1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include "intel_gt_debugfs.h" 7 8 #include "gem/i915_gem_lmem.h" 9 #include "i915_drv.h" 10 #include "intel_context.h" 11 #include "intel_gt.h" 12 #include "intel_gt_buffer_pool.h" 13 #include "intel_gt_clock_utils.h" 14 #include "intel_gt_pm.h" 15 #include "intel_gt_requests.h" 16 #include "intel_migrate.h" 17 #include "intel_mocs.h" 18 #include "intel_pm.h" 19 #include "intel_rc6.h" 20 #include "intel_renderstate.h" 21 #include "intel_rps.h" 22 #include "intel_uncore.h" 23 #include "shmem_utils.h" 24 #include "pxp/intel_pxp.h" 25 26 void intel_gt_init_early(struct intel_gt *gt, struct drm_i915_private *i915) 27 { 28 gt->i915 = i915; 29 gt->uncore = &i915->uncore; 30 31 spin_lock_init(>->irq_lock); 32 33 INIT_LIST_HEAD(>->closed_vma); 34 spin_lock_init(>->closed_lock); 35 36 init_llist_head(>->watchdog.list); 37 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work); 38 39 intel_gt_init_buffer_pool(gt); 40 intel_gt_init_reset(gt); 41 intel_gt_init_requests(gt); 42 intel_gt_init_timelines(gt); 43 intel_gt_pm_init_early(gt); 44 45 intel_uc_init_early(>->uc); 46 intel_rps_init_early(>->rps); 47 } 48 49 int intel_gt_probe_lmem(struct intel_gt *gt) 50 { 51 struct drm_i915_private *i915 = gt->i915; 52 struct intel_memory_region *mem; 53 int id; 54 int err; 55 56 mem = intel_gt_setup_lmem(gt); 57 if (mem == ERR_PTR(-ENODEV)) 58 mem = intel_gt_setup_fake_lmem(gt); 59 if (IS_ERR(mem)) { 60 err = PTR_ERR(mem); 61 if (err == -ENODEV) 62 return 0; 63 64 drm_err(&i915->drm, 65 "Failed to setup region(%d) type=%d\n", 66 err, INTEL_MEMORY_LOCAL); 67 return err; 68 } 69 70 id = INTEL_REGION_LMEM; 71 72 mem->id = id; 73 74 intel_memory_region_set_name(mem, "local%u", mem->instance); 75 76 GEM_BUG_ON(!HAS_REGION(i915, id)); 77 GEM_BUG_ON(i915->mm.regions[id]); 78 i915->mm.regions[id] = mem; 79 80 return 0; 81 } 82 83 void intel_gt_init_hw_early(struct intel_gt *gt, struct i915_ggtt *ggtt) 84 { 85 gt->ggtt = ggtt; 86 } 87 88 static const struct intel_mmio_range icl_l3bank_steering_table[] = { 89 { 0x00B100, 0x00B3FF }, 90 {}, 91 }; 92 93 static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = { 94 { 0x004000, 0x004AFF }, 95 { 0x00C800, 0x00CFFF }, 96 { 0x00DD00, 0x00DDFF }, 97 { 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */ 98 {}, 99 }; 100 101 static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = { 102 { 0x00B000, 0x00B0FF }, 103 { 0x00D800, 0x00D8FF }, 104 {}, 105 }; 106 107 static const struct intel_mmio_range dg2_lncf_steering_table[] = { 108 { 0x00B000, 0x00B0FF }, 109 { 0x00D880, 0x00D8FF }, 110 {}, 111 }; 112 113 static u16 slicemask(struct intel_gt *gt, int count) 114 { 115 u64 dss_mask = intel_sseu_get_subslices(>->info.sseu, 0); 116 117 return intel_slicemask_from_dssmask(dss_mask, count); 118 } 119 120 int intel_gt_init_mmio(struct intel_gt *gt) 121 { 122 struct drm_i915_private *i915 = gt->i915; 123 124 intel_gt_init_clock_frequency(gt); 125 126 intel_uc_init_mmio(>->uc); 127 intel_sseu_info_init(gt); 128 129 /* 130 * An mslice is unavailable only if both the meml3 for the slice is 131 * disabled *and* all of the DSS in the slice (quadrant) are disabled. 132 */ 133 if (HAS_MSLICES(i915)) 134 gt->info.mslice_mask = 135 slicemask(gt, GEN_DSS_PER_MSLICE) | 136 (intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 137 GEN12_MEML3_EN_MASK); 138 139 if (IS_DG2(i915)) { 140 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 141 gt->steering_table[LNCF] = dg2_lncf_steering_table; 142 } else if (IS_XEHPSDV(i915)) { 143 gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table; 144 gt->steering_table[LNCF] = xehpsdv_lncf_steering_table; 145 } else if (GRAPHICS_VER(i915) >= 11 && 146 GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) { 147 gt->steering_table[L3BANK] = icl_l3bank_steering_table; 148 gt->info.l3bank_mask = 149 ~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) & 150 GEN10_L3BANK_MASK; 151 } else if (HAS_MSLICES(i915)) { 152 MISSING_CASE(INTEL_INFO(i915)->platform); 153 } 154 155 return intel_engines_init_mmio(gt); 156 } 157 158 static void init_unused_ring(struct intel_gt *gt, u32 base) 159 { 160 struct intel_uncore *uncore = gt->uncore; 161 162 intel_uncore_write(uncore, RING_CTL(base), 0); 163 intel_uncore_write(uncore, RING_HEAD(base), 0); 164 intel_uncore_write(uncore, RING_TAIL(base), 0); 165 intel_uncore_write(uncore, RING_START(base), 0); 166 } 167 168 static void init_unused_rings(struct intel_gt *gt) 169 { 170 struct drm_i915_private *i915 = gt->i915; 171 172 if (IS_I830(i915)) { 173 init_unused_ring(gt, PRB1_BASE); 174 init_unused_ring(gt, SRB0_BASE); 175 init_unused_ring(gt, SRB1_BASE); 176 init_unused_ring(gt, SRB2_BASE); 177 init_unused_ring(gt, SRB3_BASE); 178 } else if (GRAPHICS_VER(i915) == 2) { 179 init_unused_ring(gt, SRB0_BASE); 180 init_unused_ring(gt, SRB1_BASE); 181 } else if (GRAPHICS_VER(i915) == 3) { 182 init_unused_ring(gt, PRB1_BASE); 183 init_unused_ring(gt, PRB2_BASE); 184 } 185 } 186 187 int intel_gt_init_hw(struct intel_gt *gt) 188 { 189 struct drm_i915_private *i915 = gt->i915; 190 struct intel_uncore *uncore = gt->uncore; 191 int ret; 192 193 gt->last_init_time = ktime_get(); 194 195 /* Double layer security blanket, see i915_gem_init() */ 196 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL); 197 198 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9) 199 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf)); 200 201 if (IS_HASWELL(i915)) 202 intel_uncore_write(uncore, 203 MI_PREDICATE_RESULT_2, 204 IS_HSW_GT3(i915) ? 205 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED); 206 207 /* Apply the GT workarounds... */ 208 intel_gt_apply_workarounds(gt); 209 /* ...and determine whether they are sticking. */ 210 intel_gt_verify_workarounds(gt, "init"); 211 212 intel_gt_init_swizzling(gt); 213 214 /* 215 * At least 830 can leave some of the unused rings 216 * "active" (ie. head != tail) after resume which 217 * will prevent c3 entry. Makes sure all unused rings 218 * are totally idle. 219 */ 220 init_unused_rings(gt); 221 222 ret = i915_ppgtt_init_hw(gt); 223 if (ret) { 224 DRM_ERROR("Enabling PPGTT failed (%d)\n", ret); 225 goto out; 226 } 227 228 /* We can't enable contexts until all firmware is loaded */ 229 ret = intel_uc_init_hw(>->uc); 230 if (ret) { 231 i915_probe_error(i915, "Enabling uc failed (%d)\n", ret); 232 goto out; 233 } 234 235 intel_mocs_init(gt); 236 237 out: 238 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL); 239 return ret; 240 } 241 242 static void rmw_set(struct intel_uncore *uncore, i915_reg_t reg, u32 set) 243 { 244 intel_uncore_rmw(uncore, reg, 0, set); 245 } 246 247 static void rmw_clear(struct intel_uncore *uncore, i915_reg_t reg, u32 clr) 248 { 249 intel_uncore_rmw(uncore, reg, clr, 0); 250 } 251 252 static void clear_register(struct intel_uncore *uncore, i915_reg_t reg) 253 { 254 intel_uncore_rmw(uncore, reg, 0, 0); 255 } 256 257 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine) 258 { 259 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0); 260 GEN6_RING_FAULT_REG_POSTING_READ(engine); 261 } 262 263 void 264 intel_gt_clear_error_registers(struct intel_gt *gt, 265 intel_engine_mask_t engine_mask) 266 { 267 struct drm_i915_private *i915 = gt->i915; 268 struct intel_uncore *uncore = gt->uncore; 269 u32 eir; 270 271 if (GRAPHICS_VER(i915) != 2) 272 clear_register(uncore, PGTBL_ER); 273 274 if (GRAPHICS_VER(i915) < 4) 275 clear_register(uncore, IPEIR(RENDER_RING_BASE)); 276 else 277 clear_register(uncore, IPEIR_I965); 278 279 clear_register(uncore, EIR); 280 eir = intel_uncore_read(uncore, EIR); 281 if (eir) { 282 /* 283 * some errors might have become stuck, 284 * mask them. 285 */ 286 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir); 287 rmw_set(uncore, EMR, eir); 288 intel_uncore_write(uncore, GEN2_IIR, 289 I915_MASTER_ERROR_INTERRUPT); 290 } 291 292 if (GRAPHICS_VER(i915) >= 12) { 293 rmw_clear(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID); 294 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG); 295 } else if (GRAPHICS_VER(i915) >= 8) { 296 rmw_clear(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID); 297 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG); 298 } else if (GRAPHICS_VER(i915) >= 6) { 299 struct intel_engine_cs *engine; 300 enum intel_engine_id id; 301 302 for_each_engine_masked(engine, gt, engine_mask, id) 303 gen6_clear_engine_error_register(engine); 304 } 305 } 306 307 static void gen6_check_faults(struct intel_gt *gt) 308 { 309 struct intel_engine_cs *engine; 310 enum intel_engine_id id; 311 u32 fault; 312 313 for_each_engine(engine, gt, id) { 314 fault = GEN6_RING_FAULT_REG_READ(engine); 315 if (fault & RING_FAULT_VALID) { 316 drm_dbg(&engine->i915->drm, "Unexpected fault\n" 317 "\tAddr: 0x%08lx\n" 318 "\tAddress space: %s\n" 319 "\tSource ID: %d\n" 320 "\tType: %d\n", 321 fault & PAGE_MASK, 322 fault & RING_FAULT_GTTSEL_MASK ? 323 "GGTT" : "PPGTT", 324 RING_FAULT_SRCID(fault), 325 RING_FAULT_FAULT_TYPE(fault)); 326 } 327 } 328 } 329 330 static void gen8_check_faults(struct intel_gt *gt) 331 { 332 struct intel_uncore *uncore = gt->uncore; 333 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg; 334 u32 fault; 335 336 if (GRAPHICS_VER(gt->i915) >= 12) { 337 fault_reg = GEN12_RING_FAULT_REG; 338 fault_data0_reg = GEN12_FAULT_TLB_DATA0; 339 fault_data1_reg = GEN12_FAULT_TLB_DATA1; 340 } else { 341 fault_reg = GEN8_RING_FAULT_REG; 342 fault_data0_reg = GEN8_FAULT_TLB_DATA0; 343 fault_data1_reg = GEN8_FAULT_TLB_DATA1; 344 } 345 346 fault = intel_uncore_read(uncore, fault_reg); 347 if (fault & RING_FAULT_VALID) { 348 u32 fault_data0, fault_data1; 349 u64 fault_addr; 350 351 fault_data0 = intel_uncore_read(uncore, fault_data0_reg); 352 fault_data1 = intel_uncore_read(uncore, fault_data1_reg); 353 354 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | 355 ((u64)fault_data0 << 12); 356 357 drm_dbg(&uncore->i915->drm, "Unexpected fault\n" 358 "\tAddr: 0x%08x_%08x\n" 359 "\tAddress space: %s\n" 360 "\tEngine ID: %d\n" 361 "\tSource ID: %d\n" 362 "\tType: %d\n", 363 upper_32_bits(fault_addr), lower_32_bits(fault_addr), 364 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", 365 GEN8_RING_FAULT_ENGINE_ID(fault), 366 RING_FAULT_SRCID(fault), 367 RING_FAULT_FAULT_TYPE(fault)); 368 } 369 } 370 371 void intel_gt_check_and_clear_faults(struct intel_gt *gt) 372 { 373 struct drm_i915_private *i915 = gt->i915; 374 375 /* From GEN8 onwards we only have one 'All Engine Fault Register' */ 376 if (GRAPHICS_VER(i915) >= 8) 377 gen8_check_faults(gt); 378 else if (GRAPHICS_VER(i915) >= 6) 379 gen6_check_faults(gt); 380 else 381 return; 382 383 intel_gt_clear_error_registers(gt, ALL_ENGINES); 384 } 385 386 void intel_gt_flush_ggtt_writes(struct intel_gt *gt) 387 { 388 struct intel_uncore *uncore = gt->uncore; 389 intel_wakeref_t wakeref; 390 391 /* 392 * No actual flushing is required for the GTT write domain for reads 393 * from the GTT domain. Writes to it "immediately" go to main memory 394 * as far as we know, so there's no chipset flush. It also doesn't 395 * land in the GPU render cache. 396 * 397 * However, we do have to enforce the order so that all writes through 398 * the GTT land before any writes to the device, such as updates to 399 * the GATT itself. 400 * 401 * We also have to wait a bit for the writes to land from the GTT. 402 * An uncached read (i.e. mmio) seems to be ideal for the round-trip 403 * timing. This issue has only been observed when switching quickly 404 * between GTT writes and CPU reads from inside the kernel on recent hw, 405 * and it appears to only affect discrete GTT blocks (i.e. on LLC 406 * system agents we cannot reproduce this behaviour, until Cannonlake 407 * that was!). 408 */ 409 410 wmb(); 411 412 if (INTEL_INFO(gt->i915)->has_coherent_ggtt) 413 return; 414 415 intel_gt_chipset_flush(gt); 416 417 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) { 418 unsigned long flags; 419 420 spin_lock_irqsave(&uncore->lock, flags); 421 intel_uncore_posting_read_fw(uncore, 422 RING_HEAD(RENDER_RING_BASE)); 423 spin_unlock_irqrestore(&uncore->lock, flags); 424 } 425 } 426 427 void intel_gt_chipset_flush(struct intel_gt *gt) 428 { 429 wmb(); 430 if (GRAPHICS_VER(gt->i915) < 6) 431 intel_gtt_chipset_flush(); 432 } 433 434 void intel_gt_driver_register(struct intel_gt *gt) 435 { 436 intel_rps_driver_register(>->rps); 437 438 intel_gt_debugfs_register(gt); 439 } 440 441 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size) 442 { 443 struct drm_i915_private *i915 = gt->i915; 444 struct drm_i915_gem_object *obj; 445 struct i915_vma *vma; 446 int ret; 447 448 obj = i915_gem_object_create_lmem(i915, size, I915_BO_ALLOC_VOLATILE); 449 if (IS_ERR(obj)) 450 obj = i915_gem_object_create_stolen(i915, size); 451 if (IS_ERR(obj)) 452 obj = i915_gem_object_create_internal(i915, size); 453 if (IS_ERR(obj)) { 454 drm_err(&i915->drm, "Failed to allocate scratch page\n"); 455 return PTR_ERR(obj); 456 } 457 458 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 459 if (IS_ERR(vma)) { 460 ret = PTR_ERR(vma); 461 goto err_unref; 462 } 463 464 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH); 465 if (ret) 466 goto err_unref; 467 468 gt->scratch = i915_vma_make_unshrinkable(vma); 469 470 return 0; 471 472 err_unref: 473 i915_gem_object_put(obj); 474 return ret; 475 } 476 477 static void intel_gt_fini_scratch(struct intel_gt *gt) 478 { 479 i915_vma_unpin_and_release(>->scratch, 0); 480 } 481 482 static struct i915_address_space *kernel_vm(struct intel_gt *gt) 483 { 484 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING) 485 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm; 486 else 487 return i915_vm_get(>->ggtt->vm); 488 } 489 490 static int __engines_record_defaults(struct intel_gt *gt) 491 { 492 struct i915_request *requests[I915_NUM_ENGINES] = {}; 493 struct intel_engine_cs *engine; 494 enum intel_engine_id id; 495 int err = 0; 496 497 /* 498 * As we reset the gpu during very early sanitisation, the current 499 * register state on the GPU should reflect its defaults values. 500 * We load a context onto the hw (with restore-inhibit), then switch 501 * over to a second context to save that default register state. We 502 * can then prime every new context with that state so they all start 503 * from the same default HW values. 504 */ 505 506 for_each_engine(engine, gt, id) { 507 struct intel_renderstate so; 508 struct intel_context *ce; 509 struct i915_request *rq; 510 511 /* We must be able to switch to something! */ 512 GEM_BUG_ON(!engine->kernel_context); 513 514 ce = intel_context_create(engine); 515 if (IS_ERR(ce)) { 516 err = PTR_ERR(ce); 517 goto out; 518 } 519 520 err = intel_renderstate_init(&so, ce); 521 if (err) 522 goto err; 523 524 rq = i915_request_create(ce); 525 if (IS_ERR(rq)) { 526 err = PTR_ERR(rq); 527 goto err_fini; 528 } 529 530 err = intel_engine_emit_ctx_wa(rq); 531 if (err) 532 goto err_rq; 533 534 err = intel_renderstate_emit(&so, rq); 535 if (err) 536 goto err_rq; 537 538 err_rq: 539 requests[id] = i915_request_get(rq); 540 i915_request_add(rq); 541 err_fini: 542 intel_renderstate_fini(&so, ce); 543 err: 544 if (err) { 545 intel_context_put(ce); 546 goto out; 547 } 548 } 549 550 /* Flush the default context image to memory, and enable powersaving. */ 551 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) { 552 err = -EIO; 553 goto out; 554 } 555 556 for (id = 0; id < ARRAY_SIZE(requests); id++) { 557 struct i915_request *rq; 558 struct file *state; 559 560 rq = requests[id]; 561 if (!rq) 562 continue; 563 564 if (rq->fence.error) { 565 err = -EIO; 566 goto out; 567 } 568 569 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags)); 570 if (!rq->context->state) 571 continue; 572 573 /* Keep a copy of the state's backing pages; free the obj */ 574 state = shmem_create_from_object(rq->context->state->obj); 575 if (IS_ERR(state)) { 576 err = PTR_ERR(state); 577 goto out; 578 } 579 rq->engine->default_state = state; 580 } 581 582 out: 583 /* 584 * If we have to abandon now, we expect the engines to be idle 585 * and ready to be torn-down. The quickest way we can accomplish 586 * this is by declaring ourselves wedged. 587 */ 588 if (err) 589 intel_gt_set_wedged(gt); 590 591 for (id = 0; id < ARRAY_SIZE(requests); id++) { 592 struct intel_context *ce; 593 struct i915_request *rq; 594 595 rq = requests[id]; 596 if (!rq) 597 continue; 598 599 ce = rq->context; 600 i915_request_put(rq); 601 intel_context_put(ce); 602 } 603 return err; 604 } 605 606 static int __engines_verify_workarounds(struct intel_gt *gt) 607 { 608 struct intel_engine_cs *engine; 609 enum intel_engine_id id; 610 int err = 0; 611 612 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 613 return 0; 614 615 for_each_engine(engine, gt, id) { 616 if (intel_engine_verify_workarounds(engine, "load")) 617 err = -EIO; 618 } 619 620 /* Flush and restore the kernel context for safety */ 621 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) 622 err = -EIO; 623 624 return err; 625 } 626 627 static void __intel_gt_disable(struct intel_gt *gt) 628 { 629 intel_gt_set_wedged_on_fini(gt); 630 631 intel_gt_suspend_prepare(gt); 632 intel_gt_suspend_late(gt); 633 634 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 635 } 636 637 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout) 638 { 639 long remaining_timeout; 640 641 /* If the device is asleep, we have no requests outstanding */ 642 if (!intel_gt_pm_is_awake(gt)) 643 return 0; 644 645 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout, 646 &remaining_timeout)) > 0) { 647 cond_resched(); 648 if (signal_pending(current)) 649 return -EINTR; 650 } 651 652 return timeout ? timeout : intel_uc_wait_for_idle(>->uc, 653 remaining_timeout); 654 } 655 656 int intel_gt_init(struct intel_gt *gt) 657 { 658 int err; 659 660 err = i915_inject_probe_error(gt->i915, -ENODEV); 661 if (err) 662 return err; 663 664 intel_gt_init_workarounds(gt); 665 666 /* 667 * This is just a security blanket to placate dragons. 668 * On some systems, we very sporadically observe that the first TLBs 669 * used by the CS may be stale, despite us poking the TLB reset. If 670 * we hold the forcewake during initialisation these problems 671 * just magically go away. 672 */ 673 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL); 674 675 err = intel_gt_init_scratch(gt, 676 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K); 677 if (err) 678 goto out_fw; 679 680 intel_gt_pm_init(gt); 681 682 gt->vm = kernel_vm(gt); 683 if (!gt->vm) { 684 err = -ENOMEM; 685 goto err_pm; 686 } 687 688 intel_set_mocs_index(gt); 689 690 err = intel_engines_init(gt); 691 if (err) 692 goto err_engines; 693 694 err = intel_uc_init(>->uc); 695 if (err) 696 goto err_engines; 697 698 err = intel_gt_resume(gt); 699 if (err) 700 goto err_uc_init; 701 702 err = __engines_record_defaults(gt); 703 if (err) 704 goto err_gt; 705 706 err = __engines_verify_workarounds(gt); 707 if (err) 708 goto err_gt; 709 710 intel_uc_init_late(>->uc); 711 712 err = i915_inject_probe_error(gt->i915, -EIO); 713 if (err) 714 goto err_gt; 715 716 intel_migrate_init(>->migrate, gt); 717 718 intel_pxp_init(>->pxp); 719 720 goto out_fw; 721 err_gt: 722 __intel_gt_disable(gt); 723 intel_uc_fini_hw(>->uc); 724 err_uc_init: 725 intel_uc_fini(>->uc); 726 err_engines: 727 intel_engines_release(gt); 728 i915_vm_put(fetch_and_zero(>->vm)); 729 err_pm: 730 intel_gt_pm_fini(gt); 731 intel_gt_fini_scratch(gt); 732 out_fw: 733 if (err) 734 intel_gt_set_wedged_on_init(gt); 735 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL); 736 return err; 737 } 738 739 void intel_gt_driver_remove(struct intel_gt *gt) 740 { 741 __intel_gt_disable(gt); 742 743 intel_migrate_fini(>->migrate); 744 intel_uc_driver_remove(>->uc); 745 746 intel_engines_release(gt); 747 748 intel_gt_flush_buffer_pool(gt); 749 } 750 751 void intel_gt_driver_unregister(struct intel_gt *gt) 752 { 753 intel_wakeref_t wakeref; 754 755 intel_rps_driver_unregister(>->rps); 756 757 intel_pxp_fini(>->pxp); 758 759 /* 760 * Upon unregistering the device to prevent any new users, cancel 761 * all in-flight requests so that we can quickly unbind the active 762 * resources. 763 */ 764 intel_gt_set_wedged_on_fini(gt); 765 766 /* Scrub all HW state upon release */ 767 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 768 __intel_gt_reset(gt, ALL_ENGINES); 769 } 770 771 void intel_gt_driver_release(struct intel_gt *gt) 772 { 773 struct i915_address_space *vm; 774 775 vm = fetch_and_zero(>->vm); 776 if (vm) /* FIXME being called twice on error paths :( */ 777 i915_vm_put(vm); 778 779 intel_wa_list_free(>->wa_list); 780 intel_gt_pm_fini(gt); 781 intel_gt_fini_scratch(gt); 782 intel_gt_fini_buffer_pool(gt); 783 } 784 785 void intel_gt_driver_late_release(struct intel_gt *gt) 786 { 787 /* We need to wait for inflight RCU frees to release their grip */ 788 rcu_barrier(); 789 790 intel_uc_driver_late_release(>->uc); 791 intel_gt_fini_requests(gt); 792 intel_gt_fini_reset(gt); 793 intel_gt_fini_timelines(gt); 794 intel_engines_free(gt); 795 } 796 797 /** 798 * intel_gt_reg_needs_read_steering - determine whether a register read 799 * requires explicit steering 800 * @gt: GT structure 801 * @reg: the register to check steering requirements for 802 * @type: type of multicast steering to check 803 * 804 * Determines whether @reg needs explicit steering of a specific type for 805 * reads. 806 * 807 * Returns false if @reg does not belong to a register range of the given 808 * steering type, or if the default (subslice-based) steering IDs are suitable 809 * for @type steering too. 810 */ 811 static bool intel_gt_reg_needs_read_steering(struct intel_gt *gt, 812 i915_reg_t reg, 813 enum intel_steering_type type) 814 { 815 const u32 offset = i915_mmio_reg_offset(reg); 816 const struct intel_mmio_range *entry; 817 818 if (likely(!intel_gt_needs_read_steering(gt, type))) 819 return false; 820 821 for (entry = gt->steering_table[type]; entry->end; entry++) { 822 if (offset >= entry->start && offset <= entry->end) 823 return true; 824 } 825 826 return false; 827 } 828 829 /** 830 * intel_gt_get_valid_steering - determines valid IDs for a class of MCR steering 831 * @gt: GT structure 832 * @type: multicast register type 833 * @sliceid: Slice ID returned 834 * @subsliceid: Subslice ID returned 835 * 836 * Determines sliceid and subsliceid values that will steer reads 837 * of a specific multicast register class to a valid value. 838 */ 839 static void intel_gt_get_valid_steering(struct intel_gt *gt, 840 enum intel_steering_type type, 841 u8 *sliceid, u8 *subsliceid) 842 { 843 switch (type) { 844 case L3BANK: 845 GEM_DEBUG_WARN_ON(!gt->info.l3bank_mask); /* should be impossible! */ 846 847 *sliceid = 0; /* unused */ 848 *subsliceid = __ffs(gt->info.l3bank_mask); 849 break; 850 case MSLICE: 851 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 852 853 *sliceid = __ffs(gt->info.mslice_mask); 854 *subsliceid = 0; /* unused */ 855 break; 856 case LNCF: 857 GEM_DEBUG_WARN_ON(!gt->info.mslice_mask); /* should be impossible! */ 858 859 /* 860 * An LNCF is always present if its mslice is present, so we 861 * can safely just steer to LNCF 0 in all cases. 862 */ 863 *sliceid = __ffs(gt->info.mslice_mask) << 1; 864 *subsliceid = 0; /* unused */ 865 break; 866 default: 867 MISSING_CASE(type); 868 *sliceid = 0; 869 *subsliceid = 0; 870 } 871 } 872 873 /** 874 * intel_gt_read_register_fw - reads a GT register with support for multicast 875 * @gt: GT structure 876 * @reg: register to read 877 * 878 * This function will read a GT register. If the register is a multicast 879 * register, the read will be steered to a valid instance (i.e., one that 880 * isn't fused off or powered down by power gating). 881 * 882 * Returns the value from a valid instance of @reg. 883 */ 884 u32 intel_gt_read_register_fw(struct intel_gt *gt, i915_reg_t reg) 885 { 886 int type; 887 u8 sliceid, subsliceid; 888 889 for (type = 0; type < NUM_STEERING_TYPES; type++) { 890 if (intel_gt_reg_needs_read_steering(gt, reg, type)) { 891 intel_gt_get_valid_steering(gt, type, &sliceid, 892 &subsliceid); 893 return intel_uncore_read_with_mcr_steering_fw(gt->uncore, 894 reg, 895 sliceid, 896 subsliceid); 897 } 898 } 899 900 return intel_uncore_read_fw(gt->uncore, reg); 901 } 902 903 void intel_gt_info_print(const struct intel_gt_info *info, 904 struct drm_printer *p) 905 { 906 drm_printf(p, "available engines: %x\n", info->engine_mask); 907 908 intel_sseu_dump(&info->sseu, p); 909 } 910