot cope with too rapid 1151 * transitions. 1152 */ 1153 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); 1154 } 1155 1156 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno) 1157 { 1158 u32 cur = intel_gt_tlb_seqno(gt); 1159 1160 /* Only skip if a *full* TLB invalidate barrier has passed */ 1161 return (s32)(cur - ALIGN(seqno, 2)) > 0; 1162 } 1163 1164 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno) 1165 { 1166 intel_wakeref_t wakeref; 1167 1168 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) 1169 return; 1170 1171 if (intel_gt_is_wedged(gt)) 1172 return; 1173 1174 if (tlb_seqno_passed(gt, seqno)) 1175 return; 1176 1177 with_intel_gt_pm_if_awake(gt, wakeref) { 1178 mutex_lock(>->tlb.invalidate_lock); 1179 if (tlb_seqno_passed(gt, seqno)) 1180 goto unlock; 1181 1182 mmio_invalidate_full(gt); 1183 1184 write_seqcount_invalidate(>->tlb.seqno); 1185 unlock: 1186 mutex_unlock(>->tlb.invalidate_lock); 1187 } 1188 } 1189