1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "i915_drv.h"
25 #include "i915_scatterlist.h"
26 #include "i915_pvinfo.h"
27 #include "i915_vgpu.h"
28 
29 /**
30  * DOC: fence register handling
31  *
32  * Important to avoid confusions: "fences" in the i915 driver are not execution
33  * fences used to track command completion but hardware detiler objects which
34  * wrap a given range of the global GTT. Each platform has only a fairly limited
35  * set of these objects.
36  *
37  * Fences are used to detile GTT memory mappings. They're also connected to the
38  * hardware frontbuffer render tracking and hence interact with frontbuffer
39  * compression. Furthermore on older platforms fences are required for tiled
40  * objects used by the display engine. They can also be used by the render
41  * engine - they're required for blitter commands and are optional for render
42  * commands. But on gen4+ both display (with the exception of fbc) and rendering
43  * have their own tiling state bits and don't need fences.
44  *
45  * Also note that fences only support X and Y tiling and hence can't be used for
46  * the fancier new tiling formats like W, Ys and Yf.
47  *
48  * Finally note that because fences are such a restricted resource they're
49  * dynamically associated with objects. Furthermore fence state is committed to
50  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
51  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
52  * for cpu access. Also note that some code wants an unfenced view, for those
53  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
54  *
55  * Internally these functions will synchronize with userspace access by removing
56  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
57  */
58 
59 #define pipelined 0
60 
61 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
62 {
63 	return fence->ggtt->vm.i915;
64 }
65 
66 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
67 {
68 	return fence->ggtt->vm.gt->uncore;
69 }
70 
71 static void i965_write_fence_reg(struct i915_fence_reg *fence)
72 {
73 	i915_reg_t fence_reg_lo, fence_reg_hi;
74 	int fence_pitch_shift;
75 	u64 val;
76 
77 	if (INTEL_GEN(fence_to_i915(fence)) >= 6) {
78 		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
79 		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
80 		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
81 
82 	} else {
83 		fence_reg_lo = FENCE_REG_965_LO(fence->id);
84 		fence_reg_hi = FENCE_REG_965_HI(fence->id);
85 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
86 	}
87 
88 	val = 0;
89 	if (fence->tiling) {
90 		unsigned int stride = fence->stride;
91 
92 		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
93 
94 		val = fence->start + fence->size - I965_FENCE_PAGE;
95 		val <<= 32;
96 		val |= fence->start;
97 		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
98 		if (fence->tiling == I915_TILING_Y)
99 			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
100 		val |= I965_FENCE_REG_VALID;
101 	}
102 
103 	if (!pipelined) {
104 		struct intel_uncore *uncore = fence_to_uncore(fence);
105 
106 		/*
107 		 * To w/a incoherency with non-atomic 64-bit register updates,
108 		 * we split the 64-bit update into two 32-bit writes. In order
109 		 * for a partial fence not to be evaluated between writes, we
110 		 * precede the update with write to turn off the fence register,
111 		 * and only enable the fence as the last step.
112 		 *
113 		 * For extra levels of paranoia, we make sure each step lands
114 		 * before applying the next step.
115 		 */
116 		intel_uncore_write_fw(uncore, fence_reg_lo, 0);
117 		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
118 
119 		intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
120 		intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
121 		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
122 	}
123 }
124 
125 static void i915_write_fence_reg(struct i915_fence_reg *fence)
126 {
127 	u32 val;
128 
129 	val = 0;
130 	if (fence->tiling) {
131 		unsigned int stride = fence->stride;
132 		unsigned int tiling = fence->tiling;
133 		bool is_y_tiled = tiling == I915_TILING_Y;
134 
135 		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
136 			stride /= 128;
137 		else
138 			stride /= 512;
139 		GEM_BUG_ON(!is_power_of_2(stride));
140 
141 		val = fence->start;
142 		if (is_y_tiled)
143 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
144 		val |= I915_FENCE_SIZE_BITS(fence->size);
145 		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
146 
147 		val |= I830_FENCE_REG_VALID;
148 	}
149 
150 	if (!pipelined) {
151 		struct intel_uncore *uncore = fence_to_uncore(fence);
152 		i915_reg_t reg = FENCE_REG(fence->id);
153 
154 		intel_uncore_write_fw(uncore, reg, val);
155 		intel_uncore_posting_read_fw(uncore, reg);
156 	}
157 }
158 
159 static void i830_write_fence_reg(struct i915_fence_reg *fence)
160 {
161 	u32 val;
162 
163 	val = 0;
164 	if (fence->tiling) {
165 		unsigned int stride = fence->stride;
166 
167 		val = fence->start;
168 		if (fence->tiling == I915_TILING_Y)
169 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
170 		val |= I830_FENCE_SIZE_BITS(fence->size);
171 		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
172 		val |= I830_FENCE_REG_VALID;
173 	}
174 
175 	if (!pipelined) {
176 		struct intel_uncore *uncore = fence_to_uncore(fence);
177 		i915_reg_t reg = FENCE_REG(fence->id);
178 
179 		intel_uncore_write_fw(uncore, reg, val);
180 		intel_uncore_posting_read_fw(uncore, reg);
181 	}
182 }
183 
184 static void fence_write(struct i915_fence_reg *fence)
185 {
186 	struct drm_i915_private *i915 = fence_to_i915(fence);
187 
188 	/*
189 	 * Previous access through the fence register is marshalled by
190 	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
191 	 * and explicitly managed for internal users.
192 	 */
193 
194 	if (IS_GEN(i915, 2))
195 		i830_write_fence_reg(fence);
196 	else if (IS_GEN(i915, 3))
197 		i915_write_fence_reg(fence);
198 	else
199 		i965_write_fence_reg(fence);
200 
201 	/*
202 	 * Access through the fenced region afterwards is
203 	 * ordered by the posting reads whilst writing the registers.
204 	 */
205 }
206 
207 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
208 {
209 	return INTEL_GEN(fence_to_i915(fence)) < 4;
210 }
211 
212 static int fence_update(struct i915_fence_reg *fence,
213 			struct i915_vma *vma)
214 {
215 	struct i915_ggtt *ggtt = fence->ggtt;
216 	struct intel_uncore *uncore = fence_to_uncore(fence);
217 	intel_wakeref_t wakeref;
218 	struct i915_vma *old;
219 	int ret;
220 
221 	fence->tiling = 0;
222 	if (vma) {
223 		GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
224 			   !i915_gem_object_get_tiling(vma->obj));
225 
226 		if (!i915_vma_is_map_and_fenceable(vma))
227 			return -EINVAL;
228 
229 		if (gpu_uses_fence_registers(fence)) {
230 			/* implicit 'unfenced' GPU blits */
231 			ret = i915_vma_sync(vma);
232 			if (ret)
233 				return ret;
234 		}
235 
236 		fence->start = vma->node.start;
237 		fence->size = vma->fence_size;
238 		fence->stride = i915_gem_object_get_stride(vma->obj);
239 		fence->tiling = i915_gem_object_get_tiling(vma->obj);
240 	}
241 	WRITE_ONCE(fence->dirty, false);
242 
243 	old = xchg(&fence->vma, NULL);
244 	if (old) {
245 		/* XXX Ideally we would move the waiting to outside the mutex */
246 		ret = i915_active_wait(&fence->active);
247 		if (ret) {
248 			fence->vma = old;
249 			return ret;
250 		}
251 
252 		i915_vma_flush_writes(old);
253 
254 		/*
255 		 * Ensure that all userspace CPU access is completed before
256 		 * stealing the fence.
257 		 */
258 		if (old != vma) {
259 			GEM_BUG_ON(old->fence != fence);
260 			i915_vma_revoke_mmap(old);
261 			old->fence = NULL;
262 		}
263 
264 		list_move(&fence->link, &ggtt->fence_list);
265 	}
266 
267 	/*
268 	 * We only need to update the register itself if the device is awake.
269 	 * If the device is currently powered down, we will defer the write
270 	 * to the runtime resume, see intel_ggtt_restore_fences().
271 	 *
272 	 * This only works for removing the fence register, on acquisition
273 	 * the caller must hold the rpm wakeref. The fence register must
274 	 * be cleared before we can use any other fences to ensure that
275 	 * the new fences do not overlap the elided clears, confusing HW.
276 	 */
277 	wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
278 	if (!wakeref) {
279 		GEM_BUG_ON(vma);
280 		return 0;
281 	}
282 
283 	WRITE_ONCE(fence->vma, vma);
284 	fence_write(fence);
285 
286 	if (vma) {
287 		vma->fence = fence;
288 		list_move_tail(&fence->link, &ggtt->fence_list);
289 	}
290 
291 	intel_runtime_pm_put(uncore->rpm, wakeref);
292 	return 0;
293 }
294 
295 /**
296  * i915_vma_revoke_fence - force-remove fence for a VMA
297  * @vma: vma to map linearly (not through a fence reg)
298  *
299  * This function force-removes any fence from the given object, which is useful
300  * if the kernel wants to do untiled GTT access.
301  */
302 void i915_vma_revoke_fence(struct i915_vma *vma)
303 {
304 	struct i915_fence_reg *fence = vma->fence;
305 	intel_wakeref_t wakeref;
306 
307 	lockdep_assert_held(&vma->vm->mutex);
308 	if (!fence)
309 		return;
310 
311 	GEM_BUG_ON(fence->vma != vma);
312 	GEM_BUG_ON(!i915_active_is_idle(&fence->active));
313 	GEM_BUG_ON(atomic_read(&fence->pin_count));
314 
315 	fence->tiling = 0;
316 	WRITE_ONCE(fence->vma, NULL);
317 	vma->fence = NULL;
318 
319 	/*
320 	 * Skip the write to HW if and only if the device is currently
321 	 * suspended.
322 	 *
323 	 * If the driver does not currently hold a wakeref (if_in_use == 0),
324 	 * the device may currently be runtime suspended, or it may be woken
325 	 * up before the suspend takes place. If the device is not suspended
326 	 * (powered down) and we skip clearing the fence register, the HW is
327 	 * left in an undefined state where we may end up with multiple
328 	 * registers overlapping.
329 	 */
330 	with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
331 		fence_write(fence);
332 }
333 
334 static bool fence_is_active(const struct i915_fence_reg *fence)
335 {
336 	return fence->vma && i915_vma_is_active(fence->vma);
337 }
338 
339 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
340 {
341 	struct i915_fence_reg *active = NULL;
342 	struct i915_fence_reg *fence, *fn;
343 
344 	list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
345 		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
346 
347 		if (fence == active) /* now seen this fence twice */
348 			active = ERR_PTR(-EAGAIN);
349 
350 		/* Prefer idle fences so we do not have to wait on the GPU */
351 		if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
352 			if (!active)
353 				active = fence;
354 
355 			list_move_tail(&fence->link, &ggtt->fence_list);
356 			continue;
357 		}
358 
359 		if (atomic_read(&fence->pin_count))
360 			continue;
361 
362 		return fence;
363 	}
364 
365 	/* Wait for completion of pending flips which consume fences */
366 	if (intel_has_pending_fb_unpin(ggtt->vm.i915))
367 		return ERR_PTR(-EAGAIN);
368 
369 	return ERR_PTR(-EDEADLK);
370 }
371 
372 int __i915_vma_pin_fence(struct i915_vma *vma)
373 {
374 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
375 	struct i915_fence_reg *fence;
376 	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
377 	int err;
378 
379 	lockdep_assert_held(&vma->vm->mutex);
380 
381 	/* Just update our place in the LRU if our fence is getting reused. */
382 	if (vma->fence) {
383 		fence = vma->fence;
384 		GEM_BUG_ON(fence->vma != vma);
385 		atomic_inc(&fence->pin_count);
386 		if (!fence->dirty) {
387 			list_move_tail(&fence->link, &ggtt->fence_list);
388 			return 0;
389 		}
390 	} else if (set) {
391 		fence = fence_find(ggtt);
392 		if (IS_ERR(fence))
393 			return PTR_ERR(fence);
394 
395 		GEM_BUG_ON(atomic_read(&fence->pin_count));
396 		atomic_inc(&fence->pin_count);
397 	} else {
398 		return 0;
399 	}
400 
401 	err = fence_update(fence, set);
402 	if (err)
403 		goto out_unpin;
404 
405 	GEM_BUG_ON(fence->vma != set);
406 	GEM_BUG_ON(vma->fence != (set ? fence : NULL));
407 
408 	if (set)
409 		return 0;
410 
411 out_unpin:
412 	atomic_dec(&fence->pin_count);
413 	return err;
414 }
415 
416 /**
417  * i915_vma_pin_fence - set up fencing for a vma
418  * @vma: vma to map through a fence reg
419  *
420  * When mapping objects through the GTT, userspace wants to be able to write
421  * to them without having to worry about swizzling if the object is tiled.
422  * This function walks the fence regs looking for a free one for @obj,
423  * stealing one if it can't find any.
424  *
425  * It then sets up the reg based on the object's properties: address, pitch
426  * and tiling format.
427  *
428  * For an untiled surface, this removes any existing fence.
429  *
430  * Returns:
431  *
432  * 0 on success, negative error code on failure.
433  */
434 int i915_vma_pin_fence(struct i915_vma *vma)
435 {
436 	int err;
437 
438 	if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
439 		return 0;
440 
441 	/*
442 	 * Note that we revoke fences on runtime suspend. Therefore the user
443 	 * must keep the device awake whilst using the fence.
444 	 */
445 	assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
446 	GEM_BUG_ON(!i915_vma_is_pinned(vma));
447 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
448 
449 	err = mutex_lock_interruptible(&vma->vm->mutex);
450 	if (err)
451 		return err;
452 
453 	err = __i915_vma_pin_fence(vma);
454 	mutex_unlock(&vma->vm->mutex);
455 
456 	return err;
457 }
458 
459 /**
460  * i915_reserve_fence - Reserve a fence for vGPU
461  * @ggtt: Global GTT
462  *
463  * This function walks the fence regs looking for a free one and remove
464  * it from the fence_list. It is used to reserve fence for vGPU to use.
465  */
466 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
467 {
468 	struct i915_fence_reg *fence;
469 	int count;
470 	int ret;
471 
472 	lockdep_assert_held(&ggtt->vm.mutex);
473 
474 	/* Keep at least one fence available for the display engine. */
475 	count = 0;
476 	list_for_each_entry(fence, &ggtt->fence_list, link)
477 		count += !atomic_read(&fence->pin_count);
478 	if (count <= 1)
479 		return ERR_PTR(-ENOSPC);
480 
481 	fence = fence_find(ggtt);
482 	if (IS_ERR(fence))
483 		return fence;
484 
485 	if (fence->vma) {
486 		/* Force-remove fence from VMA */
487 		ret = fence_update(fence, NULL);
488 		if (ret)
489 			return ERR_PTR(ret);
490 	}
491 
492 	list_del(&fence->link);
493 
494 	return fence;
495 }
496 
497 /**
498  * i915_unreserve_fence - Reclaim a reserved fence
499  * @fence: the fence reg
500  *
501  * This function add a reserved fence register from vGPU to the fence_list.
502  */
503 void i915_unreserve_fence(struct i915_fence_reg *fence)
504 {
505 	struct i915_ggtt *ggtt = fence->ggtt;
506 
507 	lockdep_assert_held(&ggtt->vm.mutex);
508 
509 	list_add(&fence->link, &ggtt->fence_list);
510 }
511 
512 /**
513  * intel_ggtt_restore_fences - restore fence state
514  * @ggtt: Global GTT
515  *
516  * Restore the hw fence state to match the software tracking again, to be called
517  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
518  * the fences, to be reacquired by the user later.
519  */
520 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
521 {
522 	int i;
523 
524 	for (i = 0; i < ggtt->num_fences; i++)
525 		fence_write(&ggtt->fence_regs[i]);
526 }
527 
528 /**
529  * DOC: tiling swizzling details
530  *
531  * The idea behind tiling is to increase cache hit rates by rearranging
532  * pixel data so that a group of pixel accesses are in the same cacheline.
533  * Performance improvement from doing this on the back/depth buffer are on
534  * the order of 30%.
535  *
536  * Intel architectures make this somewhat more complicated, though, by
537  * adjustments made to addressing of data when the memory is in interleaved
538  * mode (matched pairs of DIMMS) to improve memory bandwidth.
539  * For interleaved memory, the CPU sends every sequential 64 bytes
540  * to an alternate memory channel so it can get the bandwidth from both.
541  *
542  * The GPU also rearranges its accesses for increased bandwidth to interleaved
543  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
544  * it does it a little differently, since one walks addresses not just in the
545  * X direction but also Y.  So, along with alternating channels when bit
546  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
547  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
548  * are common to both the 915 and 965-class hardware.
549  *
550  * The CPU also sometimes XORs in higher bits as well, to improve
551  * bandwidth doing strided access like we do so frequently in graphics.  This
552  * is called "Channel XOR Randomization" in the MCH documentation.  The result
553  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
554  * decode.
555  *
556  * All of this bit 6 XORing has an effect on our memory management,
557  * as we need to make sure that the 3d driver can correctly address object
558  * contents.
559  *
560  * If we don't have interleaved memory, all tiling is safe and no swizzling is
561  * required.
562  *
563  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
564  * 17 is not just a page offset, so as we page an object out and back in,
565  * individual pages in it will have different bit 17 addresses, resulting in
566  * each 64 bytes being swapped with its neighbor!
567  *
568  * Otherwise, if interleaved, we have to tell the 3d driver what the address
569  * swizzling it needs to do is, since it's writing with the CPU to the pages
570  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
571  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
572  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
573  * to match what the GPU expects.
574  */
575 
576 /**
577  * detect_bit_6_swizzle - detect bit 6 swizzling pattern
578  * @ggtt: Global GGTT
579  *
580  * Detects bit 6 swizzling of address lookup between IGD access and CPU
581  * access through main memory.
582  */
583 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
584 {
585 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
586 	struct drm_i915_private *i915 = ggtt->vm.i915;
587 	u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
588 	u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
589 
590 	if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) {
591 		/*
592 		 * On BDW+, swizzling is not used. We leave the CPU memory
593 		 * controller in charge of optimizing memory accesses without
594 		 * the extra address manipulation GPU side.
595 		 *
596 		 * VLV and CHV don't have GPU swizzling.
597 		 */
598 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
599 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
600 	} else if (INTEL_GEN(i915) >= 6) {
601 		if (i915->preserve_bios_swizzle) {
602 			if (intel_uncore_read(uncore, DISP_ARB_CTL) &
603 			    DISP_TILE_SURFACE_SWIZZLING) {
604 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
605 				swizzle_y = I915_BIT_6_SWIZZLE_9;
606 			} else {
607 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
608 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
609 			}
610 		} else {
611 			u32 dimm_c0, dimm_c1;
612 			dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
613 			dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
614 			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
615 			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
616 			/*
617 			 * Enable swizzling when the channels are populated
618 			 * with identically sized dimms. We don't need to check
619 			 * the 3rd channel because no cpu with gpu attached
620 			 * ships in that configuration. Also, swizzling only
621 			 * makes sense for 2 channels anyway.
622 			 */
623 			if (dimm_c0 == dimm_c1) {
624 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
625 				swizzle_y = I915_BIT_6_SWIZZLE_9;
626 			} else {
627 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
628 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
629 			}
630 		}
631 	} else if (IS_GEN(i915, 5)) {
632 		/*
633 		 * On Ironlake whatever DRAM config, GPU always do
634 		 * same swizzling setup.
635 		 */
636 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
637 		swizzle_y = I915_BIT_6_SWIZZLE_9;
638 	} else if (IS_GEN(i915, 2)) {
639 		/*
640 		 * As far as we know, the 865 doesn't have these bit 6
641 		 * swizzling issues.
642 		 */
643 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
644 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
645 	} else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
646 		/*
647 		 * The 965, G33, and newer, have a very flexible memory
648 		 * configuration.  It will enable dual-channel mode
649 		 * (interleaving) on as much memory as it can, and the GPU
650 		 * will additionally sometimes enable different bit 6
651 		 * swizzling for tiled objects from the CPU.
652 		 *
653 		 * Here's what I found on the G965:
654 		 *    slot fill         memory size  swizzling
655 		 * 0A   0B   1A   1B    1-ch   2-ch
656 		 * 512  0    0    0     512    0     O
657 		 * 512  0    512  0     16     1008  X
658 		 * 512  0    0    512   16     1008  X
659 		 * 0    512  0    512   16     1008  X
660 		 * 1024 1024 1024 0     2048   1024  O
661 		 *
662 		 * We could probably detect this based on either the DRB
663 		 * matching, which was the case for the swizzling required in
664 		 * the table above, or from the 1-ch value being less than
665 		 * the minimum size of a rank.
666 		 *
667 		 * Reports indicate that the swizzling actually
668 		 * varies depending upon page placement inside the
669 		 * channels, i.e. we see swizzled pages where the
670 		 * banks of memory are paired and unswizzled on the
671 		 * uneven portion, so leave that as unknown.
672 		 */
673 		if (intel_uncore_read(uncore, C0DRB3) ==
674 		    intel_uncore_read(uncore, C1DRB3)) {
675 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
676 			swizzle_y = I915_BIT_6_SWIZZLE_9;
677 		}
678 	} else {
679 		u32 dcc = intel_uncore_read(uncore, DCC);
680 
681 		/*
682 		 * On 9xx chipsets, channel interleave by the CPU is
683 		 * determined by DCC.  For single-channel, neither the CPU
684 		 * nor the GPU do swizzling.  For dual channel interleaved,
685 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
686 		 * 9 for Y tiled.  The CPU's interleave is independent, and
687 		 * can be based on either bit 11 (haven't seen this yet) or
688 		 * bit 17 (common).
689 		 */
690 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
691 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
692 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
693 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
694 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
695 			break;
696 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
697 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
698 				/*
699 				 * This is the base swizzling by the GPU for
700 				 * tiled buffers.
701 				 */
702 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
703 				swizzle_y = I915_BIT_6_SWIZZLE_9;
704 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
705 				/* Bit 11 swizzling by the CPU in addition. */
706 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
707 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
708 			} else {
709 				/* Bit 17 swizzling by the CPU in addition. */
710 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
711 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
712 			}
713 			break;
714 		}
715 
716 		/* check for L-shaped memory aka modified enhanced addressing */
717 		if (IS_GEN(i915, 4) &&
718 		    !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
719 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
720 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
721 		}
722 
723 		if (dcc == 0xffffffff) {
724 			drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
725 				  "Disabling tiling.\n");
726 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
727 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
728 		}
729 	}
730 
731 	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
732 	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
733 		/*
734 		 * Userspace likes to explode if it sees unknown swizzling,
735 		 * so lie. We will finish the lie when reporting through
736 		 * the get-tiling-ioctl by reporting the physical swizzle
737 		 * mode as unknown instead.
738 		 *
739 		 * As we don't strictly know what the swizzling is, it may be
740 		 * bit17 dependent, and so we need to also prevent the pages
741 		 * from being moved.
742 		 */
743 		i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
744 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
745 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
746 	}
747 
748 	i915->ggtt.bit_6_swizzle_x = swizzle_x;
749 	i915->ggtt.bit_6_swizzle_y = swizzle_y;
750 }
751 
752 /*
753  * Swap every 64 bytes of this page around, to account for it having a new
754  * bit 17 of its physical address and therefore being interpreted differently
755  * by the GPU.
756  */
757 static void swizzle_page(struct page *page)
758 {
759 	char temp[64];
760 	char *vaddr;
761 	int i;
762 
763 	vaddr = kmap(page);
764 
765 	for (i = 0; i < PAGE_SIZE; i += 128) {
766 		memcpy(temp, &vaddr[i], 64);
767 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
768 		memcpy(&vaddr[i + 64], temp, 64);
769 	}
770 
771 	kunmap(page);
772 }
773 
774 /**
775  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
776  * @obj: i915 GEM buffer object
777  * @pages: the scattergather list of physical pages
778  *
779  * This function fixes up the swizzling in case any page frame number for this
780  * object has changed in bit 17 since that state has been saved with
781  * i915_gem_object_save_bit_17_swizzle().
782  *
783  * This is called when pinning backing storage again, since the kernel is free
784  * to move unpinned backing storage around (either by directly moving pages or
785  * by swapping them out and back in again).
786  */
787 void
788 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
789 				  struct sg_table *pages)
790 {
791 	struct sgt_iter sgt_iter;
792 	struct page *page;
793 	int i;
794 
795 	if (obj->bit_17 == NULL)
796 		return;
797 
798 	i = 0;
799 	for_each_sgt_page(page, sgt_iter, pages) {
800 		char new_bit_17 = page_to_phys(page) >> 17;
801 		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
802 			swizzle_page(page);
803 			set_page_dirty(page);
804 		}
805 		i++;
806 	}
807 }
808 
809 /**
810  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
811  * @obj: i915 GEM buffer object
812  * @pages: the scattergather list of physical pages
813  *
814  * This function saves the bit 17 of each page frame number so that swizzling
815  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
816  * be called before the backing storage can be unpinned.
817  */
818 void
819 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
820 				    struct sg_table *pages)
821 {
822 	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
823 	struct sgt_iter sgt_iter;
824 	struct page *page;
825 	int i;
826 
827 	if (obj->bit_17 == NULL) {
828 		obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
829 		if (obj->bit_17 == NULL) {
830 			DRM_ERROR("Failed to allocate memory for bit 17 "
831 				  "record\n");
832 			return;
833 		}
834 	}
835 
836 	i = 0;
837 
838 	for_each_sgt_page(page, sgt_iter, pages) {
839 		if (page_to_phys(page) & (1 << 17))
840 			__set_bit(i, obj->bit_17);
841 		else
842 			__clear_bit(i, obj->bit_17);
843 		i++;
844 	}
845 }
846 
847 void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
848 {
849 	struct drm_i915_private *i915 = ggtt->vm.i915;
850 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
851 	int num_fences;
852 	int i;
853 
854 	INIT_LIST_HEAD(&ggtt->fence_list);
855 	INIT_LIST_HEAD(&ggtt->userfault_list);
856 	intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
857 
858 	detect_bit_6_swizzle(ggtt);
859 
860 	if (!i915_ggtt_has_aperture(ggtt))
861 		num_fences = 0;
862 	else if (INTEL_GEN(i915) >= 7 &&
863 		 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
864 		num_fences = 32;
865 	else if (INTEL_GEN(i915) >= 4 ||
866 		 IS_I945G(i915) || IS_I945GM(i915) ||
867 		 IS_G33(i915) || IS_PINEVIEW(i915))
868 		num_fences = 16;
869 	else
870 		num_fences = 8;
871 
872 	if (intel_vgpu_active(i915))
873 		num_fences = intel_uncore_read(uncore,
874 					       vgtif_reg(avail_rs.fence_num));
875 	ggtt->fence_regs = kcalloc(num_fences,
876 				   sizeof(*ggtt->fence_regs),
877 				   GFP_KERNEL);
878 	if (!ggtt->fence_regs)
879 		num_fences = 0;
880 
881 	/* Initialize fence registers to zero */
882 	for (i = 0; i < num_fences; i++) {
883 		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
884 
885 		i915_active_init(&fence->active, NULL, NULL);
886 		fence->ggtt = ggtt;
887 		fence->id = i;
888 		list_add_tail(&fence->link, &ggtt->fence_list);
889 	}
890 	ggtt->num_fences = num_fences;
891 
892 	intel_ggtt_restore_fences(ggtt);
893 }
894 
895 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
896 {
897 	int i;
898 
899 	for (i = 0; i < ggtt->num_fences; i++) {
900 		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
901 
902 		i915_active_fini(&fence->active);
903 	}
904 
905 	kfree(ggtt->fence_regs);
906 }
907 
908 void intel_gt_init_swizzling(struct intel_gt *gt)
909 {
910 	struct drm_i915_private *i915 = gt->i915;
911 	struct intel_uncore *uncore = gt->uncore;
912 
913 	if (INTEL_GEN(i915) < 5 ||
914 	    i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
915 		return;
916 
917 	intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
918 
919 	if (IS_GEN(i915, 5))
920 		return;
921 
922 	intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
923 
924 	if (IS_GEN(i915, 6))
925 		intel_uncore_write(uncore,
926 				   ARB_MODE,
927 				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
928 	else if (IS_GEN(i915, 7))
929 		intel_uncore_write(uncore,
930 				   ARB_MODE,
931 				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
932 	else if (IS_GEN(i915, 8))
933 		intel_uncore_write(uncore,
934 				   GAMTARBMODE,
935 				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
936 	else
937 		MISSING_CASE(INTEL_GEN(i915));
938 }
939