xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/intel-gtt.h>
7 
8 #include "intel_gt_debugfs.h"
9 
10 #include "gem/i915_gem_lmem.h"
11 #include "i915_drv.h"
12 #include "intel_context.h"
13 #include "intel_gt.h"
14 #include "intel_gt_buffer_pool.h"
15 #include "intel_gt_clock_utils.h"
16 #include "intel_gt_pm.h"
17 #include "intel_gt_requests.h"
18 #include "intel_migrate.h"
19 #include "intel_mocs.h"
20 #include "intel_pm.h"
21 #include "intel_rc6.h"
22 #include "intel_renderstate.h"
23 #include "intel_rps.h"
24 #include "intel_uncore.h"
25 #include "shmem_utils.h"
26 #include "pxp/intel_pxp.h"
27 
28 void __intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
29 {
30 	spin_lock_init(&gt->irq_lock);
31 
32 	INIT_LIST_HEAD(&gt->closed_vma);
33 	spin_lock_init(&gt->closed_lock);
34 
35 	init_llist_head(&gt->watchdog.list);
36 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
37 
38 	intel_gt_init_buffer_pool(gt);
39 	intel_gt_init_reset(gt);
40 	intel_gt_init_requests(gt);
41 	intel_gt_init_timelines(gt);
42 	intel_gt_pm_init_early(gt);
43 
44 	intel_uc_init_early(&gt->uc);
45 	intel_rps_init_early(&gt->rps);
46 }
47 
48 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915)
49 {
50 	gt->i915 = i915;
51 	gt->uncore = &i915->uncore;
52 }
53 
54 int intel_gt_probe_lmem(struct intel_gt *gt)
55 {
56 	struct drm_i915_private *i915 = gt->i915;
57 	struct intel_memory_region *mem;
58 	int id;
59 	int err;
60 
61 	mem = intel_gt_setup_lmem(gt);
62 	if (mem == ERR_PTR(-ENODEV))
63 		mem = intel_gt_setup_fake_lmem(gt);
64 	if (IS_ERR(mem)) {
65 		err = PTR_ERR(mem);
66 		if (err == -ENODEV)
67 			return 0;
68 
69 		drm_err(&i915->drm,
70 			"Failed to setup region(%d) type=%d\n",
71 			err, INTEL_MEMORY_LOCAL);
72 		return err;
73 	}
74 
75 	id = INTEL_REGION_LMEM;
76 
77 	mem->id = id;
78 
79 	intel_memory_region_set_name(mem, "local%u", mem->instance);
80 
81 	GEM_BUG_ON(!HAS_REGION(i915, id));
82 	GEM_BUG_ON(i915->mm.regions[id]);
83 	i915->mm.regions[id] = mem;
84 
85 	return 0;
86 }
87 
88 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt)
89 {
90 	gt->ggtt = ggtt;
91 }
92 
93 static const struct intel_mmio_range icl_l3bank_steering_table[] = {
94 	{ 0x00B100, 0x00B3FF },
95 	{},
96 };
97 
98 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
99 	{ 0x004000, 0x004AFF },
100 	{ 0x00C800, 0x00CFFF },
101 	{ 0x00DD00, 0x00DDFF },
102 	{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
103 	{},
104 };
105 
106 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
107 	{ 0x00B000, 0x00B0FF },
108 	{ 0x00D800, 0x00D8FF },
109 	{},
110 };
111 
112 static const struct intel_mmio_range dg2_lncf_steering_table[] = {
113 	{ 0x00B000, 0x00B0FF },
114 	{ 0x00D880, 0x00D8FF },
115 	{},
116 };
117 
118 static u16 slicemask(struct intel_gt *gt, int count)
119 {
120 	u64 dss_mask = intel_sseu_get_subslices(&gt->info.sseu, 0);
121 
122 	return intel_slicemask_from_dssmask(dss_mask, count);
123 }
124 
125 int intel_gt_init_mmio(struct intel_gt *gt)
126 {
127 	struct drm_i915_private *i915 = gt->i915;
128 
129 	intel_gt_init_clock_frequency(gt);
130 
131 	intel_uc_init_mmio(&gt->uc);
132 	intel_sseu_info_init(gt);
133 
134 	/*
135 	 * An mslice is unavailable only if both the meml3 for the slice is
136 	 * disabled *and* all of the DSS in the slice (quadrant) are disabled.
137 	 */
138 	if (HAS_MSLICES(i915))
139 		gt->info.mslice_mask =
140 			slicemask(gt, GEN_DSS_PER_MSLICE) |
141 			(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
142 			 GEN12_MEML3_EN_MASK);
143 
144 	if (IS_DG2(i915)) {
145 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
146 		gt->steering_table[LNCF] = dg2_lncf_steering_table;
147 	} else if (IS_XEHPSDV(i915)) {
148 		gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
149 		gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
150 	} else if (GRAPHICS_VER(i915) >= 11 &&
151 		   GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
152 		gt->steering_table[L3BANK] = icl_l3bank_steering_table;
153 		gt->info.l3bank_mask =
154 			~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
155 			GEN10_L3BANK_MASK;
156 	} else if (HAS_MSLICES(i915)) {
157 		MISSING_CASE(INTEL_INFO(i915)->platform);
158 	}
159 
160 	return intel_engines_init_mmio(gt);
161 }
162 
163 static void init_unused_ring(struct intel_gt *gt, u32 base)
164 {
165 	struct intel_uncore *uncore = gt->uncore;
166 
167 	intel_uncore_write(uncore, RING_CTL(base), 0);
168 	intel_uncore_write(uncore, RING_HEAD(base), 0);
169 	intel_uncore_write(uncore, RING_TAIL(base), 0);
170 	intel_uncore_write(uncore, RING_START(base), 0);
171 }
172 
173 static void init_unused_rings(struct intel_gt *gt)
174 {
175 	struct drm_i915_private *i915 = gt->i915;
176 
177 	if (IS_I830(i915)) {
178 		init_unused_ring(gt, PRB1_BASE);
179 		init_unused_ring(gt, SRB0_BASE);
180 		init_unused_ring(gt, SRB1_BASE);
181 		init_unused_ring(gt, SRB2_BASE);
182 		init_unused_ring(gt, SRB3_BASE);
183 	} else if (GRAPHICS_VER(i915) == 2) {
184 		init_unused_ring(gt, SRB0_BASE);
185 		init_unused_ring(gt, SRB1_BASE);
186 	} else if (GRAPHICS_VER(i915) == 3) {
187 		init_unused_ring(gt, PRB1_BASE);
188 		init_unused_ring(gt, PRB2_BASE);
189 	}
190 }
191 
192 int intel_gt_init_hw(struct intel_gt *gt)
193 {
194 	struct drm_i915_private *i915 = gt->i915;
195 	struct intel_uncore *uncore = gt->uncore;
196 	int ret;
197 
198 	gt->last_init_time = ktime_get();
199 
200 	/* Double layer security blanket, see i915_gem_init() */
201 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
202 
203 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
204 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
205 
206 	if (IS_HASWELL(i915))
207 		intel_uncore_write(uncore,
208 				   MI_PREDICATE_RESULT_2,
209 				   IS_HSW_GT3(i915) ?
210 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
211 
212 	/* Apply the GT workarounds... */
213 	intel_gt_apply_workarounds(gt);
214 	/* ...and determine whether they are sticking. */
215 	intel_gt_verify_workarounds(gt, "init");
216 
217 	intel_gt_init_swizzling(gt);
218 
219 	/*
220 	 * At least 830 can leave some of the unused rings
221 	 * "active" (ie. head != tail) after resume which
222 	 * will prevent c3 entry. Makes sure all unused rings
223 	 * are totally idle.
224 	 */
225 	init_unused_rings(gt);
226 
227 	ret = i915_ppgtt_init_hw(gt);
228 	if (ret) {
229 		DRM_ERROR("Enabling PPGTT failed (%d)\n", ret);
230 		goto out;
231 	}
232 
233 	/* We can't enable contexts until all firmware is loaded */
234 	ret = intel_uc_init_hw(&gt->uc);
235 	if (ret) {
236 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
237 		goto out;
238 	}
239 
240 	intel_mocs_init(gt);
241 
242 out:
243 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
244 	return ret;
245 }
246 
247 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
248 {
249 	intel_uncore_rmw(uncore, reg, 0, set);
250 }
251 
252 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
253 {
254 	intel_uncore_rmw(uncore, reg, clr, 0);
255 }
256 
257 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
258 {
259 	intel_uncore_rmw(uncore, reg, 0, 0);
260 }
261 
262 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
263 {
264 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
265 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
266 }
267 
268 void
269 intel_gt_clear_error_registers(struct intel_gt *gt,
270 			       intel_engine_mask_t engine_mask)
271 {
272 	struct drm_i915_private *i915 = gt->i915;
273 	struct intel_uncore *uncore = gt->uncore;
274 	u32 eir;
275 
276 	if (GRAPHICS_VER(i915) != 2)
277 		clear_register(uncore, PGTBL_ER);
278 
279 	if (GRAPHICS_VER(i915) < 4)
280 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
281 	else
282 		clear_register(uncore, IPEIR_I965);
283 
284 	clear_register(uncore, EIR);
285 	eir = intel_uncore_read(uncore, EIR);
286 	if (eir) {
287 		/*
288 		 * some errors might have become stuck,
289 		 * mask them.
290 		 */
291 		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
292 		rmw_set(uncore, EMR, eir);
293 		intel_uncore_write(uncore, GEN2_IIR,
294 				   I915_MASTER_ERROR_INTERRUPT);
295 	}
296 
297 	if (GRAPHICS_VER(i915) >= 12) {
298 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
299 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
300 	} else if (GRAPHICS_VER(i915) >= 8) {
301 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
302 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
303 	} else if (GRAPHICS_VER(i915) >= 6) {
304 		struct intel_engine_cs *engine;
305 		enum intel_engine_id id;
306 
307 		for_each_engine_masked(engine, gt, engine_mask, id)
308 			gen6_clear_engine_error_register(engine);
309 	}
310 }
311 
312 static void gen6_check_faults(struct intel_gt *gt)
313 {
314 	struct intel_engine_cs *engine;
315 	enum intel_engine_id id;
316 	u32 fault;
317 
318 	for_each_engine(engine, gt, id) {
319 		fault = GEN6_RING_FAULT_REG_READ(engine);
320 		if (fault & RING_FAULT_VALID) {
321 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
322 				"\tAddr: 0x%08lx\n"
323 				"\tAddress space: %s\n"
324 				"\tSource ID: %d\n"
325 				"\tType: %d\n",
326 				fault & PAGE_MASK,
327 				fault & RING_FAULT_GTTSEL_MASK ?
328 				"GGTT" : "PPGTT",
329 				RING_FAULT_SRCID(fault),
330 				RING_FAULT_FAULT_TYPE(fault));
331 		}
332 	}
333 }
334 
335 static void gen8_check_faults(struct intel_gt *gt)
336 {
337 	struct intel_uncore *uncore = gt->uncore;
338 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
339 	u32 fault;
340 
341 	if (GRAPHICS_VER(gt->i915) >= 12) {
342 		fault_reg = GEN12_RING_FAULT_REG;
343 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
344 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
345 	} else {
346 		fault_reg = GEN8_RING_FAULT_REG;
347 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
348 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
349 	}
350 
351 	fault = intel_uncore_read(uncore, fault_reg);
352 	if (fault & RING_FAULT_VALID) {
353 		u32 fault_data0, fault_data1;
354 		u64 fault_addr;
355 
356 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
357 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
358 
359 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
360 			     ((u64)fault_data0 << 12);
361 
362 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
363 			"\tAddr: 0x%08x_%08x\n"
364 			"\tAddress space: %s\n"
365 			"\tEngine ID: %d\n"
366 			"\tSource ID: %d\n"
367 			"\tType: %d\n",
368 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
369 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
370 			GEN8_RING_FAULT_ENGINE_ID(fault),
371 			RING_FAULT_SRCID(fault),
372 			RING_FAULT_FAULT_TYPE(fault));
373 	}
374 }
375 
376 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
377 {
378 	struct drm_i915_private *i915 = gt->i915;
379 
380 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
381 	if (GRAPHICS_VER(i915) >= 8)
382 		gen8_check_faults(gt);
383 	else if (GRAPHICS_VER(i915) >= 6)
384 		gen6_check_faults(gt);
385 	else
386 		return;
387 
388 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
389 }
390 
391 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
392 {
393 	struct intel_uncore *uncore = gt->uncore;
394 	intel_wakeref_t wakeref;
395 
396 	/*
397 	 * No actual flushing is required for the GTT write domain for reads
398 	 * from the GTT domain. Writes to it "immediately" go to main memory
399 	 * as far as we know, so there's no chipset flush. It also doesn't
400 	 * land in the GPU render cache.
401 	 *
402 	 * However, we do have to enforce the order so that all writes through
403 	 * the GTT land before any writes to the device, such as updates to
404 	 * the GATT itself.
405 	 *
406 	 * We also have to wait a bit for the writes to land from the GTT.
407 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
408 	 * timing. This issue has only been observed when switching quickly
409 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
410 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
411 	 * system agents we cannot reproduce this behaviour, until Cannonlake
412 	 * that was!).
413 	 */
414 
415 	wmb();
416 
417 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
418 		return;
419 
420 	intel_gt_chipset_flush(gt);
421 
422 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
423 		unsigned long flags;
424 
425 		spin_lock_irqsave(&uncore->lock, flags);
426 		intel_uncore_posting_read_fw(uncore,
427 					     RING_HEAD(RENDER_RING_BASE));
428 		spin_unlock_irqrestore(&uncore->lock, flags);
429 	}
430 }
431 
432 void intel_gt_chipset_flush(struct intel_gt *gt)
433 {
434 	wmb();
435 	if (GRAPHICS_VER(gt->i915) < 6)
436 		intel_gtt_chipset_flush();
437 }
438 
439 void intel_gt_driver_register(struct intel_gt *gt)
440 {
441 	intel_rps_driver_register(&gt->rps);
442 
443 	intel_gt_debugfs_register(gt);
444 }
445 
446 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
447 {
448 	struct drm_i915_private *i915 = gt->i915;
449 	struct drm_i915_gem_object *obj;
450 	struct i915_vma *vma;
451 	int ret;
452 
453 	obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE);
454 	if (IS_ERR(obj))
455 		obj = i915_gem_object_create_stolen(i915, size);
456 	if (IS_ERR(obj))
457 		obj = i915_gem_object_create_internal(i915, size);
458 	if (IS_ERR(obj)) {
459 		drm_err(&i915->drm, "Failed to allocate scratch page\n");
460 		return PTR_ERR(obj);
461 	}
462 
463 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
464 	if (IS_ERR(vma)) {
465 		ret = PTR_ERR(vma);
466 		goto err_unref;
467 	}
468 
469 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
470 	if (ret)
471 		goto err_unref;
472 
473 	gt->scratch = i915_vma_make_unshrinkable(vma);
474 
475 	return 0;
476 
477 err_unref:
478 	i915_gem_object_put(obj);
479 	return ret;
480 }
481 
482 static void intel_gt_fini_scratch(struct intel_gt *gt)
483 {
484 	i915_vma_unpin_and_release(&gt->scratch, 0);
485 }
486 
487 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
488 {
489 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
490 		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
491 	else
492 		return i915_vm_get(&gt->ggtt->vm);
493 }
494 
495 static int __engines_record_defaults(struct intel_gt *gt)
496 {
497 	struct i915_request *requests[I915_NUM_ENGINES] = {};
498 	struct intel_engine_cs *engine;
499 	enum intel_engine_id id;
500 	int err = 0;
501 
502 	/*
503 	 * As we reset the gpu during very early sanitisation, the current
504 	 * register state on the GPU should reflect its defaults values.
505 	 * We load a context onto the hw (with restore-inhibit), then switch
506 	 * over to a second context to save that default register state. We
507 	 * can then prime every new context with that state so they all start
508 	 * from the same default HW values.
509 	 */
510 
511 	for_each_engine(engine, gt, id) {
512 		struct intel_renderstate so;
513 		struct intel_context *ce;
514 		struct i915_request *rq;
515 
516 		/* We must be able to switch to something! */
517 		GEM_BUG_ON(!engine->kernel_context);
518 
519 		ce = intel_context_create(engine);
520 		if (IS_ERR(ce)) {
521 			err = PTR_ERR(ce);
522 			goto out;
523 		}
524 
525 		err = intel_renderstate_init(&so, ce);
526 		if (err)
527 			goto err;
528 
529 		rq = i915_request_create(ce);
530 		if (IS_ERR(rq)) {
531 			err = PTR_ERR(rq);
532 			goto err_fini;
533 		}
534 
535 		err = intel_engine_emit_ctx_wa(rq);
536 		if (err)
537 			goto err_rq;
538 
539 		err = intel_renderstate_emit(&so, rq);
540 		if (err)
541 			goto err_rq;
542 
543 err_rq:
544 		requests[id] = i915_request_get(rq);
545 		i915_request_add(rq);
546 err_fini:
547 		intel_renderstate_fini(&so, ce);
548 err:
549 		if (err) {
550 			intel_context_put(ce);
551 			goto out;
552 		}
553 	}
554 
555 	/* Flush the default context image to memory, and enable powersaving. */
556 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
557 		err = -EIO;
558 		goto out;
559 	}
560 
561 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
562 		struct i915_request *rq;
563 		struct file *state;
564 
565 		rq = requests[id];
566 		if (!rq)
567 			continue;
568 
569 		if (rq->fence.error) {
570 			err = -EIO;
571 			goto out;
572 		}
573 
574 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
575 		if (!rq->context->state)
576 			continue;
577 
578 		/* Keep a copy of the state's backing pages; free the obj */
579 		state = shmem_create_from_object(rq->context->state->obj);
580 		if (IS_ERR(state)) {
581 			err = PTR_ERR(state);
582 			goto out;
583 		}
584 		rq->engine->default_state = state;
585 	}
586 
587 out:
588 	/*
589 	 * If we have to abandon now, we expect the engines to be idle
590 	 * and ready to be torn-down. The quickest way we can accomplish
591 	 * this is by declaring ourselves wedged.
592 	 */
593 	if (err)
594 		intel_gt_set_wedged(gt);
595 
596 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
597 		struct intel_context *ce;
598 		struct i915_request *rq;
599 
600 		rq = requests[id];
601 		if (!rq)
602 			continue;
603 
604 		ce = rq->context;
605 		i915_request_put(rq);
606 		intel_context_put(ce);
607 	}
608 	return err;
609 }
610 
611 static int __engines_verify_workarounds(struct intel_gt *gt)
612 {
613 	struct intel_engine_cs *engine;
614 	enum intel_engine_id id;
615 	int err = 0;
616 
617 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
618 		return 0;
619 
620 	for_each_engine(engine, gt, id) {
621 		if (intel_engine_verify_workarounds(engine, "load"))
622 			err = -EIO;
623 	}
624 
625 	/* Flush and restore the kernel context for safety */
626 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
627 		err = -EIO;
628 
629 	return err;
630 }
631 
632 static void __intel_gt_disable(struct intel_gt *gt)
633 {
634 	intel_gt_set_wedged_on_fini(gt);
635 
636 	intel_gt_suspend_prepare(gt);
637 	intel_gt_suspend_late(gt);
638 
639 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
640 }
641 
642 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
643 {
644 	long remaining_timeout;
645 
646 	/* If the device is asleep, we have no requests outstanding */
647 	if (!intel_gt_pm_is_awake(gt))
648 		return 0;
649 
650 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
651 							   &remaining_timeout)) > 0) {
652 		cond_resched();
653 		if (signal_pending(current))
654 			return -EINTR;
655 	}
656 
657 	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
658 							  remaining_timeout);
659 }
660 
661 int intel_gt_init(struct intel_gt *gt)
662 {
663 	int err;
664 
665 	err = i915_inject_probe_error(gt->i915, -ENODEV);
666 	if (err)
667 		return err;
668 
669 	intel_gt_init_workarounds(gt);
670 
671 	/*
672 	 * This is just a security blanket to placate dragons.
673 	 * On some systems, we very sporadically observe that the first TLBs
674 	 * used by the CS may be stale, despite us poking the TLB reset. If
675 	 * we hold the forcewake during initialisation these problems
676 	 * just magically go away.
677 	 */
678 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
679 
680 	err = intel_gt_init_scratch(gt,
681 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
682 	if (err)
683 		goto out_fw;
684 
685 	intel_gt_pm_init(gt);
686 
687 	gt->vm = kernel_vm(gt);
688 	if (!gt->vm) {
689 		err = -ENOMEM;
690 		goto err_pm;
691 	}
692 
693 	intel_set_mocs_index(gt);
694 
695 	err = intel_engines_init(gt);
696 	if (err)
697 		goto err_engines;
698 
699 	err = intel_uc_init(&gt->uc);
700 	if (err)
701 		goto err_engines;
702 
703 	err = intel_gt_resume(gt);
704 	if (err)
705 		goto err_uc_init;
706 
707 	err = __engines_record_defaults(gt);
708 	if (err)
709 		goto err_gt;
710 
711 	err = __engines_verify_workarounds(gt);
712 	if (err)
713 		goto err_gt;
714 
715 	intel_uc_init_late(&gt->uc);
716 
717 	err = i915_inject_probe_error(gt->i915, -EIO);
718 	if (err)
719 		goto err_gt;
720 
721 	intel_migrate_init(&gt->migrate, gt);
722 
723 	intel_pxp_init(&gt->pxp);
724 
725 	goto out_fw;
726 err_gt:
727 	__intel_gt_disable(gt);
728 	intel_uc_fini_hw(&gt->uc);
729 err_uc_init:
730 	intel_uc_fini(&gt->uc);
731 err_engines:
732 	intel_engines_release(gt);
733 	i915_vm_put(fetch_and_zero(&gt->vm));
734 err_pm:
735 	intel_gt_pm_fini(gt);
736 	intel_gt_fini_scratch(gt);
737 out_fw:
738 	if (err)
739 		intel_gt_set_wedged_on_init(gt);
740 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
741 	return err;
742 }
743 
744 void intel_gt_driver_remove(struct intel_gt *gt)
745 {
746 	__intel_gt_disable(gt);
747 
748 	intel_migrate_fini(&gt->migrate);
749 	intel_uc_driver_remove(&gt->uc);
750 
751 	intel_engines_release(gt);
752 
753 	intel_gt_flush_buffer_pool(gt);
754 }
755 
756 void intel_gt_driver_unregister(struct intel_gt *gt)
757 {
758 	intel_wakeref_t wakeref;
759 
760 	intel_rps_driver_unregister(&gt->rps);
761 
762 	intel_pxp_fini(&gt->pxp);
763 
764 	/*
765 	 * Upon unregistering the device to prevent any new users, cancel
766 	 * all in-flight requests so that we can quickly unbind the active
767 	 * resources.
768 	 */
769 	intel_gt_set_wedged_on_fini(gt);
770 
771 	/* Scrub all HW state upon release */
772 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
773 		__intel_gt_reset(gt, ALL_ENGINES);
774 }
775 
776 void intel_gt_driver_release(struct intel_gt *gt)
777 {
778 	struct i915_address_space *vm;
779 
780 	vm = fetch_and_zero(&gt->vm);
781 	if (vm) /* FIXME being called twice on error paths :( */
782 		i915_vm_put(vm);
783 
784 	intel_wa_list_free(&gt->wa_list);
785 	intel_gt_pm_fini(gt);
786 	intel_gt_fini_scratch(gt);
787 	intel_gt_fini_buffer_pool(gt);
788 }
789 
790 void intel_gt_driver_late_release(struct intel_gt *gt)
791 {
792 	/* We need to wait for inflight RCU frees to release their grip */
793 	rcu_barrier();
794 
795 	intel_uc_driver_late_release(&gt->uc);
796 	intel_gt_fini_requests(gt);
797 	intel_gt_fini_reset(gt);
798 	intel_gt_fini_timelines(gt);
799 	intel_engines_free(gt);
800 }
801 
802 /**
803  * intel_gt_reg_needs_read_steering - determine whether a register read
804  *     requires explicit steering
805  * @gt: GT structure
806  * @reg: the register to check steering requirements for
807  * @type: type of multicast steering to check
808  *
809  * Determines whether @reg needs explicit steering of a specific type for
810  * reads.
811  *
812  * Returns false if @reg does not belong to a register range of the given
813  * steering type, or if the default (subslice-based) steering IDs are suitable
814  * for @type steering too.
815  */
816 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt,
817 					     i915_reg_t reg,
818 					     enum intel_steering_type type)
819 {
820 	const u32 offset = i915_mmio_reg_offset(reg);
821 	const struct intel_mmio_range *entry;
822 
823 	if (likely(!intel_gt_needs_read_steering(gt, type)))
824 		return false;
825 
826 	for (entry = gt->steering_table[type]; entry->end; entry++) {
827 		if (offset >= entry->start && offset <= entry->end)
828 			return true;
829 	}
830 
831 	return false;
832 }
833 
834 /**
835  * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering
836  * @gt: GT structure
837  * @type: multicast register type
838  * @sliceid: Slice ID returned
839  * @subsliceid: Subslice ID returned
840  *
841  * Determines sliceid and subsliceid values that will steer reads
842  * of a specific multicast register class to a valid value.
843  */
844 static void intel_gt_get_valid_steering(struct intel_gt *gt,
845 					enum intel_steering_type type,
846 					u8 *sliceid, u8 *subsliceid)
847 {
848 	switch (type) {
849 	case L3BANK:
850 		GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */
851 
852 		*sliceid = 0;		/* unused */
853 		*subsliceid = __ffs(gt->info.l3bank_mask);
854 		break;
855 	case MSLICE:
856 		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
857 
858 		*sliceid = __ffs(gt->info.mslice_mask);
859 		*subsliceid = 0;	/* unused */
860 		break;
861 	case LNCF:
862 		GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */
863 
864 		/*
865 		 * An LNCF is always present if its mslice is present, so we
866 		 * can safely just steer to LNCF 0 in all cases.
867 		 */
868 		*sliceid = __ffs(gt->info.mslice_mask) << 1;
869 		*subsliceid = 0;	/* unused */
870 		break;
871 	default:
872 		MISSING_CASE(type);
873 		*sliceid = 0;
874 		*subsliceid = 0;
875 	}
876 }
877 
878 /**
879  * intel_gt_read_register_fw - reads a GT register with support for multicast
880  * @gt: GT structure
881  * @reg: register to read
882  *
883  * This function will read a GT register.  If the register is a multicast
884  * register, the read will be steered to a valid instance (i.e., one that
885  * isn't fused off or powered down by power gating).
886  *
887  * Returns the value from a valid instance of @reg.
888  */
889 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg)
890 {
891 	int type;
892 	u8 sliceid, subsliceid;
893 
894 	for (type = 0; type < NUM_STEERING_TYPES; type++) {
895 		if (intel_gt_reg_needs_read_steering(gt, reg, type)) {
896 			intel_gt_get_valid_steering(gt, type, &sliceid,
897 						    &subsliceid);
898 			return intel_uncore_read_with_mcr_steering_fw(gt->uncore,
899 								      reg,
900 								      sliceid,
901 								      subsliceid);
902 		}
903 	}
904 
905 	return intel_uncore_read_fw(gt->uncore, reg);
906 }
907 
908 void intel_gt_info_print(const struct intel_gt_info *info,
909 			 struct drm_printer *p)
910 {
911 	drm_printf(p, "available engines: %x\n", info->engine_mask);
912 
913 	intel_sseu_dump(&info->sseu, p);
914 }
915