1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <drm/drm_managed.h> 7 8 #include "gem/i915_gem_internal.h" 9 #include "gem/i915_gem_lmem.h" 10 #include "pxp/intel_pxp.h" 11 12 #include "i915_drv.h" 13 #include "intel_context.h" 14 #include "intel_engine_regs.h" 15 #include "intel_gt.h" 16 #include "intel_gt_buffer_pool.h" 17 #include "intel_gt_clock_utils.h" 18 #include "intel_gt_debugfs.h" 19 #include "intel_gt_gmch.h" 20 #include "intel_gt_pm.h" 21 #include "intel_gt_regs.h" 22 #include "intel_gt_requests.h" 23 #include "intel_migrate.h" 24 #include "intel_mocs.h" 25 #include "intel_pm.h" 26 #include "intel_rc6.h" 27 #include "intel_renderstate.h" 28 #include "intel_rps.h" 29 #include "intel_gt_sysfs.h" 30 #include "intel_uncore.h" 31 #include "shmem_utils.h" 32 33 static void __intel_gt_init_early(struct intel_gt *gt) 34 { 35 spin_lock_init(>->irq_lock); 36 37 mutex_init(>->tlb_invalidate_lock); 38 39 INIT_LIST_HEAD(>->closed_vma); 40 spin_lock_init(>->closed_lock); 41 42 init_llist_head(>->watchdog.list); 43 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 44 45 intel_gt_init_buffer_pool(gt); 46 intel_gt_init_reset(gt); 47 intel_gt_init_requests(gt); 48 intel_gt_init_timelines(gt); 49 intel_gt_pm_init_early(gt); 50 51 intel_uc_init_early(>->uc); 52 intel_rps_init_early(>->rps); 53 } 54 55 /* Preliminary initialization of Tile 0 */ 56 void intel_root_gt_init_early(struct drm_i915_private *i915) 57 { 58 struct intel_gt *gt = to_gt(i915); 59 60 gt->i915 = i915; 61 gt->uncore = &i915->uncore; 62 63 __intel_gt_init_early(gt); 64 } 65 66 static int intel_gt_probe_lmem(struct intel_gt *gt) 67 { 68 struct drm_i915_private *i915 = gt->i915; 69 unsigned int instance = gt->info.id; 70 int id = INTEL_REGION_LMEM_0 + instance; 71 struct intel_memory_region *mem; 72 int err; 73 74 mem = intel_gt_setup_lmem(gt); 75 if (IS_ERR(mem)) { 76 err = PTR_ERR(mem); 77 if (err == -ENODEV) 78 return 0; 79 80 drm_err(&i915->drm, 81 "Failed to setup region(%d) type=%d\n", 82 err, INTEL_MEMORY_LOCAL); 83 return err; 84 } 85 86 mem->id = id; 87 mem->instance = instance; 88 89 intel_memory_region_set_name(mem, "local%u", mem->instance); 90 91 GEM_BUG_ON(!HAS_REGION(i915, id)); 92 GEM_BUG_ON(i915->mm.regions[id]); 93 i915->mm.regions[id] = mem; 94 95 return 0; 96 } 97 98 int intel_gt_assign_ggtt(struct intel_gt *gt) 99 { 100 gt->ggtt = drmm_kzalloc(>->i915->drm, sizeof(*gt->ggtt), GFP_KERNEL); 101 102 return gt->ggtt ? 0 : -ENOMEM; 103 } 104 105 static const char * const intel_steering_types[] = { 106 "L3BANK", 107 "MSLICE", 108 "LNCF", 109 }; 110 111 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 112 { 0x00B100, 0x00B3FF }, 113 {}, 114 }; 115 116 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 117 { 0x004000, 0x004AFF }, 118 { 0x00C800, 0x00CFFF }, 119 { 0x00DD00, 0x00DDFF }, 120 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 121 {}, 122 }; 123 124 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 125 { 0x00B000, 0x00B0FF }, 126 { 0x00D800, 0x00D8FF }, 127 {}, 128 }; 129 130 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 131 { 0x00B000, 0x00B0FF }, 132 { 0x00D880, 0x00D8FF }, 133 {}, 134 }; 135 136 static u16 slicemask(struct intel_gt *gt, int count) 137 { 138 u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); 139 140 return intel_slicemask_from_dssmask(dss_mask, count); 141 } 142 143 int intel_gt_init_mmio(struct intel_gt *gt) 144 { 145 struct drm_i915_private *i915 = gt->i915; 146 147 intel_gt_init_clock_frequency(gt); 148 149 intel_uc_init_mmio(>->uc); 150 intel_sseu_info_init(gt); 151 152 /* 153 * An mslice is unavailable only if both the meml3 for the slice is 154 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 155 */ 156 if (HAS_MSLICES(i915)) 157 gt->info.mslice_mask = 158 slicemask(gt, GEN_DSS_PER_MSLICE) | 159 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 160 GEN12_MEML3_EN_MASK); 161 162 if (IS_DG2(i915)) { 163 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 164 gt->steering_table[LNCF] = dg2_lncf_steering_table; 165 } else if (IS_XEHPSDV(i915)) { 166 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 167 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 168 } else if (GRAPHICS_VER(i915) >= 11 && 169 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 170 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 171 gt->info.l3bank_mask = 172 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 173 GEN10_L3BANK_MASK; 174 } else if (HAS_MSLICES(i915)) { 175 MISSING_CASE(INTEL_INFO(i915)->platform); 176 } 177 178 return intel_engines_init_mmio(gt); 179 } 180 181 static void init_unused_ring(struct intel_gt *gt, u32 base) 182 { 183 struct intel_uncore *uncore = gt->uncore; 184 185 intel_uncore_write(uncore, RING_CTL(base), 0); 186 intel_uncore_write(uncore, RING_HEAD(base), 0); 187 intel_uncore_write(uncore, RING_TAIL(base), 0); 188 intel_uncore_write(uncore, RING_START(base), 0); 189 } 190 191 static void init_unused_rings(struct intel_gt *gt) 192 { 193 struct drm_i915_private *i915 = gt->i915; 194 195 if (IS_I830(i915)) { 196 init_unused_ring(gt, PRB1_BASE); 197 init_unused_ring(gt, SRB0_BASE); 198 init_unused_ring(gt, SRB1_BASE); 199 init_unused_ring(gt, SRB2_BASE); 200 init_unused_ring(gt, SRB3_BASE); 201 } else if (GRAPHICS_VER(i915) == 2) { 202 init_unused_ring(gt, SRB0_BASE); 203 init_unused_ring(gt, SRB1_BASE); 204 } else if (GRAPHICS_VER(i915) == 3) { 205 init_unused_ring(gt, PRB1_BASE); 206 init_unused_ring(gt, PRB2_BASE); 207 } 208 } 209 210 int intel_gt_init_hw(struct intel_gt *gt) 211 { 212 struct drm_i915_private *i915 = gt->i915; 213 struct intel_uncore *uncore = gt->uncore; 214 int ret; 215 216 gt->last_init_time = ktime_get(); 217 218 /* Double layer security blanket, see i915_gem_init() */ 219 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 220 221 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 222 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 223 224 if (IS_HASWELL(i915)) 225 intel_uncore_write(uncore, 226 HSW_MI_PREDICATE_RESULT_2, 227 IS_HSW_GT3(i915) ? 228 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 229 230 /* Apply the GT workarounds... */ 231 intel_gt_apply_workarounds(gt); 232 /* ...and determine whether they are sticking. */ 233 intel_gt_verify_workarounds(gt, "init"); 234 235 intel_gt_init_swizzling(gt); 236 237 /* 238 * At least 830 can leave some of the unused rings 239 * "active" (ie. head != tail) after resume which 240 * will prevent c3 entry. Makes sure all unused rings 241 * are totally idle. 242 */ 243 init_unused_rings(gt); 244 245 ret = i915_ppgtt_init_hw(gt); 246 if (ret) { 247 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 248 goto out; 249 } 250 251 /* We can't enable contexts until all firmware is loaded */ 252 ret = intel_uc_init_hw(>->uc); 253 if (ret) { 254 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 255 goto out; 256 } 257 258 intel_mocs_init(gt); 259 260 out: 261 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 262 return ret; 263 } 264 265 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 266 { 267 intel_uncore_rmw(uncore, reg, 0, set); 268 } 269 270 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 271 { 272 intel_uncore_rmw(uncore, reg, clr, 0); 273 } 274 275 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 276 { 277 intel_uncore_rmw(uncore, reg, 0, 0); 278 } 279 280 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 281 { 282 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 283 GEN6_RING_FAULT_REG_POSTING_READ(engine); 284 } 285 286 void 287 intel_gt_clear_error_registers(struct intel_gt *gt, 288 intel_engine_mask_t engine_mask) 289 { 290 struct drm_i915_private *i915 = gt->i915; 291 struct intel_uncore *uncore = gt->uncore; 292 u32 eir; 293 294 if (GRAPHICS_VER(i915) != 2) 295 clear_register(uncore, PGTBL_ER); 296 297 if (GRAPHICS_VER(i915) < 4) 298 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 299 else 300 clear_register(uncore, IPEIR_I965); 301 302 clear_register(uncore, EIR); 303 eir = intel_uncore_read(uncore, EIR); 304 if (eir) { 305 /* 306 * some errors might have become stuck, 307 * mask them. 308 */ 309 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 310 rmw_set(uncore, EMR, eir); 311 intel_uncore_write(uncore, GEN2_IIR, 312 I915_MASTER_ERROR_INTERRUPT); 313 } 314 315 if (GRAPHICS_VER(i915) >= 12) { 316 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 317 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 318 } else if (GRAPHICS_VER(i915) >= 8) { 319 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 320 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 321 } else if (GRAPHICS_VER(i915) >= 6) { 322 struct intel_engine_cs *engine; 323 enum intel_engine_id id; 324 325 for_each_engine_masked(engine, gt, engine_mask, id) 326 gen6_clear_engine_error_register(engine); 327 } 328 } 329 330 static void gen6_check_faults(struct intel_gt *gt) 331 { 332 struct intel_engine_cs *engine; 333 enum intel_engine_id id; 334 u32 fault; 335 336 for_each_engine(engine, gt, id) { 337 fault = GEN6_RING_FAULT_REG_READ(engine); 338 if (fault & RING_FAULT_VALID) { 339 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 340 "\tAddr: 0x%08lx\n" 341 "\tAddress space: %s\n" 342 "\tSource ID: %d\n" 343 "\tType: %d\n", 344 fault & PAGE_MASK, 345 fault & RING_FAULT_GTTSEL_MASK ? 346 "GGTT" : "PPGTT", 347 RING_FAULT_SRCID(fault), 348 RING_FAULT_FAULT_TYPE(fault)); 349 } 350 } 351 } 352 353 static void gen8_check_faults(struct intel_gt *gt) 354 { 355 struct intel_uncore *uncore = gt->uncore; 356 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 357 u32 fault; 358 359 if (GRAPHICS_VER(gt->i915) >= 12) { 360 fault_reg = GEN12_RING_FAULT_REG; 361 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 362 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 363 } else { 364 fault_reg = GEN8_RING_FAULT_REG; 365 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 366 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 367 } 368 369 fault = intel_uncore_read(uncore, fault_reg); 370 if (fault & RING_FAULT_VALID) { 371 u32 fault_data0, fault_data1; 372 u64 fault_addr; 373 374 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 375 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 376 377 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 378 ((u64)fault_data0 << 12); 379 380 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 381 "\tAddr: 0x%08x_%08x\n" 382 "\tAddress space: %s\n" 383 "\tEngine ID: %d\n" 384 "\tSource ID: %d\n" 385 "\tType: %d\n", 386 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 387 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 388 GEN8_RING_FAULT_ENGINE_ID(fault), 389 RING_FAULT_SRCID(fault), 390 RING_FAULT_FAULT_TYPE(fault)); 391 } 392 } 393 394 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 395 { 396 struct drm_i915_private *i915 = gt->i915; 397 398 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 399 if (GRAPHICS_VER(i915) >= 8) 400 gen8_check_faults(gt); 401 else if (GRAPHICS_VER(i915) >= 6) 402 gen6_check_faults(gt); 403 else 404 return; 405 406 intel_gt_clear_error_registers(gt, ALL_ENGINES); 407 } 408 409 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 410 { 411 struct intel_uncore *uncore = gt->uncore; 412 intel_wakeref_t wakeref; 413 414 /* 415 * No actual flushing is required for the GTT write domain for reads 416 * from the GTT domain. Writes to it "immediately" go to main memory 417 * as far as we know, so there's no chipset flush. It also doesn't 418 * land in the GPU render cache. 419 * 420 * However, we do have to enforce the order so that all writes through 421 * the GTT land before any writes to the device, such as updates to 422 * the GATT itself. 423 * 424 * We also have to wait a bit for the writes to land from the GTT. 425 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 426 * timing. This issue has only been observed when switching quickly 427 * between GTT writes and CPU reads from inside the kernel on recent hw, 428 * and it appears to only affect discrete GTT blocks (i.e. on LLC 429 * system agents we cannot reproduce this behaviour, until Cannonlake 430 * that was!). 431 */ 432 433 wmb(); 434 435 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 436 return; 437 438 intel_gt_chipset_flush(gt); 439 440 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 441 unsigned long flags; 442 443 spin_lock_irqsave(&uncore->lock, flags); 444 intel_uncore_posting_read_fw(uncore, 445 RING_HEAD(RENDER_RING_BASE)); 446 spin_unlock_irqrestore(&uncore->lock, flags); 447 } 448 } 449 450 void intel_gt_chipset_flush(struct intel_gt *gt) 451 { 452 wmb(); 453 if (GRAPHICS_VER(gt->i915) < 6) 454 intel_gt_gmch_gen5_chipset_flush(gt); 455 } 456 457 void intel_gt_driver_register(struct intel_gt *gt) 458 { 459 intel_gsc_init(>->gsc, gt->i915); 460 461 intel_rps_driver_register(>->rps); 462 463 intel_gt_debugfs_register(gt); 464 intel_gt_sysfs_register(gt); 465 } 466 467 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 468 { 469 struct drm_i915_private *i915 = gt->i915; 470 struct drm_i915_gem_object *obj; 471 struct i915_vma *vma; 472 int ret; 473 474 obj = i915_gem_object_create_lmem(i915, size, 475 I915_BO_ALLOC_VOLATILE | 476 I915_BO_ALLOC_GPU_ONLY); 477 if (IS_ERR(obj)) 478 obj = i915_gem_object_create_stolen(i915, size); 479 if (IS_ERR(obj)) 480 obj = i915_gem_object_create_internal(i915, size); 481 if (IS_ERR(obj)) { 482 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 483 return PTR_ERR(obj); 484 } 485 486 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 487 if (IS_ERR(vma)) { 488 ret = PTR_ERR(vma); 489 goto err_unref; 490 } 491 492 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 493 if (ret) 494 goto err_unref; 495 496 gt->scratch = i915_vma_make_unshrinkable(vma); 497 498 return 0; 499 500 err_unref: 501 i915_gem_object_put(obj); 502 return ret; 503 } 504 505 static void intel_gt_fini_scratch(struct intel_gt *gt) 506 { 507 i915_vma_unpin_and_release(>->scratch, 0); 508 } 509 510 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 511 { 512 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 513 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 514 else 515 return i915_vm_get(>->ggtt->vm); 516 } 517 518 static int __engines_record_defaults(struct intel_gt *gt) 519 { 520 struct i915_request *requests[I915_NUM_ENGINES] = {}; 521 struct intel_engine_cs *engine; 522 enum intel_engine_id id; 523 int err = 0; 524 525 /* 526 * As we reset the gpu during very early sanitisation, the current 527 * register state on the GPU should reflect its defaults values. 528 * We load a context onto the hw (with restore-inhibit), then switch 529 * over to a second context to save that default register state. We 530 * can then prime every new context with that state so they all start 531 * from the same default HW values. 532 */ 533 534 for_each_engine(engine, gt, id) { 535 struct intel_renderstate so; 536 struct intel_context *ce; 537 struct i915_request *rq; 538 539 /* We must be able to switch to something! */ 540 GEM_BUG_ON(!engine->kernel_context); 541 542 ce = intel_context_create(engine); 543 if (IS_ERR(ce)) { 544 err = PTR_ERR(ce); 545 goto out; 546 } 547 548 err = intel_renderstate_init(&so, ce); 549 if (err) 550 goto err; 551 552 rq = i915_request_create(ce); 553 if (IS_ERR(rq)) { 554 err = PTR_ERR(rq); 555 goto err_fini; 556 } 557 558 err = intel_engine_emit_ctx_wa(rq); 559 if (err) 560 goto err_rq; 561 562 err = intel_renderstate_emit(&so, rq); 563 if (err) 564 goto err_rq; 565 566 err_rq: 567 requests[id] = i915_request_get(rq); 568 i915_request_add(rq); 569 err_fini: 570 intel_renderstate_fini(&so, ce); 571 err: 572 if (err) { 573 intel_context_put(ce); 574 goto out; 575 } 576 } 577 578 /* Flush the default context image to memory, and enable powersaving. */ 579 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 580 err = -EIO; 581 goto out; 582 } 583 584 for (id = 0; id < ARRAY_SIZE(requests); id++) { 585 struct i915_request *rq; 586 struct file *state; 587 588 rq = requests[id]; 589 if (!rq) 590 continue; 591 592 if (rq->fence.error) { 593 err = -EIO; 594 goto out; 595 } 596 597 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 598 if (!rq->context->state) 599 continue; 600 601 /* Keep a copy of the state's backing pages; free the obj */ 602 state = shmem_create_from_object(rq->context->state->obj); 603 if (IS_ERR(state)) { 604 err = PTR_ERR(state); 605 goto out; 606 } 607 rq->engine->default_state = state; 608 } 609 610 out: 611 /* 612 * If we have to abandon now, we expect the engines to be idle 613 * and ready to be torn-down. The quickest way we can accomplish 614 * this is by declaring ourselves wedged. 615 */ 616 if (err) 617 intel_gt_set_wedged(gt); 618 619 for (id = 0; id < ARRAY_SIZE(requests); id++) { 620 struct intel_context *ce; 621 struct i915_request *rq; 622 623 rq = requests[id]; 624 if (!rq) 625 continue; 626 627 ce = rq->context; 628 i915_request_put(rq); 629 intel_context_put(ce); 630 } 631 return err; 632 } 633 634 static int __engines_verify_workarounds(struct intel_gt *gt) 635 { 636 struct intel_engine_cs *engine; 637 enum intel_engine_id id; 638 int err = 0; 639 640 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 641 return 0; 642 643 for_each_engine(engine, gt, id) { 644 if (intel_engine_verify_workarounds(engine, "load")) 645 err = -EIO; 646 } 647 648 /* Flush and restore the kernel context for safety */ 649 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 650 err = -EIO; 651 652 return err; 653 } 654 655 static void __intel_gt_disable(struct intel_gt *gt) 656 { 657 intel_gt_set_wedged_on_fini(gt); 658 659 intel_gt_suspend_prepare(gt); 660 intel_gt_suspend_late(gt); 661 662 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 663 } 664 665 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 666 { 667 long remaining_timeout; 668 669 /* If the device is asleep, we have no requests outstanding */ 670 if (!intel_gt_pm_is_awake(gt)) 671 return 0; 672 673 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 674 &remaining_timeout)) > 0) { 675 cond_resched(); 676 if (signal_pending(current)) 677 return -EINTR; 678 } 679 680 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 681 remaining_timeout); 682 } 683 684 int intel_gt_init(struct intel_gt *gt) 685 { 686 int err; 687 688 err = i915_inject_probe_error(gt->i915, -ENODEV); 689 if (err) 690 return err; 691 692 intel_gt_init_workarounds(gt); 693 694 /* 695 * This is just a security blanket to placate dragons. 696 * On some systems, we very sporadically observe that the first TLBs 697 * used by the CS may be stale, despite us poking the TLB reset. If 698 * we hold the forcewake during initialisation these problems 699 * just magically go away. 700 */ 701 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 702 703 err = intel_gt_init_scratch(gt, 704 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 705 if (err) 706 goto out_fw; 707 708 intel_gt_pm_init(gt); 709 710 gt->vm = kernel_vm(gt); 711 if (!gt->vm) { 712 err = -ENOMEM; 713 goto err_pm; 714 } 715 716 intel_set_mocs_index(gt); 717 718 err = intel_engines_init(gt); 719 if (err) 720 goto err_engines; 721 722 err = intel_uc_init(>->uc); 723 if (err) 724 goto err_engines; 725 726 err = intel_gt_resume(gt); 727 if (err) 728 goto err_uc_init; 729 730 err = intel_gt_init_hwconfig(gt); 731 if (err) 732 drm_err(>->i915->drm, "Failed to retrieve hwconfig table: %pe\n", 733 ERR_PTR(err)); 734 735 err = __engines_record_defaults(gt); 736 if (err) 737 goto err_gt; 738 739 err = __engines_verify_workarounds(gt); 740 if (err) 741 goto err_gt; 742 743 intel_uc_init_late(>->uc); 744 745 err = i915_inject_probe_error(gt->i915, -EIO); 746 if (err) 747 goto err_gt; 748 749 intel_migrate_init(>->migrate, gt); 750 751 intel_pxp_init(>->pxp); 752 753 goto out_fw; 754 err_gt: 755 __intel_gt_disable(gt); 756 intel_uc_fini_hw(>->uc); 757 err_uc_init: 758 intel_uc_fini(>->uc); 759 err_engines: 760 intel_engines_release(gt); 761 i915_vm_put(fetch_and_zero(>->vm)); 762 err_pm: 763 intel_gt_pm_fini(gt); 764 intel_gt_fini_scratch(gt); 765 out_fw: 766 if (err) 767 intel_gt_set_wedged_on_init(gt); 768 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 769 return err; 770 } 771 772 void intel_gt_driver_remove(struct intel_gt *gt) 773 { 774 __intel_gt_disable(gt); 775 776 intel_migrate_fini(>->migrate); 777 intel_uc_driver_remove(>->uc); 778 779 intel_engines_release(gt); 780 781 intel_gt_flush_buffer_pool(gt); 782 } 783 784 void intel_gt_driver_unregister(struct intel_gt *gt) 785 { 786 intel_wakeref_t wakeref; 787 788 intel_gt_sysfs_unregister(gt); 789 intel_rps_driver_unregister(>->rps); 790 intel_gsc_fini(>->gsc); 791 792 intel_pxp_fini(>->pxp); 793 794 /* 795 * Upon unregistering the device to prevent any new users, cancel 796 * all in-flight requests so that we can quickly unbind the active 797 * resources. 798 */ 799 intel_gt_set_wedged_on_fini(gt); 800 801 /* Scrub all HW state upon release */ 802 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 803 __intel_gt_reset(gt, ALL_ENGINES); 804 } 805 806 void intel_gt_driver_release(struct intel_gt *gt) 807 { 808 struct i915_address_space *vm; 809 810 vm = fetch_and_zero(>->vm); 811 if (vm) /* FIXME being called twice on error paths :( */ 812 i915_vm_put(vm); 813 814 intel_wa_list_free(>->wa_list); 815 intel_gt_pm_fini(gt); 816 intel_gt_fini_scratch(gt); 817 intel_gt_fini_buffer_pool(gt); 818 intel_gt_fini_hwconfig(gt); 819 } 820 821 void intel_gt_driver_late_release_all(struct drm_i915_private *i915) 822 { 823 struct intel_gt *gt; 824 unsigned int id; 825 826 /* We need to wait for inflight RCU frees to release their grip */ 827 rcu_barrier(); 828 829 for_each_gt(gt, i915, id) { 830 intel_uc_driver_late_release(>->uc); 831 intel_gt_fini_requests(gt); 832 intel_gt_fini_reset(gt); 833 intel_gt_fini_timelines(gt); 834 intel_engines_free(gt); 835 } 836 } 837 838 /** 839 * intel_gt_reg_needs_read_steering - determine whether a register read 840 * requires explicit steering 841 * @gt: GT structure 842 * @reg: the register to check steering requirements for 843 * @type: type of multicast steering to check 844 * 845 * Determines whether @reg needs explicit steering of a specific type for 846 * reads. 847 * 848 * Returns false if @reg does not belong to a register range of the given 849 * steering type, or if the default (subslice-based) steering IDs are suitable 850 * for @type steering too. 851 */ 852 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, 853 i915_reg_t reg, 854 enum intel_steering_type type) 855 { 856 const u32 offset = i915_mmio_reg_offset(reg); 857 const struct intel_mmio_range *entry; 858 859 if (likely(!intel_gt_needs_read_steering(gt, type))) 860 return false; 861 862 for (entry = gt->steering_table[type]; entry->end; entry++) { 863 if (offset >= entry->start && offset <= entry->end) 864 return true; 865 } 866 867 return false; 868 } 869 870 /** 871 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering 872 * @gt: GT structure 873 * @type: multicast register type 874 * @sliceid: Slice ID returned 875 * @subsliceid: Subslice ID returned 876 * 877 * Determines sliceid and subsliceid values that will steer reads 878 * of a specific multicast register class to a valid value. 879 */ 880 static void intel_gt_get_valid_steering(struct intel_gt *gt, 881 enum intel_steering_type type, 882 u8 *sliceid, u8 *subsliceid) 883 { 884 switch (type) { 885 case L3BANK: 886 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ 887 888 *sliceid = 0; /* unused */ 889 *subsliceid = __ffs(gt->info.l3bank_mask); 890 break; 891 case MSLICE: 892 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 893 894 *sliceid = __ffs(gt->info.mslice_mask); 895 *subsliceid = 0; /* unused */ 896 break; 897 case LNCF: 898 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 899 900 /* 901 * An LNCF is always present if its mslice is present, so we 902 * can safely just steer to LNCF 0 in all cases. 903 */ 904 *sliceid = __ffs(gt->info.mslice_mask) << 1; 905 *subsliceid = 0; /* unused */ 906 break; 907 default: 908 MISSING_CASE(type); 909 *sliceid = 0; 910 *subsliceid = 0; 911 } 912 } 913 914 /** 915 * intel_gt_read_register_fw - reads a GT register with support for multicast 916 * @gt: GT structure 917 * @reg: register to read 918 * 919 * This function will read a GT register. If the register is a multicast 920 * register, the read will be steered to a valid instance (i.e., one that 921 * isn't fused off or powered down by power gating). 922 * 923 * Returns the value from a valid instance of @reg. 924 */ 925 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) 926 { 927 int type; 928 u8 sliceid, subsliceid; 929 930 for (type = 0; type < NUM_STEERING_TYPES; type++) { 931 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 932 intel_gt_get_valid_steering(gt, type, &sliceid, 933 &subsliceid); 934 return intel_uncore_read_with_mcr_steering_fw(gt->uncore, 935 reg, 936 sliceid, 937 subsliceid); 938 } 939 } 940 941 return intel_uncore_read_fw(gt->uncore, reg); 942 } 943 944 /** 945 * intel_gt_get_valid_steering_for_reg - get a valid steering for a register 946 * @gt: GT structure 947 * @reg: register for which the steering is required 948 * @sliceid: return variable for slice steering 949 * @subsliceid: return variable for subslice steering 950 * 951 * This function returns a slice/subslice pair that is guaranteed to work for 952 * read steering of the given register. Note that a value will be returned even 953 * if the register is not replicated and therefore does not actually require 954 * steering. 955 */ 956 void intel_gt_get_valid_steering_for_reg(struct intel_gt *gt, i915_reg_t reg, 957 u8 *sliceid, u8 *subsliceid) 958 { 959 int type; 960 961 for (type = 0; type < NUM_STEERING_TYPES; type++) { 962 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 963 intel_gt_get_valid_steering(gt, type, sliceid, 964 subsliceid); 965 return; 966 } 967 } 968 969 *sliceid = gt->default_steering.groupid; 970 *subsliceid = gt->default_steering.instanceid; 971 } 972 973 u32 intel_gt_read_register(struct intel_gt *gt, i915_reg_t reg) 974 { 975 int type; 976 u8 sliceid, subsliceid; 977 978 for (type = 0; type < NUM_STEERING_TYPES; type++) { 979 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 980 intel_gt_get_valid_steering(gt, type, &sliceid, 981 &subsliceid); 982 return intel_uncore_read_with_mcr_steering(gt->uncore, 983 reg, 984 sliceid, 985 subsliceid); 986 } 987 } 988 989 return intel_uncore_read(gt->uncore, reg); 990 } 991 992 static void report_steering_type(struct drm_printer *p, 993 struct intel_gt *gt, 994 enum intel_steering_type type, 995 bool dump_table) 996 { 997 const struct intel_mmio_range *entry; 998 u8 slice, subslice; 999 1000 BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES); 1001 1002 if (!gt->steering_table[type]) { 1003 drm_printf(p, "%s steering: uses default steering\n", 1004 intel_steering_types[type]); 1005 return; 1006 } 1007 1008 intel_gt_get_valid_steering(gt, type, &slice, &subslice); 1009 drm_printf(p, "%s steering: sliceid=0x%x, subsliceid=0x%x\n", 1010 intel_steering_types[type], slice, subslice); 1011 1012 if (!dump_table) 1013 return; 1014 1015 for (entry = gt->steering_table[type]; entry->end; entry++) 1016 drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end); 1017 } 1018 1019 void intel_gt_report_steering(struct drm_printer *p, struct intel_gt *gt, 1020 bool dump_table) 1021 { 1022 drm_printf(p, "Default steering: sliceid=0x%x, subsliceid=0x%x\n", 1023 gt->default_steering.groupid, 1024 gt->default_steering.instanceid); 1025 1026 if (HAS_MSLICES(gt->i915)) { 1027 report_steering_type(p, gt, MSLICE, dump_table); 1028 report_steering_type(p, gt, LNCF, dump_table); 1029 } 1030 } 1031 1032 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr) 1033 { 1034 int ret; 1035 1036 if (!gt_is_root(gt)) { 1037 struct intel_uncore_mmio_debug *mmio_debug; 1038 struct intel_uncore *uncore; 1039 1040 uncore = kzalloc(sizeof(*uncore), GFP_KERNEL); 1041 if (!uncore) 1042 return -ENOMEM; 1043 1044 mmio_debug = kzalloc(sizeof(*mmio_debug), GFP_KERNEL); 1045 if (!mmio_debug) { 1046 kfree(uncore); 1047 return -ENOMEM; 1048 } 1049 1050 gt->uncore = uncore; 1051 gt->uncore->debug = mmio_debug; 1052 1053 __intel_gt_init_early(gt); 1054 } 1055 1056 intel_uncore_init_early(gt->uncore, gt); 1057 1058 ret = intel_uncore_setup_mmio(gt->uncore, phys_addr); 1059 if (ret) 1060 return ret; 1061 1062 gt->phys_addr = phys_addr; 1063 1064 return 0; 1065 } 1066 1067 static void 1068 intel_gt_tile_cleanup(struct intel_gt *gt) 1069 { 1070 intel_uncore_cleanup_mmio(gt->uncore); 1071 1072 if (!gt_is_root(gt)) { 1073 kfree(gt->uncore->debug); 1074 kfree(gt->uncore); 1075 kfree(gt); 1076 } 1077 } 1078 1079 int intel_gt_probe_all(struct drm_i915_private *i915) 1080 { 1081 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1082 struct intel_gt *gt = &i915->gt0; 1083 phys_addr_t phys_addr; 1084 unsigned int mmio_bar; 1085 int ret; 1086 1087 mmio_bar = GRAPHICS_VER(i915) == 2 ? 1 : 0; 1088 phys_addr = pci_resource_start(pdev, mmio_bar); 1089 1090 /* 1091 * We always have at least one primary GT on any device 1092 * and it has been already initialized early during probe 1093 * in i915_driver_probe() 1094 */ 1095 ret = intel_gt_tile_setup(gt, phys_addr); 1096 if (ret) 1097 return ret; 1098 1099 i915->gt[0] = gt; 1100 1101 /* TODO: add more tiles */ 1102 return 0; 1103 } 1104 1105 int intel_gt_tiles_init(struct drm_i915_private *i915) 1106 { 1107 struct intel_gt *gt; 1108 unsigned int id; 1109 int ret; 1110 1111 for_each_gt(gt, i915, id) { 1112 ret = intel_gt_probe_lmem(gt); 1113 if (ret) 1114 return ret; 1115 } 1116 1117 return 0; 1118 } 1119 1120 void intel_gt_release_all(struct drm_i915_private *i915) 1121 { 1122 struct intel_gt *gt; 1123 unsigned int id; 1124 1125 for_each_gt(gt, i915, id) { 1126 intel_gt_tile_cleanup(gt); 1127 i915->gt[id] = NULL; 1128 } 1129 } 1130 1131 void intel_gt_info_print(const struct intel_gt_info *info, 1132 struct drm_printer *p) 1133 { 1134 drm_printf(p, "available engines: %x\n", info->engine_mask); 1135 1136 intel_sseu_dump(&info->sseu, p); 1137 } 1138 1139 struct reg_and_bit { 1140 i915_reg_t reg; 1141 u32 bit; 1142 }; 1143 1144 static struct reg_and_bit 1145 get_reg_and_bit(const struct intel_engine_cs *engine, const bool gen8, 1146 const i915_reg_t *regs, const unsigned int num) 1147 { 1148 const unsigned int class = engine->class; 1149 struct reg_and_bit rb = { }; 1150 1151 if (drm_WARN_ON_ONCE(&engine->i915->drm, 1152 class >= num || !regs[class].reg)) 1153 return rb; 1154 1155 rb.reg = regs[class]; 1156 if (gen8 && class == VIDEO_DECODE_CLASS) 1157 rb.reg.reg += 4 * engine->instance; /* GEN8_M2TCR */ 1158 else 1159 rb.bit = engine->instance; 1160 1161 rb.bit = BIT(rb.bit); 1162 1163 return rb; 1164 } 1165 1166 void intel_gt_invalidate_tlbs(struct intel_gt *gt) 1167 { 1168 static const i915_reg_t gen8_regs[] = { 1169 [RENDER_CLASS] = GEN8_RTCR, 1170 [VIDEO_DECODE_CLASS] = GEN8_M1TCR, /* , GEN8_M2TCR */ 1171 [VIDEO_ENHANCEMENT_CLASS] = GEN8_VTCR, 1172 [COPY_ENGINE_CLASS] = GEN8_BTCR, 1173 }; 1174 static const i915_reg_t gen12_regs[] = { 1175 [RENDER_CLASS] = GEN12_GFX_TLB_INV_CR, 1176 [VIDEO_DECODE_CLASS] = GEN12_VD_TLB_INV_CR, 1177 [VIDEO_ENHANCEMENT_CLASS] = GEN12_VE_TLB_INV_CR, 1178 [COPY_ENGINE_CLASS] = GEN12_BLT_TLB_INV_CR, 1179 [COMPUTE_CLASS] = GEN12_COMPCTX_TLB_INV_CR, 1180 }; 1181 struct drm_i915_private *i915 = gt->i915; 1182 struct intel_uncore *uncore = gt->uncore; 1183 struct intel_engine_cs *engine; 1184 enum intel_engine_id id; 1185 const i915_reg_t *regs; 1186 unsigned int num = 0; 1187 1188 if (I915_SELFTEST_ONLY(gt->awake == -ENODEV)) 1189 return; 1190 1191 if (GRAPHICS_VER(i915) == 12) { 1192 regs = gen12_regs; 1193 num = ARRAY_SIZE(gen12_regs); 1194 } else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) { 1195 regs = gen8_regs; 1196 num = ARRAY_SIZE(gen8_regs); 1197 } else if (GRAPHICS_VER(i915) < 8) { 1198 return; 1199 } 1200 1201 if (drm_WARN_ONCE(&i915->drm, !num, 1202 "Platform does not implement TLB invalidation!")) 1203 return; 1204 1205 GEM_TRACE("\n"); 1206 1207 assert_rpm_wakelock_held(&i915->runtime_pm); 1208 1209 mutex_lock(>->tlb_invalidate_lock); 1210 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 1211 1212 spin_lock_irq(&uncore->lock); /* serialise invalidate with GT reset */ 1213 1214 for_each_engine(engine, gt, id) { 1215 struct reg_and_bit rb; 1216 1217 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1218 if (!i915_mmio_reg_offset(rb.reg)) 1219 continue; 1220 1221 intel_uncore_write_fw(uncore, rb.reg, rb.bit); 1222 } 1223 1224 spin_unlock_irq(&uncore->lock); 1225 1226 for_each_engine(engine, gt, id) { 1227 /* 1228 * HW architecture suggest typical invalidation time at 40us, 1229 * with pessimistic cases up to 100us and a recommendation to 1230 * cap at 1ms. We go a bit higher just in case. 1231 */ 1232 const unsigned int timeout_us = 100; 1233 const unsigned int timeout_ms = 4; 1234 struct reg_and_bit rb; 1235 1236 rb = get_reg_and_bit(engine, regs == gen8_regs, regs, num); 1237 if (!i915_mmio_reg_offset(rb.reg)) 1238 continue; 1239 1240 if (__intel_wait_for_register_fw(uncore, 1241 rb.reg, rb.bit, 0, 1242 timeout_us, timeout_ms, 1243 NULL)) 1244 drm_err_ratelimited(>->i915->drm, 1245 "%s TLB invalidation did not complete in %ums!\n", 1246 engine->name, timeout_ms); 1247 } 1248 1249 /* 1250 * Use delayed put since a) we mostly expect a flurry of TLB 1251 * invalidations so it is good to avoid paying the forcewake cost and 1252 * b) it works around a bug in Icelake which cannot cope with too rapid 1253 * transitions. 1254 */ 1255 intel_uncore_forcewake_put_delayed(uncore, FORCEWAKE_ALL); 1256 mutex_unlock(>->tlb_invalidate_lock); 1257 } 1258