xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_gt.c (revision 2a76fc89)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <drm/drm_managed.h>
7 #include <drm/intel-gtt.h>
8 
9 #include "gem/i915_gem_internal.h"
10 #include "gem/i915_gem_lmem.h"
11 #include "pxp/intel_pxp.h"
12 
13 #include "i915_drv.h"
14 #include "i915_perf_oa_regs.h"
15 #include "intel_context.h"
16 #include "intel_engine_pm.h"
17 #include "intel_engine_regs.h"
18 #include "intel_ggtt_gmch.h"
19 #include "intel_gt.h"
20 #include "intel_gt_buffer_pool.h"
21 #include "intel_gt_clock_utils.h"
22 #include "intel_gt_debugfs.h"
23 #include "intel_gt_mcr.h"
24 #include "intel_gt_pm.h"
25 #include "intel_gt_regs.h"
26 #include "intel_gt_requests.h"
27 #include "intel_migrate.h"
28 #include "intel_mocs.h"
29 #include "intel_pci_config.h"
30 #include "intel_pm.h"
31 #include "intel_rc6.h"
32 #include "intel_renderstate.h"
33 #include "intel_rps.h"
34 #include "intel_sa_media.h"
35 #include "intel_gt_sysfs.h"
36 #include "intel_uncore.h"
37 #include "shmem_utils.h"
38 
39 void intel_gt_common_init_early(struct intel_gt *gt)
40 {
41 	spin_lock_init(gt->irq_lock);
42 
43 	INIT_LIST_HEAD(&gt->closed_vma);
44 	spin_lock_init(&gt->closed_lock);
45 
46 	init_llist_head(&gt->watchdog.list);
47 	INIT_WORK(&gt->watchdog.work, intel_gt_watchdog_work);
48 
49 	intel_gt_init_buffer_pool(gt);
50 	intel_gt_init_reset(gt);
51 	intel_gt_init_requests(gt);
52 	intel_gt_init_timelines(gt);
53 	mutex_init(&gt->tlb.invalidate_lock);
54 	seqcount_mutex_init(&gt->tlb.seqno, &gt->tlb.invalidate_lock);
55 	intel_gt_pm_init_early(gt);
56 
57 	intel_wopcm_init_early(&gt->wopcm);
58 	intel_uc_init_early(&gt->uc);
59 	intel_rps_init_early(&gt->rps);
60 }
61 
62 /* Preliminary initialization of Tile 0 */
63 int intel_root_gt_init_early(struct drm_i915_private *i915)
64 {
65 	struct intel_gt *gt = to_gt(i915);
66 
67 	gt->i915 = i915;
68 	gt->uncore = &i915->uncore;
69 	gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
70 	if (!gt->irq_lock)
71 		return -ENOMEM;
72 
73 	intel_gt_common_init_early(gt);
74 
75 	return 0;
76 }
77 
78 static int intel_gt_probe_lmem(struct intel_gt *gt)
79 {
80 	struct drm_i915_private *i915 = gt->i915;
81 	unsigned int instance = gt->info.id;
82 	int id = INTEL_REGION_LMEM_0 + instance;
83 	struct intel_memory_region *mem;
84 	int err;
85 
86 	mem = intel_gt_setup_lmem(gt);
87 	if (IS_ERR(mem)) {
88 		err = PTR_ERR(mem);
89 		if (err == -ENODEV)
90 			return 0;
91 
92 		drm_err(&i915->drm,
93 			"Failed to setup region(%d) type=%d\n",
94 			err, INTEL_MEMORY_LOCAL);
95 		return err;
96 	}
97 
98 	mem->id = id;
99 	mem->instance = instance;
100 
101 	intel_memory_region_set_name(mem, "local%u", mem->instance);
102 
103 	GEM_BUG_ON(!HAS_REGION(i915, id));
104 	GEM_BUG_ON(i915->mm.regions[id]);
105 	i915->mm.regions[id] = mem;
106 
107 	return 0;
108 }
109 
110 int intel_gt_assign_ggtt(struct intel_gt *gt)
111 {
112 	gt->ggtt = drmm_kzalloc(&gt->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL);
113 
114 	return gt->ggtt ? 0 : -ENOMEM;
115 }
116 
117 int intel_gt_init_mmio(struct intel_gt *gt)
118 {
119 	intel_gt_init_clock_frequency(gt);
120 
121 	intel_uc_init_mmio(&gt->uc);
122 	intel_sseu_info_init(gt);
123 	intel_gt_mcr_init(gt);
124 
125 	return intel_engines_init_mmio(gt);
126 }
127 
128 static void init_unused_ring(struct intel_gt *gt, u32 base)
129 {
130 	struct intel_uncore *uncore = gt->uncore;
131 
132 	intel_uncore_write(uncore, RING_CTL(base), 0);
133 	intel_uncore_write(uncore, RING_HEAD(base), 0);
134 	intel_uncore_write(uncore, RING_TAIL(base), 0);
135 	intel_uncore_write(uncore, RING_START(base), 0);
136 }
137 
138 static void init_unused_rings(struct intel_gt *gt)
139 {
140 	struct drm_i915_private *i915 = gt->i915;
141 
142 	if (IS_I830(i915)) {
143 		init_unused_ring(gt, PRB1_BASE);
144 		init_unused_ring(gt, SRB0_BASE);
145 		init_unused_ring(gt, SRB1_BASE);
146 		init_unused_ring(gt, SRB2_BASE);
147 		init_unused_ring(gt, SRB3_BASE);
148 	} else if (GRAPHICS_VER(i915) == 2) {
149 		init_unused_ring(gt, SRB0_BASE);
150 		init_unused_ring(gt, SRB1_BASE);
151 	} else if (GRAPHICS_VER(i915) == 3) {
152 		init_unused_ring(gt, PRB1_BASE);
153 		init_unused_ring(gt, PRB2_BASE);
154 	}
155 }
156 
157 int intel_gt_init_hw(struct intel_gt *gt)
158 {
159 	struct drm_i915_private *i915 = gt->i915;
160 	struct intel_uncore *uncore = gt->uncore;
161 	int ret;
162 
163 	gt->last_init_time = ktime_get();
164 
165 	/* Double layer security blanket, see i915_gem_init() */
166 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
167 
168 	if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
169 		intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
170 
171 	if (IS_HASWELL(i915))
172 		intel_uncore_write(uncore,
173 				   HSW_MI_PREDICATE_RESULT_2,
174 				   IS_HSW_GT3(i915) ?
175 				   LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
176 
177 	/* Apply the GT workarounds... */
178 	intel_gt_apply_workarounds(gt);
179 	/* ...and determine whether they are sticking. */
180 	intel_gt_verify_workarounds(gt, "init");
181 
182 	intel_gt_init_swizzling(gt);
183 
184 	/*
185 	 * At least 830 can leave some of the unused rings
186 	 * "active" (ie. head != tail) after resume which
187 	 * will prevent c3 entry. Makes sure all unused rings
188 	 * are totally idle.
189 	 */
190 	init_unused_rings(gt);
191 
192 	ret = i915_ppgtt_init_hw(gt);
193 	if (ret) {
194 		drm_err(&i915->drm, "Enabling PPGTT failed (%d)\n", ret);
195 		goto out;
196 	}
197 
198 	/* We can't enable contexts until all firmware is loaded */
199 	ret = intel_uc_init_hw(&gt->uc);
200 	if (ret) {
201 		i915_probe_error(i915, "Enabling uc failed (%d)\n", ret);
202 		goto out;
203 	}
204 
205 	intel_mocs_init(gt);
206 
207 out:
208 	intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
209 	return ret;
210 }
211 
212 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set)
213 {
214 	intel_uncore_rmw(uncore, reg, 0, set);
215 }
216 
217 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr)
218 {
219 	intel_uncore_rmw(uncore, reg, clr, 0);
220 }
221 
222 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg)
223 {
224 	intel_uncore_rmw(uncore, reg, 0, 0);
225 }
226 
227 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
228 {
229 	GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
230 	GEN6_RING_FAULT_REG_POSTING_READ(engine);
231 }
232 
233 i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
234 {
235 	/* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
236 	if (GRAPHICS_VER(gt->i915) < 11)
237 		return INVALID_MMIO_REG;
238 
239 	return gt->type == GT_MEDIA ?
240 		MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
241 }
242 
243 void
244 intel_gt_clear_error_registers(struct intel_gt *gt,
245 			       intel_engine_mask_t engine_mask)
246 {
247 	struct drm_i915_private *i915 = gt->i915;
248 	struct intel_uncore *uncore = gt->uncore;
249 	u32 eir;
250 
251 	if (GRAPHICS_VER(i915) != 2)
252 		clear_register(uncore, PGTBL_ER);
253 
254 	if (GRAPHICS_VER(i915) < 4)
255 		clear_register(uncore, IPEIR(RENDER_RING_BASE));
256 	else
257 		clear_register(uncore, IPEIR_I965);
258 
259 	clear_register(uncore, EIR);
260 	eir = intel_uncore_read(uncore, EIR);
261 	if (eir) {
262 		/*
263 		 * some errors might have become stuck,
264 		 * mask them.
265 		 */
266 		drm_dbg(&gt->i915->drm, "EIR stuck: 0x%08x, masking\n", eir);
267 		rmw_set(uncore, EMR, eir);
268 		intel_uncore_write(uncore, GEN2_IIR,
269 				   I915_MASTER_ERROR_INTERRUPT);
270 	}
271 
272 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
273 		intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
274 					   RING_FAULT_VALID, 0);
275 		intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
276 	} else if (GRAPHICS_VER(i915) >= 12) {
277 		rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID);
278 		intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
279 	} else if (GRAPHICS_VER(i915) >= 8) {
280 		rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID);
281 		intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
282 	} else if (GRAPHICS_VER(i915) >= 6) {
283 		struct intel_engine_cs *engine;
284 		enum intel_engine_id id;
285 
286 		for_each_engine_masked(engine, gt, engine_mask, id)
287 			gen6_clear_engine_error_register(engine);
288 	}
289 }
290 
291 static void gen6_check_faults(struct intel_gt *gt)
292 {
293 	struct intel_engine_cs *engine;
294 	enum intel_engine_id id;
295 	u32 fault;
296 
297 	for_each_engine(engine, gt, id) {
298 		fault = GEN6_RING_FAULT_REG_READ(engine);
299 		if (fault & RING_FAULT_VALID) {
300 			drm_dbg(&engine->i915->drm, "Unexpected fault\n"
301 				"\tAddr: 0x%08lx\n"
302 				"\tAddress space: %s\n"
303 				"\tSource ID: %d\n"
304 				"\tType: %d\n",
305 				fault & PAGE_MASK,
306 				fault & RING_FAULT_GTTSEL_MASK ?
307 				"GGTT" : "PPGTT",
308 				RING_FAULT_SRCID(fault),
309 				RING_FAULT_FAULT_TYPE(fault));
310 		}
311 	}
312 }
313 
314 static void xehp_check_faults(struct intel_gt *gt)
315 {
316 	u32 fault;
317 
318 	/*
319 	 * Although the fault register now lives in an MCR register range,
320 	 * the GAM registers are special and we only truly need to read
321 	 * the "primary" GAM instance rather than handling each instance
322 	 * individually.  intel_gt_mcr_read_any() will automatically steer
323 	 * toward the primary instance.
324 	 */
325 	fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
326 	if (fault & RING_FAULT_VALID) {
327 		u32 fault_data0, fault_data1;
328 		u64 fault_addr;
329 
330 		fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
331 		fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
332 
333 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
334 			     ((u64)fault_data0 << 12);
335 
336 		drm_dbg(&gt->i915->drm, "Unexpected fault\n"
337 			"\tAddr: 0x%08x_%08x\n"
338 			"\tAddress space: %s\n"
339 			"\tEngine ID: %d\n"
340 			"\tSource ID: %d\n"
341 			"\tType: %d\n",
342 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
343 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
344 			GEN8_RING_FAULT_ENGINE_ID(fault),
345 			RING_FAULT_SRCID(fault),
346 			RING_FAULT_FAULT_TYPE(fault));
347 	}
348 }
349 
350 static void gen8_check_faults(struct intel_gt *gt)
351 {
352 	struct intel_uncore *uncore = gt->uncore;
353 	i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
354 	u32 fault;
355 
356 	if (GRAPHICS_VER(gt->i915) >= 12) {
357 		fault_reg = GEN12_RING_FAULT_REG;
358 		fault_data0_reg = GEN12_FAULT_TLB_DATA0;
359 		fault_data1_reg = GEN12_FAULT_TLB_DATA1;
360 	} else {
361 		fault_reg = GEN8_RING_FAULT_REG;
362 		fault_data0_reg = GEN8_FAULT_TLB_DATA0;
363 		fault_data1_reg = GEN8_FAULT_TLB_DATA1;
364 	}
365 
366 	fault = intel_uncore_read(uncore, fault_reg);
367 	if (fault & RING_FAULT_VALID) {
368 		u32 fault_data0, fault_data1;
369 		u64 fault_addr;
370 
371 		fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
372 		fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
373 
374 		fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
375 			     ((u64)fault_data0 << 12);
376 
377 		drm_dbg(&uncore->i915->drm, "Unexpected fault\n"
378 			"\tAddr: 0x%08x_%08x\n"
379 			"\tAddress space: %s\n"
380 			"\tEngine ID: %d\n"
381 			"\tSource ID: %d\n"
382 			"\tType: %d\n",
383 			upper_32_bits(fault_addr), lower_32_bits(fault_addr),
384 			fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
385 			GEN8_RING_FAULT_ENGINE_ID(fault),
386 			RING_FAULT_SRCID(fault),
387 			RING_FAULT_FAULT_TYPE(fault));
388 	}
389 }
390 
391 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
392 {
393 	struct drm_i915_private *i915 = gt->i915;
394 
395 	/* From GEN8 onwards we only have one 'All Engine Fault Register' */
396 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
397 		xehp_check_faults(gt);
398 	else if (GRAPHICS_VER(i915) >= 8)
399 		gen8_check_faults(gt);
400 	else if (GRAPHICS_VER(i915) >= 6)
401 		gen6_check_faults(gt);
402 	else
403 		return;
404 
405 	intel_gt_clear_error_registers(gt, ALL_ENGINES);
406 }
407 
408 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
409 {
410 	struct intel_uncore *uncore = gt->uncore;
411 	intel_wakeref_t wakeref;
412 
413 	/*
414 	 * No actual flushing is required for the GTT write domain for reads
415 	 * from the GTT domain. Writes to it "immediately" go to main memory
416 	 * as far as we know, so there's no chipset flush. It also doesn't
417 	 * land in the GPU render cache.
418 	 *
419 	 * However, we do have to enforce the order so that all writes through
420 	 * the GTT land before any writes to the device, such as updates to
421 	 * the GATT itself.
422 	 *
423 	 * We also have to wait a bit for the writes to land from the GTT.
424 	 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
425 	 * timing. This issue has only been observed when switching quickly
426 	 * between GTT writes and CPU reads from inside the kernel on recent hw,
427 	 * and it appears to only affect discrete GTT blocks (i.e. on LLC
428 	 * system agents we cannot reproduce this behaviour, until Cannonlake
429 	 * that was!).
430 	 */
431 
432 	wmb();
433 
434 	if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
435 		return;
436 
437 	intel_gt_chipset_flush(gt);
438 
439 	with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
440 		unsigned long flags;
441 
442 		spin_lock_irqsave(&uncore->lock, flags);
443 		intel_uncore_posting_read_fw(uncore,
444 					     RING_HEAD(RENDER_RING_BASE));
445 		spin_unlock_irqrestore(&uncore->lock, flags);
446 	}
447 }
448 
449 void intel_gt_chipset_flush(struct intel_gt *gt)
450 {
451 	wmb();
452 	if (GRAPHICS_VER(gt->i915) < 6)
453 		intel_ggtt_gmch_flush();
454 }
455 
456 void intel_gt_driver_register(struct intel_gt *gt)
457 {
458 	intel_gsc_init(&gt->gsc, gt->i915);
459 
460 	intel_rps_driver_register(&gt->rps);
461 
462 	intel_gt_debugfs_register(gt);
463 	intel_gt_sysfs_register(gt);
464 }
465 
466 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
467 {
468 	struct drm_i915_private *i915 = gt->i915;
469 	struct drm_i915_gem_object *obj;
470 	struct i915_vma *vma;
471 	int ret;
472 
473 	obj = i915_gem_object_create_lmem(i915, size,
474 					  I915_BO_ALLOC_VOLATILE |
475 					  I915_BO_ALLOC_GPU_ONLY);
476 	if (IS_ERR(obj))
477 		obj = i915_gem_object_create_stolen(i915, size);
478 	if (IS_ERR(obj))
479 		obj = i915_gem_object_create_internal(i915, size);
480 	if (IS_ERR(obj)) {
481 		drm_err(&i915->drm, "Failed to allocate scratch page\n");
482 		return PTR_ERR(obj);
483 	}
484 
485 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
486 	if (IS_ERR(vma)) {
487 		ret = PTR_ERR(vma);
488 		goto err_unref;
489 	}
490 
491 	ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
492 	if (ret)
493 		goto err_unref;
494 
495 	gt->scratch = i915_vma_make_unshrinkable(vma);
496 
497 	return 0;
498 
499 err_unref:
500 	i915_gem_object_put(obj);
501 	return ret;
502 }
503 
504 static void intel_gt_fini_scratch(struct intel_gt *gt)
505 {
506 	i915_vma_unpin_and_release(&gt->scratch, 0);
507 }
508 
509 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
510 {
511 	if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
512 		return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
513 	else
514 		return i915_vm_get(&gt->ggtt->vm);
515 }
516 
517 static int __engines_record_defaults(struct intel_gt *gt)
518 {
519 	struct i915_request *requests[I915_NUM_ENGINES] = {};
520 	struct intel_engine_cs *engine;
521 	enum intel_engine_id id;
522 	int err = 0;
523 
524 	/*
525 	 * As we reset the gpu during very early sanitisation, the current
526 	 * register state on the GPU should reflect its defaults values.
527 	 * We load a context onto the hw (with restore-inhibit), then switch
528 	 * over to a second context to save that default register state. We
529 	 * can then prime every new context with that state so they all start
530 	 * from the same default HW values.
531 	 */
532 
533 	for_each_engine(engine, gt, id) {
534 		struct intel_renderstate so;
535 		struct intel_context *ce;
536 		struct i915_request *rq;
537 
538 		/* We must be able to switch to something! */
539 		GEM_BUG_ON(!engine->kernel_context);
540 
541 		ce = intel_context_create(engine);
542 		if (IS_ERR(ce)) {
543 			err = PTR_ERR(ce);
544 			goto out;
545 		}
546 
547 		err = intel_renderstate_init(&so, ce);
548 		if (err)
549 			goto err;
550 
551 		rq = i915_request_create(ce);
552 		if (IS_ERR(rq)) {
553 			err = PTR_ERR(rq);
554 			goto err_fini;
555 		}
556 
557 		err = intel_engine_emit_ctx_wa(rq);
558 		if (err)
559 			goto err_rq;
560 
561 		err = intel_renderstate_emit(&so, rq);
562 		if (err)
563 			goto err_rq;
564 
565 err_rq:
566 		requests[id] = i915_request_get(rq);
567 		i915_request_add(rq);
568 err_fini:
569 		intel_renderstate_fini(&so, ce);
570 err:
571 		if (err) {
572 			intel_context_put(ce);
573 			goto out;
574 		}
575 	}
576 
577 	/* Flush the default context image to memory, and enable powersaving. */
578 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
579 		err = -EIO;
580 		goto out;
581 	}
582 
583 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
584 		struct i915_request *rq;
585 		struct file *state;
586 
587 		rq = requests[id];
588 		if (!rq)
589 			continue;
590 
591 		if (rq->fence.error) {
592 			err = -EIO;
593 			goto out;
594 		}
595 
596 		GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
597 		if (!rq->context->state)
598 			continue;
599 
600 		/* Keep a copy of the state's backing pages; free the obj */
601 		state = shmem_create_from_object(rq->context->state->obj);
602 		if (IS_ERR(state)) {
603 			err = PTR_ERR(state);
604 			goto out;
605 		}
606 		rq->engine->default_state = state;
607 	}
608 
609 out:
610 	/*
611 	 * If we have to abandon now, we expect the engines to be idle
612 	 * and ready to be torn-down. The quickest way we can accomplish
613 	 * this is by declaring ourselves wedged.
614 	 */
615 	if (err)
616 		intel_gt_set_wedged(gt);
617 
618 	for (id = 0; id < ARRAY_SIZE(requests); id++) {
619 		struct intel_context *ce;
620 		struct i915_request *rq;
621 
622 		rq = requests[id];
623 		if (!rq)
624 			continue;
625 
626 		ce = rq->context;
627 		i915_request_put(rq);
628 		intel_context_put(ce);
629 	}
630 	return err;
631 }
632 
633 static int __engines_verify_workarounds(struct intel_gt *gt)
634 {
635 	struct intel_engine_cs *engine;
636 	enum intel_engine_id id;
637 	int err = 0;
638 
639 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
640 		return 0;
641 
642 	for_each_engine(engine, gt, id) {
643 		if (intel_engine_verify_workarounds(engine, "load"))
644 			err = -EIO;
645 	}
646 
647 	/* Flush and restore the kernel context for safety */
648 	if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
649 		err = -EIO;
650 
651 	return err;
652 }
653 
654 static void __intel_gt_disable(struct intel_gt *gt)
655 {
656 	intel_gt_set_wedged_on_fini(gt);
657 
658 	intel_gt_suspend_prepare(gt);
659 	intel_gt_suspend_late(gt);
660 
661 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
662 }
663 
664 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
665 {
666 	long remaining_timeout;
667 
668 	/* If the device is asleep, we have no requests outstanding */
669 	if (!intel_gt_pm_is_awake(gt))
670 		return 0;
671 
672 	while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
673 							   &remaining_timeout)) > 0) {
674 		cond_resched();
675 		if (signal_pending(current))
676 			return -EINTR;
677 	}
678 
679 	return timeout ? timeout : intel_uc_wait_for_idle(&gt->uc,
680 							  remaining_timeout);
681 }
682 
683 int intel_gt_init(struct intel_gt *gt)
684 {
685 	int err;
686 
687 	err = i915_inject_probe_error(gt->i915, -ENODEV);
688 	if (err)
689 		return err;
690 
691 	intel_gt_init_workarounds(gt);
692 
693 	/*
694 	 * This is just a security blanket to placate dragons.
695 	 * On some systems, we very sporadically observe that the first TLBs
696 	 * used by the CS may be stale, despite us poking the TLB reset. If
697 	 * we hold the forcewake during initialisation these problems
698 	 * just magically go away.
699 	 */
700 	intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
701 
702 	err = intel_gt_init_scratch(gt,
703 				    GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
704 	if (err)
705 		goto out_fw;
706 
707 	intel_gt_pm_init(gt);
708 
709 	gt->vm = kernel_vm(gt);
710 	if (!gt->vm) {
711 		err = -ENOMEM;
712 		goto err_pm;
713 	}
714 
715 	intel_set_mocs_index(gt);
716 
717 	err = intel_engines_init(gt);
718 	if (err)
719 		goto err_engines;
720 
721 	err = intel_uc_init(&gt->uc);
722 	if (err)
723 		goto err_engines;
724 
725 	err = intel_gt_resume(gt);
726 	if (err)
727 		goto err_uc_init;
728 
729 	err = intel_gt_init_hwconfig(gt);
730 	if (err)
731 		drm_err(&gt->i915->drm, "Failed to retrieve hwconfig table: %pe\n",
732 			ERR_PTR(err));
733 
734 	err = __engines_record_defaults(gt);
735 	if (err)
736 		goto err_gt;
737 
738 	err = __engines_verify_workarounds(gt);
739 	if (err)
740 		goto err_gt;
741 
742 	intel_uc_init_late(&gt->uc);
743 
744 	err = i915_inject_probe_error(gt->i915, -EIO);
745 	if (err)
746 		goto err_gt;
747 
748 	intel_migrate_init(&gt->migrate, gt);
749 
750 	intel_pxp_init(&gt->pxp);
751 
752 	goto out_fw;
753 err_gt:
754 	__intel_gt_disable(gt);
755 	intel_uc_fini_hw(&gt->uc);
756 err_uc_init:
757 	intel_uc_fini(&gt->uc);
758 err_engines:
759 	intel_engines_release(gt);
760 	i915_vm_put(fetch_and_zero(&gt->vm));
761 err_pm:
762 	intel_gt_pm_fini(gt);
763 	intel_gt_fini_scratch(gt);
764 out_fw:
765 	if (err)
766 		intel_gt_set_wedged_on_init(gt);
767 	intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
768 	return err;
769 }
770 
771 void intel_gt_driver_remove(struct intel_gt *gt)
772 {
773 	__intel_gt_disable(gt);
774 
775 	intel_migrate_fini(&gt->migrate);
776 	intel_uc_driver_remove(&gt->uc);
777 
778 	intel_engines_release(gt);
779 
780 	intel_gt_flush_buffer_pool(gt);
781 }
782 
783 void intel_gt_driver_unregister(struct intel_gt *gt)
784 {
785 	intel_wakeref_t wakeref;
786 
787 	intel_gt_sysfs_unregister(gt);
788 	intel_rps_driver_unregister(&gt->rps);
789 	intel_gsc_fini(&gt->gsc);
790 
791 	intel_pxp_fini(&gt->pxp);
792 
793 	/*
794 	 * Upon unregistering the device to prevent any new users, cancel
795 	 * all in-flight requests so that we can quickly unbind the active
796 	 * resources.
797 	 */
798 	intel_gt_set_wedged_on_fini(gt);
799 
800 	/* Scrub all HW state upon release */
801 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
802 		__intel_gt_reset(gt, ALL_ENGINES);
803 }
804 
805 void intel_gt_driver_release(struct intel_gt *gt)
806 {
807 	struct i915_address_space *vm;
808 
809 	vm = fetch_and_zero(&gt->vm);
810 	if (vm) /* FIXME being called twice on error paths :( */
811 		i915_vm_put(vm);
812 
813 	intel_wa_list_free(&gt->wa_list);
814 	intel_gt_pm_fini(gt);
815 	intel_gt_fini_scratch(gt);
816 	intel_gt_fini_buffer_pool(gt);
817 	intel_gt_fini_hwconfig(gt);
818 }
819 
820 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
821 {
822 	struct intel_gt *gt;
823 	unsigned int id;
824 
825 	/* We need to wait for inflight RCU frees to release their grip */
826 	rcu_barrier();
827 
828 	for_each_gt(gt, i915, id) {
829 		intel_uc_driver_late_release(&gt->uc);
830 		intel_gt_fini_requests(gt);
831 		intel_gt_fini_reset(gt);
832 		intel_gt_fini_timelines(gt);
833 		mutex_destroy(&gt->tlb.invalidate_lock);
834 		intel_engines_free(gt);
835 	}
836 }
837 
838 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
839 {
840 	int ret;
841 
842 	if (!gt_is_root(gt)) {
843 		struct intel_uncore *uncore;
844 		spinlock_t *irq_lock;
845 
846 		uncore = drmm_kzalloc(&gt->i915->drm, sizeof(*uncore), GFP_KERNEL);
847 		if (!uncore)
848 			return -ENOMEM;
849 
850 		irq_lock = drmm_kzalloc(&gt->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
851 		if (!irq_lock)
852 			return -ENOMEM;
853 
854 		gt->uncore = uncore;
855 		gt->irq_lock = irq_lock;
856 
857 		intel_gt_common_init_early(gt);
858 	}
859 
860 	intel_uncore_init_early(gt->uncore, gt);
861 
862 	ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
863 	if (ret)
864 		return ret;
865 
866 	gt->phys_addr = phys_addr;
867 
868 	return 0;
869 }
870 
871 int intel_gt_probe_all(struct drm_i915_private *i915)
872 {
873 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
874 	struct intel_gt *gt = &i915->gt0;
875 	const struct intel_gt_definition *gtdef;
876 	phys_addr_t phys_addr;
877 	unsigned int mmio_bar;
878 	unsigned int i;
879 	int ret;
880 
881 	mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
882 	phys_addr = pci_resource_start(pdev, mmio_bar);
883 
884 	/*
885 	 * We always have at least one primary GT on any device
886 	 * and it has been already initialized early during probe
887 	 * in i915_driver_probe()
888 	 */
889 	gt->i915 = i915;
890 	gt->name = "Primary GT";
891 	gt->info.engine_mask = RUNTIME_INFO(i915)->platform_engine_mask;
892 
893 	drm_dbg(&i915->drm, "Setting up %s\n", gt->name);
894 	ret = intel_gt_tile_setup(gt, phys_addr);
895 	if (ret)
896 		return ret;
897 
898 	i915->gt[0] = gt;
899 
900 	if (!HAS_EXTRA_GT_LIST(i915))
901 		return 0;
902 
903 	for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
904 	     gtdef->name != NULL;
905 	     i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
906 		gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
907 		if (!gt) {
908 			ret = -ENOMEM;
909 			goto err;
910 		}
911 
912 		gt->i915 = i915;
913 		gt->name = gtdef->name;
914 		gt->type = gtdef->type;
915 		gt->info.engine_mask = gtdef->engine_mask;
916 		gt->info.id = i;
917 
918 		drm_dbg(&i915->drm, "Setting up %s\n", gt->name);
919 		if (GEM_WARN_ON(range_overflows_t(resource_size_t,
920 						  gtdef->mapping_base,
921 						  SZ_16M,
922 						  pci_resource_len(pdev, mmio_bar)))) {
923 			ret = -ENODEV;
924 			goto err;
925 		}
926 
927 		switch (gtdef->type) {
928 		case GT_TILE:
929 			ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
930 			break;
931 
932 		case GT_MEDIA:
933 			ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
934 						     gtdef->gsi_offset);
935 			break;
936 
937 		case GT_PRIMARY:
938 			/* Primary GT should not appear in extra GT list */
939 		default:
940 			MISSING_CASE(gtdef->type);
941 			ret = -ENODEV;
942 		}
943 
944 		if (ret)
945 			goto err;
946 
947 		i915->gt[i] = gt;
948 	}
949 
950 	return 0;
951 
952 err:
953 	i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
954 	intel_gt_release_all(i915);
955 
956 	return ret;
957 }
958 
959 int intel_gt_tiles_init(struct drm_i915_private *i915)
960 {
961 	struct intel_gt *gt;
962 	unsigned int id;
963 	int ret;
964 
965 	for_each_gt(gt, i915, id) {
966 		ret = intel_gt_probe_lmem(gt);
967 		if (ret)
968 			return ret;
969 	}
970 
971 	return 0;
972 }
973 
974 void intel_gt_release_all(struct drm_i915_private *i915)
975 {
976 	struct intel_gt *gt;
977 	unsigned int id;
978 
979 	for_each_gt(gt, i915, id)
980 		i915->gt[id] = NULL;
981 }
982 
983 void intel_gt_info_print(const struct intel_gt_info *info,
984 			 struct drm_printer *p)
985 {
986 	drm_printf(p, "available engines: %x\n", info->engine_mask);
987 
988 	intel_sseu_dump(&info->sseu, p);
989 }
990 
991 struct reg_and_bit {
992 	union {
993 		i915_reg_t reg;
994 		i915_mcr_reg_t mcr_reg;
995 	};
996 	u32 bit;
997 };
998 
999 static struct reg_and_bit
1000 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8,
1001 		const i915_reg_t *regs, const unsigned int num)
1002 {
1003 	const unsigned int class = engine->class;
1004 	struct reg_and_bit rb = { };
1005 
1006 	if (drm_WARN_ON_ONCE(&engine->i915->drm,
1007 			     class >= num || !regs[class].reg))
1008 		return rb;
1009 
1010 	rb.reg = regs[class];
1011 	if (gen8 && class == VIDEO_DECODE_CLASS)
1012 		rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */
1013 	else
1014 		rb.bit = engine->instance;
1015 
1016 	rb.bit = BIT(rb.bit);
1017 
1018 	return rb;
1019 }
1020 
1021 /*
1022  * HW architecture suggest typical invalidation time at 40us,
1023  * with pessimistic cases up to 100us and a recommendation to
1024  * cap at 1ms. We go a bit higher just in case.
1025  */
1026 #define TLB_INVAL_TIMEOUT_US 100
1027 #define TLB_INVAL_TIMEOUT_MS 4
1028 
1029 /*
1030  * On Xe_HP the TLB invalidation registers are located at the same MMIO offsets
1031  * but are now considered MCR registers.  Since they exist within a GAM range,
1032  * the primary instance of the register rolls up the status from each unit.
1033  */
1034 static int wait_for_invalidate(struct intel_gt *gt, struct reg_and_bit rb)
1035 {
1036 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
1037 		return intel_gt_mcr_wait_for_reg_fw(gt, rb.mcr_reg, rb.bit, 0,
1038 						    TLB_INVAL_TIMEOUT_US,
1039 						    TLB_INVAL_TIMEOUT_MS);
1040 	else
1041 		return __intel_wait_for_register_fw(gt->uncore, rb.reg, rb.bit, 0,
1042 						    TLB_INVAL_TIMEOUT_US,
1043 						    TLB_INVAL_TIMEOUT_MS,
1044 						    NULL);
1045 }
1046 
1047 static void mmio_invalidate_full(struct intel_gt *gt)
1048 {
1049 	static const i915_reg_t gen8_regs[] = {
1050 		[RENDER_CLASS]			= GEN8_RTCR,
1051 		[VIDEO_DECODE_CLASS]		= GEN8_M1TCR, /* , GEN8_M2TCR */
1052 		[VIDEO_ENHANCEMENT_CLASS]	= GEN8_VTCR,
1053 		[COPY_ENGINE_CLASS]		= GEN8_BTCR,
1054 	};
1055 	static const i915_reg_t gen12_regs[] = {
1056 		[RENDER_CLASS]			= GEN12_GFX_TLB_INV_CR,
1057 		[VIDEO_DECODE_CLASS]		= GEN12_VD_TLB_INV_CR,
1058 		[VIDEO_ENHANCEMENT_CLASS]	= GEN12_VE_TLB_INV_CR,
1059 		[COPY_ENGINE_CLASS]		= GEN12_BLT_TLB_INV_CR,
1060 		[COMPUTE_CLASS]			= GEN12_COMPCTX_TLB_INV_CR,
1061 	};
1062 	static const i915_mcr_reg_t xehp_regs[] = {
1063 		[RENDER_CLASS]			= XEHP_GFX_TLB_INV_CR,
1064 		[VIDEO_DECODE_CLASS]		= XEHP_VD_TLB_INV_CR,
1065 		[VIDEO_ENHANCEMENT_CLASS]	= XEHP_VE_TLB_INV_CR,
1066 		[COPY_ENGINE_CLASS]		= XEHP_BLT_TLB_INV_CR,
1067 		[COMPUTE_CLASS]			= XEHP_COMPCTX_TLB_INV_CR,
1068 	};
1069 	struct drm_i915_private *i915 = gt->i915;
1070 	struct intel_uncore *uncore = gt->uncore;
1071 	struct intel_engine_cs *engine;
1072 	intel_engine_mask_t awake, tmp;
1073 	enum intel_engine_id id;
1074 	const i915_reg_t *regs;
1075 	unsigned int num = 0;
1076 
1077 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1078 		regs = NULL;
1079 		num = ARRAY_SIZE(xehp_regs);
1080 	} else if (GRAPHICS_VER(i915) == 12) {
1081 		regs = gen12_regs;
1082 		num = ARRAY_SIZE(gen12_regs);
1083 	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1084 		regs = gen8_regs;
1085 		num = ARRAY_SIZE(gen8_regs);
1086 	} else if (GRAPHICS_VER(i915) < 8) {
1087 		return;
1088 	}
1089 
1090 	if (drm_WARN_ONCE(&i915->drm, !num,
1091 			  "Platform does not implement TLB invalidation!"))
1092 		return;
1093 
1094 	intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
1095 
1096 	spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */
1097 
1098 	awake = 0;
1099 	for_each_engine(engine, gt, id) {
1100 		struct reg_and_bit rb;
1101 
1102 		if (!intel_engine_pm_is_awake(engine))
1103 			continue;
1104 
1105 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1106 			intel_gt_mcr_multicast_write_fw(gt,
1107 							xehp_regs[engine->class],
1108 							BIT(engine->instance));
1109 		} else {
1110 			rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1111 			if (!i915_mmio_reg_offset(rb.reg))
1112 				continue;
1113 
1114 			intel_uncore_write_fw(uncore, rb.reg, rb.bit);
1115 		}
1116 		awake |= engine->mask;
1117 	}
1118 
1119 	GT_TRACE(gt, "invalidated engines %08x\n", awake);
1120 
1121 	/* Wa_2207587034:tgl,dg1,rkl,adl-s,adl-p */
1122 	if (awake &&
1123 	    (IS_TIGERLAKE(i915) ||
1124 	     IS_DG1(i915) ||
1125 	     IS_ROCKETLAKE(i915) ||
1126 	     IS_ALDERLAKE_S(i915) ||
1127 	     IS_ALDERLAKE_P(i915)))
1128 		intel_uncore_write_fw(uncore, GEN12_OA_TLB_INV_CR, 1);
1129 
1130 	spin_unlock_irq(&uncore->lock);
1131 
1132 	for_each_engine_masked(engine, gt, awake, tmp) {
1133 		struct reg_and_bit rb;
1134 
1135 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
1136 			rb.mcr_reg = xehp_regs[engine->class];
1137 			rb.bit = BIT(engine->instance);
1138 		} else {
1139 			rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num);
1140 		}
1141 
1142 		if (wait_for_invalidate(gt, rb))
1143 			drm_err_ratelimited(&gt->i915->drm,
1144 					    "%s TLB invalidation did not complete in %ums!\n",
1145 					    engine->name, TLB_INVAL_TIMEOUT_MS);
1146 	}
1147 
1148 	/*
1149 	 * Use delayed put since a) we mostly expect a flurry of TLB
1150 	 * invalidations so it is good to avoid paying the forcewake cost and
1151 	 * b) it works around a bug in Icelake which cannot cope with too rapid
1152 	 * transitions.
1153 	 */
1154 	intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL);
1155 }
1156 
1157 static bool tlb_seqno_passed(const struct intel_gt *gt, u32 seqno)
1158 {
1159 	u32 cur = intel_gt_tlb_seqno(gt);
1160 
1161 	/* Only skip if a *full* TLB invalidate barrier has passed */
1162 	return (s32)(cur - ALIGN(seqno, 2)) > 0;
1163 }
1164 
1165 void intel_gt_invalidate_tlb(struct intel_gt *gt, u32 seqno)
1166 {
1167 	intel_wakeref_t wakeref;
1168 
1169 	if (I915_SELFTEST_ONLY(gt->awake == -ENODEV))
1170 		return;
1171 
1172 	if (intel_gt_is_wedged(gt))
1173 		return;
1174 
1175 	if (tlb_seqno_passed(gt, seqno))
1176 		return;
1177 
1178 	with_intel_gt_pm_if_awake(gt, wakeref) {
1179 		mutex_lock(&gt->tlb.invalidate_lock);
1180 		if (tlb_seqno_passed(gt, seqno))
1181 			goto unlock;
1182 
1183 		mmio_invalidate_full(gt);
1184 
1185 		write_seqcount_invalidate(&gt->tlb.seqno);
1186 unlock:
1187 		mutex_unlock(&gt->tlb.invalidate_lock);
1188 	}
1189 }
1190