1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_managed.h> 7 #include <drm/intel-gtt.h> 8 9 #include "gem/i915_gem_internal.h" 10 #include "gem/i915_gem_lmem.h" 11 #include "pxp/intel_pxp.h" 12 13 #include "i915_drv.h" 14 #include "i915_perf_oa_regs.h" 15 #include "intel_context.h" 16 #include "intel_engine_pm.h" 17 #include "intel_engine_regs.h" 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gt.h" 20 #include "intel_gt_buffer_pool.h" 21 #include "intel_gt_clock_utils.h" 22 #include "intel_gt_debugfs.h" 23 #include "intel_gt_mcr.h" 24 #include "intel_gt_pm.h" 25 #include "intel_gt_regs.h" 26 #include "intel_gt_requests.h" 27 #include "intel_migrate.h" 28 #include "intel_mocs.h" 29 #include "intel_pm.h" 30 #include "intel_rc6.h" 31 #include "intel_renderstate.h" 32 #include "intel_rps.h" 33 #include "intel_gt_sysfs.h" 34 #include "intel_uncore.h" 35 #include "shmem_utils.h" 36 37 static void __intel_gt_init_early(struct intel_gt *gt) 38 { 39 spin_lock_init(>->irq_lock); 40 41 INIT_LIST_HEAD(>->closed_vma); 42 spin_lock_init(>->closed_lock); 43 44 init_llist_head(>->watchdog.list); 45 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 46 47 intel_gt_init_buffer_pool(gt); 48 intel_gt_init_reset(gt); 49 intel_gt_init_requests(gt); 50 intel_gt_init_timelines(gt); 51 mutex_init(>->tlb.invalidate_lock); 52 seqcount_mutex_init(>->tlb.seqno, >->tlb.invalidate_lock); 53 intel_gt_pm_init_early(gt); 54 55 intel_uc_init_early(>->uc); 56 intel_rps_init_early(>->rps); 57 } 58 59 /* Preliminary initialization of Tile 0 */ 60 void intel_root_gt_init_early(struct drm_i915_private *i915) 61 { 62 struct intel_gt *gt = to_gt(i915); 63 64 gt->i915 = i915; 65 gt->uncore = &i915->uncore; 66 67 __intel_gt_init_early(gt); 68 } 69 70 static int intel_gt_probe_lmem(struct intel_gt *gt) 71 { 72 struct drm_i915_private *i915 = gt->i915; 73 unsigned int instance = gt->info.id; 74 int id = INTEL_REGION_LMEM_0 + instance; 75 struct intel_memory_region *mem; 76 int err; 77 78 mem = intel_gt_setup_lmem(gt); 79 if (IS_ERR(mem)) { 80 err = PTR_ERR(mem); 81 if (err == -ENODEV) 82 return 0; 83 84 drm_err(&i915->drm, 85 "Failed to setup region(%d) type=%d\n", 86 err, INTEL_MEMORY_LOCAL); 87 return err; 88 } 89 90 mem->id = id; 91 mem->instance = instance; 92 93 intel_memory_region_set_name(mem, "local%u", mem->instance); 94 95 GEM_BUG_ON(!HAS_REGION(i915, id)); 96 GEM_BUG_ON(i915->mm.regions[id]); 97 i915->mm.regions[id] = mem; 98 99 return 0; 100 } 101 102 int intel_gt_assign_ggtt(struct intel_gt *gt) 103 { 104 gt->ggtt = drmm_kzalloc(>->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL); 105 106 return gt->ggtt ? 0 : -ENOMEM; 107 } 108 109 int intel_gt_init_mmio(struct intel_gt *gt) 110 { 111 intel_gt_init_clock_frequency(gt); 112 113 intel_uc_init_mmio(>->uc); 114 intel_sseu_info_init(gt); 115 intel_gt_mcr_init(gt); 116 117 return intel_engines_init_mmio(gt); 118 } 119 120 static void init_unused_ring(struct intel_gt *gt, u32 base) 121 { 122 struct intel_uncore *uncore = gt->uncore; 123 124 intel_uncore_write(uncore, RING_CTL(base), 0); 125 intel_uncore_write(uncore, RING_HEAD(base), 0); 126 intel_uncore_write(uncore, RING_TAIL(base), 0); 127 intel_uncore_write(uncore, RING_START(base), 0); 128 } 129 130 static void init_unused_rings(struct intel_gt *gt) 131 { 132 struct drm_i915_private *i915 = gt->i915; 133 134 if (IS_I830(i915)) { 135 init_unused_ring(gt, PRB1_BASE); 136 init_unused_ring(gt, SRB0_BASE); 137 init_unused_ring(gt, SRB1_BASE); 138 init_unused_ring(gt, SRB2_BASE); 139 init_unused_ring(gt, SRB3_BASE); 140 } else if (GRAPHICS_VER(i915) == 2) { 141 init_unused_ring(gt, SRB0_BASE); 142 init_unused_ring(gt, SRB1_BASE); 143 } else if (GRAPHICS_VER(i915) == 3) { 144 init_unused_ring(gt, PRB1_BASE); 145 init_unused_ring(gt, PRB2_BASE); 146 } 147 } 148 149 int intel_gt_init_hw(struct intel_gt *gt) 150 { 151 struct drm_i915_private *i915 = gt->i915; 152 struct intel_uncore *uncore = gt->uncore; 153 int ret; 154 155 gt->last_init_time = ktime_get(); 156 157 /* Double layer security blanket, see i915_gem_init() */ 158 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 159 160 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 161 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 162 163 if (IS_HASWELL(i915)) 164 intel_uncore_write(uncore, 165 HSW_MI_PREDICATE_RESULT_2, 166 IS_HSW_GT3(i915) ? 167 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 168 169 /* Apply the GT workarounds... */ 170 intel_gt_apply_workarounds(gt); 171 /* ...and determine whether they are sticking. */ 172 intel_gt_verify_workarounds(gt, "init"); 173 174 intel_gt_init_swizzling(gt); 175 176 /* 177 * At least 830 can leave some of the unused rings 178 * "active" (ie. head != tail) after resume which 179 * will prevent c3 entry. Makes sure all unused rings 180 * are totally idle. 181 */ 182 init_unused_rings(gt); 183 184 ret = i915_ppgtt_init_hw(gt); 185 if (ret) { 186 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 187 goto out; 188 } 189 190 /* We can't enable contexts until all firmware is loaded */ 191 ret = intel_uc_init_hw(>->uc); 192 if (ret) { 193 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 194 goto out; 195 } 196 197 intel_mocs_init(gt); 198 199 out: 200 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 201 return ret; 202 } 203 204 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 205 { 206 intel_uncore_rmw(uncore, reg, 0, set); 207 } 208 209 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 210 { 211 intel_uncore_rmw(uncore, reg, clr, 0); 212 } 213 214 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 215 { 216 intel_uncore_rmw(uncore, reg, 0, 0); 217 } 218 219 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 220 { 221 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 222 GEN6_RING_FAULT_REG_POSTING_READ(engine); 223 } 224 225 void 226 intel_gt_clear_error_registers(struct intel_gt *gt, 227 intel_engine_mask_t engine_mask) 228 { 229 struct drm_i915_private *i915 = gt->i915; 230 struct intel_uncore *uncore = gt->uncore; 231 u32 eir; 232 233 if (GRAPHICS_VER(i915) != 2) 234 clear_register(uncore, PGTBL_ER); 235 236 if (GRAPHICS_VER(i915) < 4) 237 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 238 else 239 clear_register(uncore, IPEIR_I965); 240 241 clear_register(uncore, EIR); 242 eir = intel_uncore_read(uncore, EIR); 243 if (eir) { 244 /* 245 * some errors might have become stuck, 246 * mask them. 247 */ 248 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 249 rmw_set(uncore, EMR, eir); 250 intel_uncore_write(uncore, GEN2_IIR, 251 I915_MASTER_ERROR_INTERRUPT); 252 } 253 254 if (GRAPHICS_VER(i915) >= 12) { 255 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 256 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 257 } else if (GRAPHICS_VER(i915) >= 8) { 258 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 259 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 260 } else if (GRAPHICS_VER(i915) >= 6) { 261 struct intel_engine_cs *engine; 262 enum intel_engine_id id; 263 264 for_each_engine_masked(engine, gt, engine_mask, id) 265 gen6_clear_engine_error_register(engine); 266 } 267 } 268 269 static void gen6_check_faults(struct intel_gt *gt) 270 { 271 struct intel_engine_cs *engine; 272 enum intel_engine_id id; 273 u32 fault; 274 275 for_each_engine(engine, gt, id) { 276 fault = GEN6_RING_FAULT_REG_READ(engine); 277 if (fault & RING_FAULT_VALID) { 278 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 279 "\tAddr: 0x%08lx\n" 280 "\tAddress space: %s\n" 281 "\tSource ID: %d\n" 282 "\tType: %d\n", 283 fault & PAGE_MASK, 284 fault & RING_FAULT_GTTSEL_MASK ? 285 "GGTT" : "PPGTT", 286 RING_FAULT_SRCID(fault), 287 RING_FAULT_FAULT_TYPE(fault)); 288 } 289 } 290 } 291 292 static void gen8_check_faults(struct intel_gt *gt) 293 { 294 struct intel_uncore *uncore = gt->uncore; 295 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 296 u32 fault; 297 298 if (GRAPHICS_VER(gt->i915) >= 12) { 299 fault_reg = GEN12_RING_FAULT_REG; 300 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 301 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 302 } else { 303 fault_reg = GEN8_RING_FAULT_REG; 304 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 305 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 306 } 307 308 fault = intel_uncore_read(uncore, fault_reg); 309 if (fault & RING_FAULT_VALID) { 310 u32 fault_data0, fault_data1; 311 u64 fault_addr; 312 313 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 314 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 315 316 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 317 ((u64)fault_data0 << 12); 318 319 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 320 "\tAddr: 0x%08x_%08x\n" 321 "\tAddress space: %s\n" 322 "\tEngine ID: %d\n" 323 "\tSource ID: %d\n" 324 "\tType: %d\n", 325 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 326 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 327 GEN8_RING_FAULT_ENGINE_ID(fault), 328 RING_FAULT_SRCID(fault), 329 RING_FAULT_FAULT_TYPE(fault)); 330 } 331 } 332 333 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 334 { 335 struct drm_i915_private *i915 = gt->i915; 336 337 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 338 if (GRAPHICS_VER(i915) >= 8) 339 gen8_check_faults(gt); 340 else if (GRAPHICS_VER(i915) >= 6) 341 gen6_check_faults(gt); 342 else 343 return; 344 345 intel_gt_clear_error_registers(gt, ALL_ENGINES); 346 } 347 348 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 349 { 350 struct intel_uncore *uncore = gt->uncore; 351 intel_wakeref_t wakeref; 352 353 /* 354 * No actual flushing is required for the GTT write domain for reads 355 * from the GTT domain. Writes to it "immediately" go to main memory 356 * as far as we know, so there's no chipset flush. It also doesn't 357 * land in the GPU render cache. 358 * 359 * However, we do have to enforce the order so that all writes through 360 * the GTT land before any writes to the device, such as updates to 361 * the GATT itself. 362 * 363 * We also have to wait a bit for the writes to land from the GTT. 364 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 365 * timing. This issue has only been observed when switching quickly 366 * between GTT writes and CPU reads from inside the kernel on recent hw, 367 * and it appears to only affect discrete GTT blocks (i.e. on LLC 368 * system agents we cannot reproduce this behaviour, until Cannonlake 369 * that was!). 370 */ 371 372 wmb(); 373 374 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 375 return; 376 377 intel_gt_chipset_flush(gt); 378 379 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 380 unsigned long flags; 381 382 spin_lock_irqsave(&uncore->lock, flags); 383 intel_uncore_posting_read_fw(uncore, 384 RING_HEAD(RENDER_RING_BASE)); 385 spin_unlock_irqrestore(&uncore->lock, flags); 386 } 387 } 388 389 void intel_gt_chipset_flush(struct intel_gt *gt) 390 { 391 wmb(); 392 if (GRAPHICS_VER(gt->i915) < 6) 393 intel_ggtt_gmch_flush(); 394 } 395 396 void intel_gt_driver_register(struct intel_gt *gt) 397 { 398 intel_gsc_init(>->gsc, gt->i915); 399 400 intel_rps_driver_register(>->rps); 401 402 intel_gt_debugfs_register(gt); 403 intel_gt_sysfs_register(gt); 404 } 405 406 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 407 { 408 struct drm_i915_private *i915 = gt->i915; 409 struct drm_i915_gem_object *obj; 410 struct i915_vma *vma; 411 int ret; 412 413 obj = i915_gem_object_create_lmem(i915, size, 414 I915_BO_ALLOC_VOLATILE | 415 I915_BO_ALLOC_GPU_ONLY); 416 if (IS_ERR(obj)) 417 obj = i915_gem_object_create_stolen(i915, size); 418 if (IS_ERR(obj)) 419 obj = i915_gem_object_create_internal(i915, size); 420 if (IS_ERR(obj)) { 421 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 422 return PTR_ERR(obj); 423 } 424 425 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 426 if (IS_ERR(vma)) { 427 ret = PTR_ERR(vma); 428 goto err_unref; 429 } 430 431 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 432 if (ret) 433 goto err_unref; 434 435 gt->scratch = i915_vma_make_unshrinkable(vma); 436 437 return 0; 438 439 err_unref: 440 i915_gem_object_put(obj); 441 return ret; 442 } 443 444 static void intel_gt_fini_scratch(struct intel_gt *gt) 445 { 446 i915_vma_unpin_and_release(>->scratch, 0); 447 } 448 449 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 450 { 451 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 452 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 453 else 454 return i915_vm_get(>->ggtt->vm); 455 } 456 457 static int __engines_record_defaults(struct intel_gt *gt) 458 { 459 struct i915_request *requests[I915_NUM_ENGINES] = {}; 460 struct intel_engine_cs *engine; 461 enum intel_engine_id id; 462 int err = 0; 463 464 /* 465 * As we reset the gpu during very early sanitisation, the current 466 * register state on the GPU should reflect its defaults values. 467 * We load a context onto the hw (with restore-inhibit), then switch 468 * over to a second context to save that default register state. We 469 * can then prime every new context with that state so they all start 470 * from the same default HW values. 471 */ 472 473 for_each_engine(engine, gt, id) { 474 struct intel_renderstate so; 475 struct intel_context *ce; 476 struct i915_request *rq; 477 478 /* We must be able to switch to something! */ 479 GEM_BUG_ON(!engine->kernel_context); 480 481 ce = intel_context_create(engine); 482 if (IS_ERR(ce)) { 483 err = PTR_ERR(ce); 484 goto out; 485 } 486 487 err = intel_renderstate_init(&so, ce); 488 if (err) 489 goto err; 490 491 rq = i915_request_create(ce); 492 if (IS_ERR(rq)) { 493 err = PTR_ERR(rq); 494 goto err_fini; 495 } 496 497 err = intel_engine_emit_ctx_wa(rq); 498 if (err) 499 goto err_rq; 500 501 err = intel_renderstate_emit(&so, rq); 502 if (err) 503 goto err_rq; 504 505 err_rq: 506 requests[id] = i915_request_get(rq); 507 i915_request_add(rq); 508 err_fini: 509 intel_renderstate_fini(&so, ce); 510 err: 511 if (err) { 512 intel_context_put(ce); 513 goto out; 514 } 515 } 516 517 /* Flush the default context image to memory, and enable powersaving. */ 518 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 519 err = -EIO; 520 goto out; 521 } 522 523 for (id = 0; id < ARRAY_SIZE(requests); id++) { 524 struct i915_request *rq; 525 struct file *state; 526 527 rq = requests[id]; 528 if (!rq) 529 continue; 530 531 if (rq->fence.error) { 532 err = -EIO; 533 goto out; 534 } 535 536 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 537 if (!rq->context->state) 538 continue; 539 540 /* Keep a copy of the state's backing pages; free the obj */ 541 state = shmem_create_from_object(rq->context->state->obj); 542 if (IS_ERR(state)) { 543 err = PTR_ERR(state); 544 goto out; 545 } 546 rq->engine->default_state = state; 547 } 548 549 out: 550 /* 551 * If we have to abandon now, we expect the engines to be idle 552 * and ready to be torn-down. The quickest way we can accomplish 553 * this is by declaring ourselves wedged. 554 */ 555 if (err) 556 intel_gt_set_wedged(gt); 557 558 for (id = 0; id < ARRAY_SIZE(requests); id++) { 559 struct intel_context *ce; 560 struct i915_request *rq; 561 562 rq = requests[id]; 563 if (!rq) 564 continue; 565 566 ce = rq->context; 567 i915_request_put(rq); 568 intel_context_put(ce); 569 } 570 return err; 571 } 572 573 static int __engines_verify_workarounds(struct intel_gt *gt) 574 { 575 struct intel_engine_cs *engine; 576 enum intel_engine_id id; 577 int err = 0; 578 579 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 580 return 0; 581 582 for_each_engine(engine, gt, id) { 583 if (intel_engine_verify_workarounds(engine, "load")) 584 err = -EIO; 585 } 586 587 /* Flush and restore the kernel context for safety */ 588 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 589 err = -EIO; 590 591 return err; 592 } 593 594 static void __intel_gt_disable(struct intel_gt *gt) 595 { 596 intel_gt_set_wedged_on_fini(gt); 597 598 intel_gt_suspend_prepare(gt); 599 intel_gt_suspend_late(gt); 600 601 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 602 } 603 604 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 605 { 606 long remaining_timeout; 607 608 /* If the device is asleep, we have no requests outstanding */ 609 if (!intel_gt_pm_is_awake(gt)) 610 return 0; 611 612 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 613 &remaining_timeout)) > 0) { 614 cond_resched(); 615 if (signal_pending(current)) 616 return -EINTR; 617 } 618 619 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 620 remaining_timeout); 621 } 622 623 int intel_gt_init(struct intel_gt *gt) 624 { 625 int err; 626 627 err = i915_inject_probe_error(gt->i915, -ENODEV); 628 if (err) 629 return err; 630 631 intel_gt_init_workarounds(gt); 632 633 /* 634 * This is just a security blanket to placate dragons. 635 * On some systems, we very sporadically observe that the first TLBs 636 * used by the CS may be stale, despite us poking the TLB reset. If 637 * we hold the forcewake during initialisation these problems 638 * just magically go away. 639 */ 640 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 641 642 err = intel_gt_init_scratch(gt, 643 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 644 if (err) 645 goto out_fw; 646 647 intel_gt_pm_init(gt); 648 649 gt->vm = kernel_vm(gt); 650 if (!gt->vm) { 651 err = -ENOMEM; 652 goto err_pm; 653 } 654 655 intel_set_mocs_index(gt); 656 657 err = intel_engines_init(gt); 658 if (err) 659 goto err_engines; 660 661 err = intel_uc_init(>->uc); 662 if (err) 663 goto err_engines; 664 665 err = intel_gt_resume(gt); 666 if (err) 667 goto err_uc_init; 668 669 err = intel_gt_init_hwconfig(gt); 670 if (err) 671 drm_err(>->i915->drm, "Failed to retrieve hwconfig table: %pe\n", 672 ERR_PTR(err)); 673 674 err = __engines_record_defaults(gt); 675 if (err) 676 goto err_gt; 677 678 err = __engines_verify_workarounds(gt); 679 if (err) 680 goto err_gt; 681 682 intel_uc_init_late(>->uc); 683 684 err = i915_inject_probe_error(gt->i915, -EIO); 685 if (err) 686 goto err_gt; 687 688 intel_migrate_init(>->migrate, gt); 689 690 intel_pxp_init(>->pxp); 691 692 goto out_fw; 693 err_gt: 694 __intel_gt_disable(gt); 695 intel_uc_fini_hw(>->uc); 696 err_uc_init: 697 intel_uc_fini(>->uc); 698 err_engines: 699 intel_engines_release(gt); 700 i915_vm_put(fetch_and_zero(>->vm)); 701 err_pm: 702 intel_gt_pm_fini(gt); 703 intel_gt_fini_scratch(gt); 704 out_fw: 705 if (err) 706 intel_gt_set_wedged_on_init(gt); 707 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 708 return err; 709 } 710 711 void intel_gt_driver_remove(struct intel_gt *gt) 712 { 713 __intel_gt_disable(gt); 714 715 intel_migrate_fini(>->migrate); 716 intel_uc_driver_remove(>->uc); 717 718 intel_engines_release(gt); 719 720 intel_gt_flush_buffer_pool(gt); 721 } 722 723 void intel_gt_driver_unregister(struct intel_gt *gt) 724 { 725 intel_wakeref_t wakeref; 726 727 intel_gt_sysfs_unregister(gt); 728 intel_rps_driver_unregister(>->rps); 729 intel_gsc_fini(>->gsc); 730 731 intel_pxp_fini(>->pxp); 732 733 /* 734 * Upon unregistering the device to prevent any new users, cancel 735 * all in-flight requests so that we can quickly unbind the active 736 * resources. 737 */ 738 intel_gt_set_wedged_on_fini(gt); 739 740 /* Scrub all HW state upon release */ 741 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 742 __intel_gt_reset(gt, ALL_ENGINES); 743 } 744 745 void intel_gt_driver_release(struct intel_gt *gt) 746 { 747 struct i915_address_space *vm; 748 749 vm = fetch_and_zero(>->vm); 750 if (vm) /* FIXME being called twice on error paths :( */ 751 i915_vm_put(vm); 752 753 intel_wa_list_free(>->wa_list); 754 intel_gt_pm_fini(gt); 755 intel_gt_fini_scratch(gt); 756 intel_gt_fini_buffer_pool(gt); 757 intel_gt_fini_hwconfig(gt); 758 } 759 760 void intel_gt_driver_late_release_all(struct drm_i915_private *i915) 761 { 762 struct intel_gt *gt; 763 unsigned int id; 764 765 /* We need to wait for inflight RCU frees to release their grip */ 766 rcu_barrier(); 767 768 for_each_gt(gt, i915, id) { 769 intel_uc_driver_late_release(>->uc); 770 intel_gt_fini_requests(gt); 771 intel_gt_fini_reset(gt); 772 intel_gt_fini_timelines(gt); 773 mutex_destroy(>->tlb.invalidate_lock); 774 intel_engines_free(gt); 775 } 776 } 777 778 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr) 779 { 780 int ret; 781 782 if (!gt_is_root(gt)) { 783 struct intel_uncore_mmio_debug *mmio_debug; 784 struct intel_uncore *uncore; 785 786 uncore = kzalloc(sizeof(*uncore), GFP_KERNEL); 787 if (!uncore) 788 return -ENOMEM; 789 790 mmio_debug = kzalloc(sizeof(*mmio_debug), GFP_KERNEL); 791 if (!mmio_debug) { 792 kfree(uncore); 793 return -ENOMEM; 794 } 795 796 gt->uncore = uncore; 797 gt->uncore->debug = mmio_debug; 798 799 __intel_gt_init_early(gt); 800 } 801 802 intel_uncore_init_early(gt->uncore, gt); 803 804 ret = intel_uncore_setup_mmio(gt->uncore, phys_addr); 805 if (ret) 806 return ret; 807 808 gt->phys_addr = phys_addr; 809 810 return 0; 811 } 812 813 static void 814 intel_gt_tile_cleanup(struct intel_gt *gt) 815 { 816 intel_uncore_cleanup_mmio(gt->uncore); 817 818 if (!gt_is_root(gt)) { 819 kfree(gt->uncore->debug); 820 kfree(gt->uncore); 821 kfree(gt); 822 } 823 } 824 825 int intel_gt_probe_all(struct drm_i915_private *i915) 826 { 827 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 828 struct intel_gt *gt = &i915->gt0; 829 phys_addr_t phys_addr; 830 unsigned int mmio_bar; 831 int ret; 832 833 mmio_bar = GRAPHICS_VER(i915) == 2 ? 1 : 0; 834 phys_addr = pci_resource_start(pdev, mmio_bar); 835 836 /* 837 * We always have at least one primary GT on any device 838 * and it has been already initialized early during probe 839 * in i915_driver_probe() 840 */ 841 ret = intel_gt_tile_setup(gt, phys_addr); 842 if (ret) 843 return ret; 844 845 i915->gt[0] = gt; 846 847 /* TODO: add more tiles */ 848 return 0; 849 } 850 851 int intel_gt_tiles_init(struct drm_i915_private *i915) 852 { 853 struct intel_gt *gt; 854 unsigned int id; 855 int ret; 856 857 for_each_gt(gt, i915, id) { 858 ret = intel_gt_probe_lmem(gt); 859 if (ret) 860 return ret; 861 } 862 863 return 0; 864 } 865 866 void intel_gt_release_all(struct drm_i915_private *i915) 867 { 868 struct intel_gt *gt; 869 unsigned int id; 870 871 for_each_gt(gt, i915, id) { 872 intel_gt_tile_cleanup(gt); 873 i915->gt[id] = NULL; 874 } 875 } 876 877 void intel_gt_info_print(const struct intel_gt_info *info, 878 struct drm_printer *p) 879 { 880 drm_printf(p, "available engines: %x\n", info->engine_mask); 881 882 intel_sseu_dump(&info->sseu, p); 883 } 884 885 struct reg_and_bit { 886 i915_reg_t reg; 887 u32 bit; 888 }; 889 890 static struct reg_and_bit 891 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, 892 const i915_reg_t *regs, const unsigned int num) 893 { 894 const unsigned int class = engine->class; 895 struct reg_and_bit rb = { }; 896 897 if (drm_WARN_ON_ONCE(&engine->i915->drm, 898 class >= num || !regs[class].reg)) 899 return rb; 900 901 rb.reg = regs[class]; 902 if (gen8 && class == VIDEO_DECODE_CLASS) 903 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ 904 else 905 rb.bit = engine->instance; 906 907 rb.bit = BIT(rb.bit); 908 909 return rb; 910 } 911 912 static void mmio_invalidate_full(struct intel_gt *gt) 913 { 914 static const i915_reg_t gen8_regs[] = { 915 [RENDER_CLASS] = GEN8_RTCR, 916 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ 917 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, 918 [COPY_ENGINE_CLASS] = GEN8_BTCR, 919 }; 920 static const i915_reg_t gen12_regs[] = { 921 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, 922 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, 923 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, 924 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, 925 [COMPUTE_CLASS] = GEN12_COMPCTX_TLB_INV_CR, 926 }; 927 struct drm_i915_private *i915 = gt->i915; 928 struct intel_uncore *uncore = gt->uncore; 929 struct intel_engine_cs *engine; 930 intel_engine_mask_t awake, tmp; 931 enum intel_engine_id id; 932 const i915_reg_t *regs; 933 unsigned int num = 0; 934 935 if (GRAPHICS_VER(i915) == 12) { 936 regs = gen12_regs; 937 num = ARRAY_SIZE(gen12_regs); 938 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 939 regs = gen8_regs; 940 num = ARRAY_SIZE(gen8_regs); 941 } else if (GRAPHICS_VER(i915) < 8) { 942 return; 943 } 944 945 if (drm_WARN_ONCE(&i915->drm, !num, 946 "Platform does not implement TLB invalidation!")) 947 return; 948 949 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 950 951 spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */ 952 953 awake = 0; 954 for_each_engine(engine, gt, id) { 955 struct reg_and_bit rb; 956 957 if (!intel_engine_pm_is_awake(engine)) 958 continue; 959 960 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 961 if (!i915_mmio_reg_offset(rb.reg)) 962 continue; 963 964 intel_uncore_write_fw(uncore, rb.reg, rb.bit); 965 awake |= engine->mask; 966 } 967 968 GT_TRACE(gt, "invalidated engines %08x\n", awake); 969 970 /* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */ 971 if (awake && 972 (IS_TIGERLAKE(i915) || 973 IS_DG1(i915) || 974 IS_ROCKETLAKE(i915) || 975 IS_ALDERLAKE_S(i915) || 976 IS_ALDERLAKE_P(i915))) 977 intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1); 978 979 spin_unlock_irq(&uncore->lock); 980 981 for_each_engine_masked(engine, gt, awake, tmp) { 982 struct reg_and_bit rb; 983 984 /* 985 * HW architecture suggest typical invalidation time at 40us, 986 * with pessimistic cases up to 100us and a recommendation to 987 * cap at 1ms. We go a bit higher just in case. 988 */ 989 const unsigned int timeout_us = 100; 990 const unsigned int timeout_ms = 4; 991 992 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 993 if (__intel_wait_for_register_fw(uncore, 994 rb.reg, rb.bit, 0, 995 timeout_us, timeout_ms, 996 NULL)) 997 drm_err_ratelimited(>->i915->drm, 998 "%s TLB invalidation did not complete in %ums!\n", 999 engine->name, timeout_ms); 1000 } 1001 1002 /* 1003 * Use delayed put since a) we mostly expect a flurry of TLB 1004 * invalidations so it is good to avoid paying the forcewake cost and 1005 * b) it works around a bug in Icelake which cannot cope with too rapid 1006 * transitions. 1007 */ 1008 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); 1009 } 1010 1011 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno) 1012 { 1013 u32 cur = intel_gt_tlb_seqno(gt); 1014 1015 /* Only skip if a *full* TLB invalidate barrier has passed */ 1016 return (s32)(cur - ALIGN(seqno, 2)) > 0; 1017 } 1018 1019 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno) 1020 { 1021 intel_wakeref_t wakeref; 1022 1023 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) 1024 return; 1025 1026 if (intel_gt_is_wedged(gt)) 1027 return; 1028 1029 if (tlb_seqno_passed(gt, seqno)) 1030 return; 1031 1032 with_intel_gt_pm_if_awake(gt, wakeref) { 1033 mutex_lock(>->tlb.invalidate_lock); 1034 if (tlb_seqno_passed(gt, seqno)) 1035 goto unlock; 1036 1037 mmio_invalidate_full(gt); 1038 1039 write_seqcount_invalidate(>->tlb.seqno); 1040 unlock: 1041 mutex_unlock(>->tlb.invalidate_lock); 1042 } 1043 } 1044