1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_managed.h> 7 #include <drm/intel-gtt.h> 8 9 #include "gem/i915_gem_internal.h" 10 #include "gem/i915_gem_lmem.h" 11 #include "pxp/intel_pxp.h" 12 13 #include "i915_drv.h" 14 #include "i915_perf_oa_regs.h" 15 #include "intel_context.h" 16 #include "intel_engine_pm.h" 17 #include "intel_engine_regs.h" 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gt.h" 20 #include "intel_gt_buffer_pool.h" 21 #include "intel_gt_clock_utils.h" 22 #include "intel_gt_debugfs.h" 23 #include "intel_gt_mcr.h" 24 #include "intel_gt_pm.h" 25 #include "intel_gt_regs.h" 26 #include "intel_gt_requests.h" 27 #include "intel_migrate.h" 28 #include "intel_mocs.h" 29 #include "intel_pci_config.h" 30 #include "intel_pm.h" 31 #include "intel_rc6.h" 32 #include "intel_renderstate.h" 33 #include "intel_rps.h" 34 #include "intel_sa_media.h" 35 #include "intel_gt_sysfs.h" 36 #include "intel_uncore.h" 37 #include "shmem_utils.h" 38 39 void intel_gt_common_init_early(struct intel_gt *gt) 40 { 41 spin_lock_init(gt->irq_lock); 42 43 INIT_LIST_HEAD(>->lmem_userfault_list); 44 mutex_init(>->lmem_userfault_lock); 45 INIT_LIST_HEAD(>->closed_vma); 46 spin_lock_init(>->closed_lock); 47 48 init_llist_head(>->watchdog.list); 49 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 50 51 intel_gt_init_buffer_pool(gt); 52 intel_gt_init_reset(gt); 53 intel_gt_init_requests(gt); 54 intel_gt_init_timelines(gt); 55 mutex_init(>->tlb.invalidate_lock); 56 seqcount_mutex_init(>->tlb.seqno, >->tlb.invalidate_lock); 57 intel_gt_pm_init_early(gt); 58 59 intel_uc_init_early(>->uc); 60 intel_rps_init_early(>->rps); 61 } 62 63 /* Preliminary initialization of Tile 0 */ 64 int intel_root_gt_init_early(struct drm_i915_private *i915) 65 { 66 struct intel_gt *gt = to_gt(i915); 67 68 gt->i915 = i915; 69 gt->uncore = &i915->uncore; 70 gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL); 71 if (!gt->irq_lock) 72 return -ENOMEM; 73 74 intel_gt_common_init_early(gt); 75 76 return 0; 77 } 78 79 static int intel_gt_probe_lmem(struct intel_gt *gt) 80 { 81 struct drm_i915_private *i915 = gt->i915; 82 unsigned int instance = gt->info.id; 83 int id = INTEL_REGION_LMEM_0 + instance; 84 struct intel_memory_region *mem; 85 int err; 86 87 mem = intel_gt_setup_lmem(gt); 88 if (IS_ERR(mem)) { 89 err = PTR_ERR(mem); 90 if (err == -ENODEV) 91 return 0; 92 93 drm_err(&i915->drm, 94 "Failed to setup region(%d) type=%d\n", 95 err, INTEL_MEMORY_LOCAL); 96 return err; 97 } 98 99 mem->id = id; 100 mem->instance = instance; 101 102 intel_memory_region_set_name(mem, "local%u", mem->instance); 103 104 GEM_BUG_ON(!HAS_REGION(i915, id)); 105 GEM_BUG_ON(i915->mm.regions[id]); 106 i915->mm.regions[id] = mem; 107 108 return 0; 109 } 110 111 int intel_gt_assign_ggtt(struct intel_gt *gt) 112 { 113 gt->ggtt = drmm_kzalloc(>->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL); 114 115 return gt->ggtt ? 0 : -ENOMEM; 116 } 117 118 int intel_gt_init_mmio(struct intel_gt *gt) 119 { 120 intel_gt_init_clock_frequency(gt); 121 122 intel_uc_init_mmio(>->uc); 123 intel_sseu_info_init(gt); 124 intel_gt_mcr_init(gt); 125 126 return intel_engines_init_mmio(gt); 127 } 128 129 static void init_unused_ring(struct intel_gt *gt, u32 base) 130 { 131 struct intel_uncore *uncore = gt->uncore; 132 133 intel_uncore_write(uncore, RING_CTL(base), 0); 134 intel_uncore_write(uncore, RING_HEAD(base), 0); 135 intel_uncore_write(uncore, RING_TAIL(base), 0); 136 intel_uncore_write(uncore, RING_START(base), 0); 137 } 138 139 static void init_unused_rings(struct intel_gt *gt) 140 { 141 struct drm_i915_private *i915 = gt->i915; 142 143 if (IS_I830(i915)) { 144 init_unused_ring(gt, PRB1_BASE); 145 init_unused_ring(gt, SRB0_BASE); 146 init_unused_ring(gt, SRB1_BASE); 147 init_unused_ring(gt, SRB2_BASE); 148 init_unused_ring(gt, SRB3_BASE); 149 } else if (GRAPHICS_VER(i915) == 2) { 150 init_unused_ring(gt, SRB0_BASE); 151 init_unused_ring(gt, SRB1_BASE); 152 } else if (GRAPHICS_VER(i915) == 3) { 153 init_unused_ring(gt, PRB1_BASE); 154 init_unused_ring(gt, PRB2_BASE); 155 } 156 } 157 158 int intel_gt_init_hw(struct intel_gt *gt) 159 { 160 struct drm_i915_private *i915 = gt->i915; 161 struct intel_uncore *uncore = gt->uncore; 162 int ret; 163 164 gt->last_init_time = ktime_get(); 165 166 /* Double layer security blanket, see i915_gem_init() */ 167 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 168 169 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 170 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 171 172 if (IS_HASWELL(i915)) 173 intel_uncore_write(uncore, 174 HSW_MI_PREDICATE_RESULT_2, 175 IS_HSW_GT3(i915) ? 176 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 177 178 /* Apply the GT workarounds... */ 179 intel_gt_apply_workarounds(gt); 180 /* ...and determine whether they are sticking. */ 181 intel_gt_verify_workarounds(gt, "init"); 182 183 intel_gt_init_swizzling(gt); 184 185 /* 186 * At least 830 can leave some of the unused rings 187 * "active" (ie. head != tail) after resume which 188 * will prevent c3 entry. Makes sure all unused rings 189 * are totally idle. 190 */ 191 init_unused_rings(gt); 192 193 ret = i915_ppgtt_init_hw(gt); 194 if (ret) { 195 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 196 goto out; 197 } 198 199 /* We can't enable contexts until all firmware is loaded */ 200 ret = intel_uc_init_hw(>->uc); 201 if (ret) { 202 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 203 goto out; 204 } 205 206 intel_mocs_init(gt); 207 208 out: 209 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 210 return ret; 211 } 212 213 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 214 { 215 intel_uncore_rmw(uncore, reg, 0, set); 216 } 217 218 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 219 { 220 intel_uncore_rmw(uncore, reg, clr, 0); 221 } 222 223 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 224 { 225 intel_uncore_rmw(uncore, reg, 0, 0); 226 } 227 228 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 229 { 230 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 231 GEN6_RING_FAULT_REG_POSTING_READ(engine); 232 } 233 234 void 235 intel_gt_clear_error_registers(struct intel_gt *gt, 236 intel_engine_mask_t engine_mask) 237 { 238 struct drm_i915_private *i915 = gt->i915; 239 struct intel_uncore *uncore = gt->uncore; 240 u32 eir; 241 242 if (GRAPHICS_VER(i915) != 2) 243 clear_register(uncore, PGTBL_ER); 244 245 if (GRAPHICS_VER(i915) < 4) 246 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 247 else 248 clear_register(uncore, IPEIR_I965); 249 250 clear_register(uncore, EIR); 251 eir = intel_uncore_read(uncore, EIR); 252 if (eir) { 253 /* 254 * some errors might have become stuck, 255 * mask them. 256 */ 257 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 258 rmw_set(uncore, EMR, eir); 259 intel_uncore_write(uncore, GEN2_IIR, 260 I915_MASTER_ERROR_INTERRUPT); 261 } 262 263 if (GRAPHICS_VER(i915) >= 12) { 264 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 265 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 266 } else if (GRAPHICS_VER(i915) >= 8) { 267 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 268 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 269 } else if (GRAPHICS_VER(i915) >= 6) { 270 struct intel_engine_cs *engine; 271 enum intel_engine_id id; 272 273 for_each_engine_masked(engine, gt, engine_mask, id) 274 gen6_clear_engine_error_register(engine); 275 } 276 } 277 278 static void gen6_check_faults(struct intel_gt *gt) 279 { 280 struct intel_engine_cs *engine; 281 enum intel_engine_id id; 282 u32 fault; 283 284 for_each_engine(engine, gt, id) { 285 fault = GEN6_RING_FAULT_REG_READ(engine); 286 if (fault & RING_FAULT_VALID) { 287 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 288 "\tAddr: 0x%08lx\n" 289 "\tAddress space: %s\n" 290 "\tSource ID: %d\n" 291 "\tType: %d\n", 292 fault & PAGE_MASK, 293 fault & RING_FAULT_GTTSEL_MASK ? 294 "GGTT" : "PPGTT", 295 RING_FAULT_SRCID(fault), 296 RING_FAULT_FAULT_TYPE(fault)); 297 } 298 } 299 } 300 301 static void gen8_check_faults(struct intel_gt *gt) 302 { 303 struct intel_uncore *uncore = gt->uncore; 304 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 305 u32 fault; 306 307 if (GRAPHICS_VER(gt->i915) >= 12) { 308 fault_reg = GEN12_RING_FAULT_REG; 309 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 310 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 311 } else { 312 fault_reg = GEN8_RING_FAULT_REG; 313 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 314 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 315 } 316 317 fault = intel_uncore_read(uncore, fault_reg); 318 if (fault & RING_FAULT_VALID) { 319 u32 fault_data0, fault_data1; 320 u64 fault_addr; 321 322 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 323 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 324 325 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 326 ((u64)fault_data0 << 12); 327 328 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 329 "\tAddr: 0x%08x_%08x\n" 330 "\tAddress space: %s\n" 331 "\tEngine ID: %d\n" 332 "\tSource ID: %d\n" 333 "\tType: %d\n", 334 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 335 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 336 GEN8_RING_FAULT_ENGINE_ID(fault), 337 RING_FAULT_SRCID(fault), 338 RING_FAULT_FAULT_TYPE(fault)); 339 } 340 } 341 342 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 343 { 344 struct drm_i915_private *i915 = gt->i915; 345 346 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 347 if (GRAPHICS_VER(i915) >= 8) 348 gen8_check_faults(gt); 349 else if (GRAPHICS_VER(i915) >= 6) 350 gen6_check_faults(gt); 351 else 352 return; 353 354 intel_gt_clear_error_registers(gt, ALL_ENGINES); 355 } 356 357 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 358 { 359 struct intel_uncore *uncore = gt->uncore; 360 intel_wakeref_t wakeref; 361 362 /* 363 * No actual flushing is required for the GTT write domain for reads 364 * from the GTT domain. Writes to it "immediately" go to main memory 365 * as far as we know, so there's no chipset flush. It also doesn't 366 * land in the GPU render cache. 367 * 368 * However, we do have to enforce the order so that all writes through 369 * the GTT land before any writes to the device, such as updates to 370 * the GATT itself. 371 * 372 * We also have to wait a bit for the writes to land from the GTT. 373 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 374 * timing. This issue has only been observed when switching quickly 375 * between GTT writes and CPU reads from inside the kernel on recent hw, 376 * and it appears to only affect discrete GTT blocks (i.e. on LLC 377 * system agents we cannot reproduce this behaviour, until Cannonlake 378 * that was!). 379 */ 380 381 wmb(); 382 383 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 384 return; 385 386 intel_gt_chipset_flush(gt); 387 388 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 389 unsigned long flags; 390 391 spin_lock_irqsave(&uncore->lock, flags); 392 intel_uncore_posting_read_fw(uncore, 393 RING_HEAD(RENDER_RING_BASE)); 394 spin_unlock_irqrestore(&uncore->lock, flags); 395 } 396 } 397 398 void intel_gt_chipset_flush(struct intel_gt *gt) 399 { 400 wmb(); 401 if (GRAPHICS_VER(gt->i915) < 6) 402 intel_ggtt_gmch_flush(); 403 } 404 405 void intel_gt_driver_register(struct intel_gt *gt) 406 { 407 intel_gsc_init(>->gsc, gt->i915); 408 409 intel_rps_driver_register(>->rps); 410 411 intel_gt_debugfs_register(gt); 412 intel_gt_sysfs_register(gt); 413 } 414 415 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 416 { 417 struct drm_i915_private *i915 = gt->i915; 418 struct drm_i915_gem_object *obj; 419 struct i915_vma *vma; 420 int ret; 421 422 obj = i915_gem_object_create_lmem(i915, size, 423 I915_BO_ALLOC_VOLATILE | 424 I915_BO_ALLOC_GPU_ONLY); 425 if (IS_ERR(obj)) 426 obj = i915_gem_object_create_stolen(i915, size); 427 if (IS_ERR(obj)) 428 obj = i915_gem_object_create_internal(i915, size); 429 if (IS_ERR(obj)) { 430 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 431 return PTR_ERR(obj); 432 } 433 434 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 435 if (IS_ERR(vma)) { 436 ret = PTR_ERR(vma); 437 goto err_unref; 438 } 439 440 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 441 if (ret) 442 goto err_unref; 443 444 gt->scratch = i915_vma_make_unshrinkable(vma); 445 446 return 0; 447 448 err_unref: 449 i915_gem_object_put(obj); 450 return ret; 451 } 452 453 static void intel_gt_fini_scratch(struct intel_gt *gt) 454 { 455 i915_vma_unpin_and_release(>->scratch, 0); 456 } 457 458 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 459 { 460 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 461 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 462 else 463 return i915_vm_get(>->ggtt->vm); 464 } 465 466 static int __engines_record_defaults(struct intel_gt *gt) 467 { 468 struct i915_request *requests[I915_NUM_ENGINES] = {}; 469 struct intel_engine_cs *engine; 470 enum intel_engine_id id; 471 int err = 0; 472 473 /* 474 * As we reset the gpu during very early sanitisation, the current 475 * register state on the GPU should reflect its defaults values. 476 * We load a context onto the hw (with restore-inhibit), then switch 477 * over to a second context to save that default register state. We 478 * can then prime every new context with that state so they all start 479 * from the same default HW values. 480 */ 481 482 for_each_engine(engine, gt, id) { 483 struct intel_renderstate so; 484 struct intel_context *ce; 485 struct i915_request *rq; 486 487 /* We must be able to switch to something! */ 488 GEM_BUG_ON(!engine->kernel_context); 489 490 ce = intel_context_create(engine); 491 if (IS_ERR(ce)) { 492 err = PTR_ERR(ce); 493 goto out; 494 } 495 496 err = intel_renderstate_init(&so, ce); 497 if (err) 498 goto err; 499 500 rq = i915_request_create(ce); 501 if (IS_ERR(rq)) { 502 err = PTR_ERR(rq); 503 goto err_fini; 504 } 505 506 err = intel_engine_emit_ctx_wa(rq); 507 if (err) 508 goto err_rq; 509 510 err = intel_renderstate_emit(&so, rq); 511 if (err) 512 goto err_rq; 513 514 err_rq: 515 requests[id] = i915_request_get(rq); 516 i915_request_add(rq); 517 err_fini: 518 intel_renderstate_fini(&so, ce); 519 err: 520 if (err) { 521 intel_context_put(ce); 522 goto out; 523 } 524 } 525 526 /* Flush the default context image to memory, and enable powersaving. */ 527 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 528 err = -EIO; 529 goto out; 530 } 531 532 for (id = 0; id < ARRAY_SIZE(requests); id++) { 533 struct i915_request *rq; 534 struct file *state; 535 536 rq = requests[id]; 537 if (!rq) 538 continue; 539 540 if (rq->fence.error) { 541 err = -EIO; 542 goto out; 543 } 544 545 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 546 if (!rq->context->state) 547 continue; 548 549 /* Keep a copy of the state's backing pages; free the obj */ 550 state = shmem_create_from_object(rq->context->state->obj); 551 if (IS_ERR(state)) { 552 err = PTR_ERR(state); 553 goto out; 554 } 555 rq->engine->default_state = state; 556 } 557 558 out: 559 /* 560 * If we have to abandon now, we expect the engines to be idle 561 * and ready to be torn-down. The quickest way we can accomplish 562 * this is by declaring ourselves wedged. 563 */ 564 if (err) 565 intel_gt_set_wedged(gt); 566 567 for (id = 0; id < ARRAY_SIZE(requests); id++) { 568 struct intel_context *ce; 569 struct i915_request *rq; 570 571 rq = requests[id]; 572 if (!rq) 573 continue; 574 575 ce = rq->context; 576 i915_request_put(rq); 577 intel_context_put(ce); 578 } 579 return err; 580 } 581 582 static int __engines_verify_workarounds(struct intel_gt *gt) 583 { 584 struct intel_engine_cs *engine; 585 enum intel_engine_id id; 586 int err = 0; 587 588 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 589 return 0; 590 591 for_each_engine(engine, gt, id) { 592 if (intel_engine_verify_workarounds(engine, "load")) 593 err = -EIO; 594 } 595 596 /* Flush and restore the kernel context for safety */ 597 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 598 err = -EIO; 599 600 return err; 601 } 602 603 static void __intel_gt_disable(struct intel_gt *gt) 604 { 605 intel_gt_set_wedged_on_fini(gt); 606 607 intel_gt_suspend_prepare(gt); 608 intel_gt_suspend_late(gt); 609 610 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 611 } 612 613 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 614 { 615 long remaining_timeout; 616 617 /* If the device is asleep, we have no requests outstanding */ 618 if (!intel_gt_pm_is_awake(gt)) 619 return 0; 620 621 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 622 &remaining_timeout)) > 0) { 623 cond_resched(); 624 if (signal_pending(current)) 625 return -EINTR; 626 } 627 628 if (timeout) 629 return timeout; 630 631 if (remaining_timeout < 0) 632 remaining_timeout = 0; 633 634 return intel_uc_wait_for_idle(>->uc, remaining_timeout); 635 } 636 637 int intel_gt_init(struct intel_gt *gt) 638 { 639 int err; 640 641 err = i915_inject_probe_error(gt->i915, -ENODEV); 642 if (err) 643 return err; 644 645 intel_gt_init_workarounds(gt); 646 647 /* 648 * This is just a security blanket to placate dragons. 649 * On some systems, we very sporadically observe that the first TLBs 650 * used by the CS may be stale, despite us poking the TLB reset. If 651 * we hold the forcewake during initialisation these problems 652 * just magically go away. 653 */ 654 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 655 656 err = intel_gt_init_scratch(gt, 657 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 658 if (err) 659 goto out_fw; 660 661 intel_gt_pm_init(gt); 662 663 gt->vm = kernel_vm(gt); 664 if (!gt->vm) { 665 err = -ENOMEM; 666 goto err_pm; 667 } 668 669 intel_set_mocs_index(gt); 670 671 err = intel_engines_init(gt); 672 if (err) 673 goto err_engines; 674 675 err = intel_uc_init(>->uc); 676 if (err) 677 goto err_engines; 678 679 err = intel_gt_resume(gt); 680 if (err) 681 goto err_uc_init; 682 683 err = intel_gt_init_hwconfig(gt); 684 if (err) 685 drm_err(>->i915->drm, "Failed to retrieve hwconfig table: %pe\n", 686 ERR_PTR(err)); 687 688 err = __engines_record_defaults(gt); 689 if (err) 690 goto err_gt; 691 692 err = __engines_verify_workarounds(gt); 693 if (err) 694 goto err_gt; 695 696 intel_uc_init_late(>->uc); 697 698 err = i915_inject_probe_error(gt->i915, -EIO); 699 if (err) 700 goto err_gt; 701 702 intel_migrate_init(>->migrate, gt); 703 704 intel_pxp_init(>->pxp); 705 706 goto out_fw; 707 err_gt: 708 __intel_gt_disable(gt); 709 intel_uc_fini_hw(>->uc); 710 err_uc_init: 711 intel_uc_fini(>->uc); 712 err_engines: 713 intel_engines_release(gt); 714 i915_vm_put(fetch_and_zero(>->vm)); 715 err_pm: 716 intel_gt_pm_fini(gt); 717 intel_gt_fini_scratch(gt); 718 out_fw: 719 if (err) 720 intel_gt_set_wedged_on_init(gt); 721 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 722 return err; 723 } 724 725 void intel_gt_driver_remove(struct intel_gt *gt) 726 { 727 __intel_gt_disable(gt); 728 729 intel_migrate_fini(>->migrate); 730 intel_uc_driver_remove(>->uc); 731 732 intel_engines_release(gt); 733 734 intel_gt_flush_buffer_pool(gt); 735 } 736 737 void intel_gt_driver_unregister(struct intel_gt *gt) 738 { 739 intel_wakeref_t wakeref; 740 741 intel_gt_sysfs_unregister(gt); 742 intel_rps_driver_unregister(>->rps); 743 intel_gsc_fini(>->gsc); 744 745 intel_pxp_fini(>->pxp); 746 747 /* 748 * Upon unregistering the device to prevent any new users, cancel 749 * all in-flight requests so that we can quickly unbind the active 750 * resources. 751 */ 752 intel_gt_set_wedged_on_fini(gt); 753 754 /* Scrub all HW state upon release */ 755 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 756 __intel_gt_reset(gt, ALL_ENGINES); 757 } 758 759 void intel_gt_driver_release(struct intel_gt *gt) 760 { 761 struct i915_address_space *vm; 762 763 vm = fetch_and_zero(>->vm); 764 if (vm) /* FIXME being called twice on error paths :( */ 765 i915_vm_put(vm); 766 767 intel_wa_list_free(>->wa_list); 768 intel_gt_pm_fini(gt); 769 intel_gt_fini_scratch(gt); 770 intel_gt_fini_buffer_pool(gt); 771 intel_gt_fini_hwconfig(gt); 772 } 773 774 void intel_gt_driver_late_release_all(struct drm_i915_private *i915) 775 { 776 struct intel_gt *gt; 777 unsigned int id; 778 779 /* We need to wait for inflight RCU frees to release their grip */ 780 rcu_barrier(); 781 782 for_each_gt(gt, i915, id) { 783 intel_uc_driver_late_release(>->uc); 784 intel_gt_fini_requests(gt); 785 intel_gt_fini_reset(gt); 786 intel_gt_fini_timelines(gt); 787 mutex_destroy(>->tlb.invalidate_lock); 788 intel_engines_free(gt); 789 } 790 } 791 792 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr) 793 { 794 int ret; 795 796 if (!gt_is_root(gt)) { 797 struct intel_uncore *uncore; 798 spinlock_t *irq_lock; 799 800 uncore = drmm_kzalloc(>->i915->drm, sizeof(*uncore), GFP_KERNEL); 801 if (!uncore) 802 return -ENOMEM; 803 804 irq_lock = drmm_kzalloc(>->i915->drm, sizeof(*irq_lock), GFP_KERNEL); 805 if (!irq_lock) 806 return -ENOMEM; 807 808 gt->uncore = uncore; 809 gt->irq_lock = irq_lock; 810 811 intel_gt_common_init_early(gt); 812 } 813 814 intel_uncore_init_early(gt->uncore, gt); 815 intel_wakeref_auto_init(>->userfault_wakeref, gt->uncore->rpm); 816 817 ret = intel_uncore_setup_mmio(gt->uncore, phys_addr); 818 if (ret) 819 return ret; 820 821 gt->phys_addr = phys_addr; 822 823 return 0; 824 } 825 826 int intel_gt_probe_all(struct drm_i915_private *i915) 827 { 828 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 829 struct intel_gt *gt = &i915->gt0; 830 const struct intel_gt_definition *gtdef; 831 phys_addr_t phys_addr; 832 unsigned int mmio_bar; 833 unsigned int i; 834 int ret; 835 836 mmio_bar = GRAPHICS_VER(i915) == 2 ? GEN2_GTTMMADR_BAR : GTTMMADR_BAR; 837 phys_addr = pci_resource_start(pdev, mmio_bar); 838 839 /* 840 * We always have at least one primary GT on any device 841 * and it has been already initialized early during probe 842 * in i915_driver_probe() 843 */ 844 gt->i915 = i915; 845 gt->name = "Primary GT"; 846 gt->info.engine_mask = RUNTIME_INFO(i915)->platform_engine_mask; 847 848 drm_dbg(&i915->drm, "Setting up %s\n", gt->name); 849 ret = intel_gt_tile_setup(gt, phys_addr); 850 if (ret) 851 return ret; 852 853 i915->gt[0] = gt; 854 855 if (!HAS_EXTRA_GT_LIST(i915)) 856 return 0; 857 858 for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]; 859 gtdef->name != NULL; 860 i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) { 861 gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL); 862 if (!gt) { 863 ret = -ENOMEM; 864 goto err; 865 } 866 867 gt->i915 = i915; 868 gt->name = gtdef->name; 869 gt->type = gtdef->type; 870 gt->info.engine_mask = gtdef->engine_mask; 871 gt->info.id = i; 872 873 drm_dbg(&i915->drm, "Setting up %s\n", gt->name); 874 if (GEM_WARN_ON(range_overflows_t(resource_size_t, 875 gtdef->mapping_base, 876 SZ_16M, 877 pci_resource_len(pdev, mmio_bar)))) { 878 ret = -ENODEV; 879 goto err; 880 } 881 882 switch (gtdef->type) { 883 case GT_TILE: 884 ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base); 885 break; 886 887 case GT_MEDIA: 888 ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base, 889 gtdef->gsi_offset); 890 break; 891 892 case GT_PRIMARY: 893 /* Primary GT should not appear in extra GT list */ 894 default: 895 MISSING_CASE(gtdef->type); 896 ret = -ENODEV; 897 } 898 899 if (ret) 900 goto err; 901 902 i915->gt[i] = gt; 903 } 904 905 return 0; 906 907 err: 908 i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret); 909 intel_gt_release_all(i915); 910 911 return ret; 912 } 913 914 int intel_gt_tiles_init(struct drm_i915_private *i915) 915 { 916 struct intel_gt *gt; 917 unsigned int id; 918 int ret; 919 920 for_each_gt(gt, i915, id) { 921 ret = intel_gt_probe_lmem(gt); 922 if (ret) 923 return ret; 924 } 925 926 return 0; 927 } 928 929 void intel_gt_release_all(struct drm_i915_private *i915) 930 { 931 struct intel_gt *gt; 932 unsigned int id; 933 934 for_each_gt(gt, i915, id) 935 i915->gt[id] = NULL; 936 } 937 938 void intel_gt_info_print(const struct intel_gt_info *info, 939 struct drm_printer *p) 940 { 941 drm_printf(p, "available engines: %x\n", info->engine_mask); 942 943 intel_sseu_dump(&info->sseu, p); 944 } 945 946 struct reg_and_bit { 947 i915_reg_t reg; 948 u32 bit; 949 }; 950 951 static struct reg_and_bit 952 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, 953 const i915_reg_t *regs, const unsigned int num) 954 { 955 const unsigned int class = engine->class; 956 struct reg_and_bit rb = { }; 957 958 if (drm_WARN_ON_ONCE(&engine->i915->drm, 959 class >= num || !regs[class].reg)) 960 return rb; 961 962 rb.reg = regs[class]; 963 if (gen8 && class == VIDEO_DECODE_CLASS) 964 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ 965 else 966 rb.bit = engine->instance; 967 968 rb.bit = BIT(rb.bit); 969 970 return rb; 971 } 972 973 static void mmio_invalidate_full(struct intel_gt *gt) 974 { 975 static const i915_reg_t gen8_regs[] = { 976 [RENDER_CLASS] = GEN8_RTCR, 977 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ 978 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, 979 [COPY_ENGINE_CLASS] = GEN8_BTCR, 980 }; 981 static const i915_reg_t gen12_regs[] = { 982 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, 983 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, 984 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, 985 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, 986 [COMPUTE_CLASS] = GEN12_COMPCTX_TLB_INV_CR, 987 }; 988 struct drm_i915_private *i915 = gt->i915; 989 struct intel_uncore *uncore = gt->uncore; 990 struct intel_engine_cs *engine; 991 intel_engine_mask_t awake, tmp; 992 enum intel_engine_id id; 993 const i915_reg_t *regs; 994 unsigned int num = 0; 995 996 if (GRAPHICS_VER(i915) == 12) { 997 regs = gen12_regs; 998 num = ARRAY_SIZE(gen12_regs); 999 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 1000 regs = gen8_regs; 1001 num = ARRAY_SIZE(gen8_regs); 1002 } else if (GRAPHICS_VER(i915) < 8) { 1003 return; 1004 } 1005 1006 if (drm_WARN_ONCE(&i915->drm, !num, 1007 "Platform does not implement TLB invalidation!")) 1008 return; 1009 1010 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 1011 1012 spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */ 1013 1014 awake = 0; 1015 for_each_engine(engine, gt, id) { 1016 struct reg_and_bit rb; 1017 1018 if (!intel_engine_pm_is_awake(engine)) 1019 continue; 1020 1021 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1022 if (!i915_mmio_reg_offset(rb.reg)) 1023 continue; 1024 1025 if (GRAPHICS_VER(i915) == 12 && (engine->class == VIDEO_DECODE_CLASS || 1026 engine->class == VIDEO_ENHANCEMENT_CLASS || 1027 engine->class == COMPUTE_CLASS)) 1028 rb.bit = _MASKED_BIT_ENABLE(rb.bit); 1029 1030 intel_uncore_write_fw(uncore, rb.reg, rb.bit); 1031 awake |= engine->mask; 1032 } 1033 1034 GT_TRACE(gt, "invalidated engines %08x\n", awake); 1035 1036 /* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */ 1037 if (awake && 1038 (IS_TIGERLAKE(i915) || 1039 IS_DG1(i915) || 1040 IS_ROCKETLAKE(i915) || 1041 IS_ALDERLAKE_S(i915) || 1042 IS_ALDERLAKE_P(i915))) 1043 intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1); 1044 1045 spin_unlock_irq(&uncore->lock); 1046 1047 for_each_engine_masked(engine, gt, awake, tmp) { 1048 struct reg_and_bit rb; 1049 1050 /* 1051 * HW architecture suggest typical invalidation time at 40us, 1052 * with pessimistic cases up to 100us and a recommendation to 1053 * cap at 1ms. We go a bit higher just in case. 1054 */ 1055 const unsigned int timeout_us = 100; 1056 const unsigned int timeout_ms = 4; 1057 1058 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1059 if (__intel_wait_for_register_fw(uncore, 1060 rb.reg, rb.bit, 0, 1061 timeout_us, timeout_ms, 1062 NULL)) 1063 drm_err_ratelimited(>->i915->drm, 1064 "%s TLB invalidation did not complete in %ums!\n", 1065 engine->name, timeout_ms); 1066 } 1067 1068 /* 1069 * Use delayed put since a) we mostly expect a flurry of TLB 1070 * invalidations so it is good to avoid paying the forcewake cost and 1071 * b) it works around a bug in Icelake which cannot cope with too rapid 1072 * transitions. 1073 */ 1074 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); 1075 } 1076 1077 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno) 1078 { 1079 u32 cur = intel_gt_tlb_seqno(gt); 1080 1081 /* Only skip if a *full* TLB invalidate barrier has passed */ 1082 return (s32)(cur - ALIGN(seqno, 2)) > 0; 1083 } 1084 1085 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno) 1086 { 1087 intel_wakeref_t wakeref; 1088 1089 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) 1090 return; 1091 1092 if (intel_gt_is_wedged(gt)) 1093 return; 1094 1095 if (tlb_seqno_passed(gt, seqno)) 1096 return; 1097 1098 with_intel_gt_pm_if_awake(gt, wakeref) { 1099 mutex_lock(>->tlb.invalidate_lock); 1100 if (tlb_seqno_passed(gt, seqno)) 1101 goto unlock; 1102 1103 mmio_invalidate_full(gt); 1104 1105 write_seqcount_invalidate(>->tlb.seqno); 1106 unlock: 1107 mutex_unlock(>->tlb.invalidate_lock); 1108 } 1109 } 1110