1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2008-2015 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_scatterlist.h" 8 #include "i915_pvinfo.h" 9 #include "i915_vgpu.h" 10 11 /** 12 * DOC: fence register handling 13 * 14 * Important to avoid confusions: "fences" in the i915 driver are not execution 15 * fences used to track command completion but hardware detiler objects which 16 * wrap a given range of the global GTT. Each platform has only a fairly limited 17 * set of these objects. 18 * 19 * Fences are used to detile GTT memory mappings. They're also connected to the 20 * hardware frontbuffer render tracking and hence interact with frontbuffer 21 * compression. Furthermore on older platforms fences are required for tiled 22 * objects used by the display engine. They can also be used by the render 23 * engine - they're required for blitter commands and are optional for render 24 * commands. But on gen4+ both display (with the exception of fbc) and rendering 25 * have their own tiling state bits and don't need fences. 26 * 27 * Also note that fences only support X and Y tiling and hence can't be used for 28 * the fancier new tiling formats like W, Ys and Yf. 29 * 30 * Finally note that because fences are such a restricted resource they're 31 * dynamically associated with objects. Furthermore fence state is committed to 32 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must 33 * explicitly call i915_gem_object_get_fence() to synchronize fencing status 34 * for cpu access. Also note that some code wants an unfenced view, for those 35 * cases the fence can be removed forcefully with i915_gem_object_put_fence(). 36 * 37 * Internally these functions will synchronize with userspace access by removing 38 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed. 39 */ 40 41 #define pipelined 0 42 43 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence) 44 { 45 return fence->ggtt->vm.i915; 46 } 47 48 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence) 49 { 50 return fence->ggtt->vm.gt->uncore; 51 } 52 53 static void i965_write_fence_reg(struct i915_fence_reg *fence) 54 { 55 i915_reg_t fence_reg_lo, fence_reg_hi; 56 int fence_pitch_shift; 57 u64 val; 58 59 if (INTEL_GEN(fence_to_i915(fence)) >= 6) { 60 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id); 61 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id); 62 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT; 63 64 } else { 65 fence_reg_lo = FENCE_REG_965_LO(fence->id); 66 fence_reg_hi = FENCE_REG_965_HI(fence->id); 67 fence_pitch_shift = I965_FENCE_PITCH_SHIFT; 68 } 69 70 val = 0; 71 if (fence->tiling) { 72 unsigned int stride = fence->stride; 73 74 GEM_BUG_ON(!IS_ALIGNED(stride, 128)); 75 76 val = fence->start + fence->size - I965_FENCE_PAGE; 77 val <<= 32; 78 val |= fence->start; 79 val |= (u64)((stride / 128) - 1) << fence_pitch_shift; 80 if (fence->tiling == I915_TILING_Y) 81 val |= BIT(I965_FENCE_TILING_Y_SHIFT); 82 val |= I965_FENCE_REG_VALID; 83 } 84 85 if (!pipelined) { 86 struct intel_uncore *uncore = fence_to_uncore(fence); 87 88 /* 89 * To w/a incoherency with non-atomic 64-bit register updates, 90 * we split the 64-bit update into two 32-bit writes. In order 91 * for a partial fence not to be evaluated between writes, we 92 * precede the update with write to turn off the fence register, 93 * and only enable the fence as the last step. 94 * 95 * For extra levels of paranoia, we make sure each step lands 96 * before applying the next step. 97 */ 98 intel_uncore_write_fw(uncore, fence_reg_lo, 0); 99 intel_uncore_posting_read_fw(uncore, fence_reg_lo); 100 101 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val)); 102 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val)); 103 intel_uncore_posting_read_fw(uncore, fence_reg_lo); 104 } 105 } 106 107 static void i915_write_fence_reg(struct i915_fence_reg *fence) 108 { 109 u32 val; 110 111 val = 0; 112 if (fence->tiling) { 113 unsigned int stride = fence->stride; 114 unsigned int tiling = fence->tiling; 115 bool is_y_tiled = tiling == I915_TILING_Y; 116 117 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence))) 118 stride /= 128; 119 else 120 stride /= 512; 121 GEM_BUG_ON(!is_power_of_2(stride)); 122 123 val = fence->start; 124 if (is_y_tiled) 125 val |= BIT(I830_FENCE_TILING_Y_SHIFT); 126 val |= I915_FENCE_SIZE_BITS(fence->size); 127 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT; 128 129 val |= I830_FENCE_REG_VALID; 130 } 131 132 if (!pipelined) { 133 struct intel_uncore *uncore = fence_to_uncore(fence); 134 i915_reg_t reg = FENCE_REG(fence->id); 135 136 intel_uncore_write_fw(uncore, reg, val); 137 intel_uncore_posting_read_fw(uncore, reg); 138 } 139 } 140 141 static void i830_write_fence_reg(struct i915_fence_reg *fence) 142 { 143 u32 val; 144 145 val = 0; 146 if (fence->tiling) { 147 unsigned int stride = fence->stride; 148 149 val = fence->start; 150 if (fence->tiling == I915_TILING_Y) 151 val |= BIT(I830_FENCE_TILING_Y_SHIFT); 152 val |= I830_FENCE_SIZE_BITS(fence->size); 153 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT; 154 val |= I830_FENCE_REG_VALID; 155 } 156 157 if (!pipelined) { 158 struct intel_uncore *uncore = fence_to_uncore(fence); 159 i915_reg_t reg = FENCE_REG(fence->id); 160 161 intel_uncore_write_fw(uncore, reg, val); 162 intel_uncore_posting_read_fw(uncore, reg); 163 } 164 } 165 166 static void fence_write(struct i915_fence_reg *fence) 167 { 168 struct drm_i915_private *i915 = fence_to_i915(fence); 169 170 /* 171 * Previous access through the fence register is marshalled by 172 * the mb() inside the fault handlers (i915_gem_release_mmaps) 173 * and explicitly managed for internal users. 174 */ 175 176 if (IS_GEN(i915, 2)) 177 i830_write_fence_reg(fence); 178 else if (IS_GEN(i915, 3)) 179 i915_write_fence_reg(fence); 180 else 181 i965_write_fence_reg(fence); 182 183 /* 184 * Access through the fenced region afterwards is 185 * ordered by the posting reads whilst writing the registers. 186 */ 187 } 188 189 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence) 190 { 191 return INTEL_GEN(fence_to_i915(fence)) < 4; 192 } 193 194 static int fence_update(struct i915_fence_reg *fence, 195 struct i915_vma *vma) 196 { 197 struct i915_ggtt *ggtt = fence->ggtt; 198 struct intel_uncore *uncore = fence_to_uncore(fence); 199 intel_wakeref_t wakeref; 200 struct i915_vma *old; 201 int ret; 202 203 fence->tiling = 0; 204 if (vma) { 205 GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) || 206 !i915_gem_object_get_tiling(vma->obj)); 207 208 if (!i915_vma_is_map_and_fenceable(vma)) 209 return -EINVAL; 210 211 if (gpu_uses_fence_registers(fence)) { 212 /* implicit 'unfenced' GPU blits */ 213 ret = i915_vma_sync(vma); 214 if (ret) 215 return ret; 216 } 217 218 fence->start = vma->node.start; 219 fence->size = vma->fence_size; 220 fence->stride = i915_gem_object_get_stride(vma->obj); 221 fence->tiling = i915_gem_object_get_tiling(vma->obj); 222 } 223 WRITE_ONCE(fence->dirty, false); 224 225 old = xchg(&fence->vma, NULL); 226 if (old) { 227 /* XXX Ideally we would move the waiting to outside the mutex */ 228 ret = i915_active_wait(&fence->active); 229 if (ret) { 230 fence->vma = old; 231 return ret; 232 } 233 234 i915_vma_flush_writes(old); 235 236 /* 237 * Ensure that all userspace CPU access is completed before 238 * stealing the fence. 239 */ 240 if (old != vma) { 241 GEM_BUG_ON(old->fence != fence); 242 i915_vma_revoke_mmap(old); 243 old->fence = NULL; 244 } 245 246 list_move(&fence->link, &ggtt->fence_list); 247 } 248 249 /* 250 * We only need to update the register itself if the device is awake. 251 * If the device is currently powered down, we will defer the write 252 * to the runtime resume, see intel_ggtt_restore_fences(). 253 * 254 * This only works for removing the fence register, on acquisition 255 * the caller must hold the rpm wakeref. The fence register must 256 * be cleared before we can use any other fences to ensure that 257 * the new fences do not overlap the elided clears, confusing HW. 258 */ 259 wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm); 260 if (!wakeref) { 261 GEM_BUG_ON(vma); 262 return 0; 263 } 264 265 WRITE_ONCE(fence->vma, vma); 266 fence_write(fence); 267 268 if (vma) { 269 vma->fence = fence; 270 list_move_tail(&fence->link, &ggtt->fence_list); 271 } 272 273 intel_runtime_pm_put(uncore->rpm, wakeref); 274 return 0; 275 } 276 277 /** 278 * i915_vma_revoke_fence - force-remove fence for a VMA 279 * @vma: vma to map linearly (not through a fence reg) 280 * 281 * This function force-removes any fence from the given object, which is useful 282 * if the kernel wants to do untiled GTT access. 283 */ 284 void i915_vma_revoke_fence(struct i915_vma *vma) 285 { 286 struct i915_fence_reg *fence = vma->fence; 287 intel_wakeref_t wakeref; 288 289 lockdep_assert_held(&vma->vm->mutex); 290 if (!fence) 291 return; 292 293 GEM_BUG_ON(fence->vma != vma); 294 GEM_BUG_ON(!i915_active_is_idle(&fence->active)); 295 GEM_BUG_ON(atomic_read(&fence->pin_count)); 296 297 fence->tiling = 0; 298 WRITE_ONCE(fence->vma, NULL); 299 vma->fence = NULL; 300 301 /* 302 * Skip the write to HW if and only if the device is currently 303 * suspended. 304 * 305 * If the driver does not currently hold a wakeref (if_in_use == 0), 306 * the device may currently be runtime suspended, or it may be woken 307 * up before the suspend takes place. If the device is not suspended 308 * (powered down) and we skip clearing the fence register, the HW is 309 * left in an undefined state where we may end up with multiple 310 * registers overlapping. 311 */ 312 with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref) 313 fence_write(fence); 314 } 315 316 static bool fence_is_active(const struct i915_fence_reg *fence) 317 { 318 return fence->vma && i915_vma_is_active(fence->vma); 319 } 320 321 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt) 322 { 323 struct i915_fence_reg *active = NULL; 324 struct i915_fence_reg *fence, *fn; 325 326 list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) { 327 GEM_BUG_ON(fence->vma && fence->vma->fence != fence); 328 329 if (fence == active) /* now seen this fence twice */ 330 active = ERR_PTR(-EAGAIN); 331 332 /* Prefer idle fences so we do not have to wait on the GPU */ 333 if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) { 334 if (!active) 335 active = fence; 336 337 list_move_tail(&fence->link, &ggtt->fence_list); 338 continue; 339 } 340 341 if (atomic_read(&fence->pin_count)) 342 continue; 343 344 return fence; 345 } 346 347 /* Wait for completion of pending flips which consume fences */ 348 if (intel_has_pending_fb_unpin(ggtt->vm.i915)) 349 return ERR_PTR(-EAGAIN); 350 351 return ERR_PTR(-EDEADLK); 352 } 353 354 int __i915_vma_pin_fence(struct i915_vma *vma) 355 { 356 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm); 357 struct i915_fence_reg *fence; 358 struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL; 359 int err; 360 361 lockdep_assert_held(&vma->vm->mutex); 362 363 /* Just update our place in the LRU if our fence is getting reused. */ 364 if (vma->fence) { 365 fence = vma->fence; 366 GEM_BUG_ON(fence->vma != vma); 367 atomic_inc(&fence->pin_count); 368 if (!fence->dirty) { 369 list_move_tail(&fence->link, &ggtt->fence_list); 370 return 0; 371 } 372 } else if (set) { 373 fence = fence_find(ggtt); 374 if (IS_ERR(fence)) 375 return PTR_ERR(fence); 376 377 GEM_BUG_ON(atomic_read(&fence->pin_count)); 378 atomic_inc(&fence->pin_count); 379 } else { 380 return 0; 381 } 382 383 err = fence_update(fence, set); 384 if (err) 385 goto out_unpin; 386 387 GEM_BUG_ON(fence->vma != set); 388 GEM_BUG_ON(vma->fence != (set ? fence : NULL)); 389 390 if (set) 391 return 0; 392 393 out_unpin: 394 atomic_dec(&fence->pin_count); 395 return err; 396 } 397 398 /** 399 * i915_vma_pin_fence - set up fencing for a vma 400 * @vma: vma to map through a fence reg 401 * 402 * When mapping objects through the GTT, userspace wants to be able to write 403 * to them without having to worry about swizzling if the object is tiled. 404 * This function walks the fence regs looking for a free one for @obj, 405 * stealing one if it can't find any. 406 * 407 * It then sets up the reg based on the object's properties: address, pitch 408 * and tiling format. 409 * 410 * For an untiled surface, this removes any existing fence. 411 * 412 * Returns: 413 * 414 * 0 on success, negative error code on failure. 415 */ 416 int i915_vma_pin_fence(struct i915_vma *vma) 417 { 418 int err; 419 420 if (!vma->fence && !i915_gem_object_is_tiled(vma->obj)) 421 return 0; 422 423 /* 424 * Note that we revoke fences on runtime suspend. Therefore the user 425 * must keep the device awake whilst using the fence. 426 */ 427 assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm); 428 GEM_BUG_ON(!i915_vma_is_pinned(vma)); 429 GEM_BUG_ON(!i915_vma_is_ggtt(vma)); 430 431 err = mutex_lock_interruptible(&vma->vm->mutex); 432 if (err) 433 return err; 434 435 err = __i915_vma_pin_fence(vma); 436 mutex_unlock(&vma->vm->mutex); 437 438 return err; 439 } 440 441 /** 442 * i915_reserve_fence - Reserve a fence for vGPU 443 * @ggtt: Global GTT 444 * 445 * This function walks the fence regs looking for a free one and remove 446 * it from the fence_list. It is used to reserve fence for vGPU to use. 447 */ 448 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt) 449 { 450 struct i915_fence_reg *fence; 451 int count; 452 int ret; 453 454 lockdep_assert_held(&ggtt->vm.mutex); 455 456 /* Keep at least one fence available for the display engine. */ 457 count = 0; 458 list_for_each_entry(fence, &ggtt->fence_list, link) 459 count += !atomic_read(&fence->pin_count); 460 if (count <= 1) 461 return ERR_PTR(-ENOSPC); 462 463 fence = fence_find(ggtt); 464 if (IS_ERR(fence)) 465 return fence; 466 467 if (fence->vma) { 468 /* Force-remove fence from VMA */ 469 ret = fence_update(fence, NULL); 470 if (ret) 471 return ERR_PTR(ret); 472 } 473 474 list_del(&fence->link); 475 476 return fence; 477 } 478 479 /** 480 * i915_unreserve_fence - Reclaim a reserved fence 481 * @fence: the fence reg 482 * 483 * This function add a reserved fence register from vGPU to the fence_list. 484 */ 485 void i915_unreserve_fence(struct i915_fence_reg *fence) 486 { 487 struct i915_ggtt *ggtt = fence->ggtt; 488 489 lockdep_assert_held(&ggtt->vm.mutex); 490 491 list_add(&fence->link, &ggtt->fence_list); 492 } 493 494 /** 495 * intel_ggtt_restore_fences - restore fence state 496 * @ggtt: Global GTT 497 * 498 * Restore the hw fence state to match the software tracking again, to be called 499 * after a gpu reset and on resume. Note that on runtime suspend we only cancel 500 * the fences, to be reacquired by the user later. 501 */ 502 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt) 503 { 504 int i; 505 506 for (i = 0; i < ggtt->num_fences; i++) 507 fence_write(&ggtt->fence_regs[i]); 508 } 509 510 /** 511 * DOC: tiling swizzling details 512 * 513 * The idea behind tiling is to increase cache hit rates by rearranging 514 * pixel data so that a group of pixel accesses are in the same cacheline. 515 * Performance improvement from doing this on the back/depth buffer are on 516 * the order of 30%. 517 * 518 * Intel architectures make this somewhat more complicated, though, by 519 * adjustments made to addressing of data when the memory is in interleaved 520 * mode (matched pairs of DIMMS) to improve memory bandwidth. 521 * For interleaved memory, the CPU sends every sequential 64 bytes 522 * to an alternate memory channel so it can get the bandwidth from both. 523 * 524 * The GPU also rearranges its accesses for increased bandwidth to interleaved 525 * memory, and it matches what the CPU does for non-tiled. However, when tiled 526 * it does it a little differently, since one walks addresses not just in the 527 * X direction but also Y. So, along with alternating channels when bit 528 * 6 of the address flips, it also alternates when other bits flip -- Bits 9 529 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines) 530 * are common to both the 915 and 965-class hardware. 531 * 532 * The CPU also sometimes XORs in higher bits as well, to improve 533 * bandwidth doing strided access like we do so frequently in graphics. This 534 * is called "Channel XOR Randomization" in the MCH documentation. The result 535 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address 536 * decode. 537 * 538 * All of this bit 6 XORing has an effect on our memory management, 539 * as we need to make sure that the 3d driver can correctly address object 540 * contents. 541 * 542 * If we don't have interleaved memory, all tiling is safe and no swizzling is 543 * required. 544 * 545 * When bit 17 is XORed in, we simply refuse to tile at all. Bit 546 * 17 is not just a page offset, so as we page an object out and back in, 547 * individual pages in it will have different bit 17 addresses, resulting in 548 * each 64 bytes being swapped with its neighbor! 549 * 550 * Otherwise, if interleaved, we have to tell the 3d driver what the address 551 * swizzling it needs to do is, since it's writing with the CPU to the pages 552 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the 553 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling 554 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order 555 * to match what the GPU expects. 556 */ 557 558 /** 559 * detect_bit_6_swizzle - detect bit 6 swizzling pattern 560 * @ggtt: Global GGTT 561 * 562 * Detects bit 6 swizzling of address lookup between IGD access and CPU 563 * access through main memory. 564 */ 565 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt) 566 { 567 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 568 struct drm_i915_private *i915 = ggtt->vm.i915; 569 u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; 570 u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; 571 572 if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) { 573 /* 574 * On BDW+, swizzling is not used. We leave the CPU memory 575 * controller in charge of optimizing memory accesses without 576 * the extra address manipulation GPU side. 577 * 578 * VLV and CHV don't have GPU swizzling. 579 */ 580 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 581 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 582 } else if (INTEL_GEN(i915) >= 6) { 583 if (i915->preserve_bios_swizzle) { 584 if (intel_uncore_read(uncore, DISP_ARB_CTL) & 585 DISP_TILE_SURFACE_SWIZZLING) { 586 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 587 swizzle_y = I915_BIT_6_SWIZZLE_9; 588 } else { 589 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 590 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 591 } 592 } else { 593 u32 dimm_c0, dimm_c1; 594 595 dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0); 596 dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1); 597 dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK; 598 dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK; 599 /* 600 * Enable swizzling when the channels are populated 601 * with identically sized dimms. We don't need to check 602 * the 3rd channel because no cpu with gpu attached 603 * ships in that configuration. Also, swizzling only 604 * makes sense for 2 channels anyway. 605 */ 606 if (dimm_c0 == dimm_c1) { 607 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 608 swizzle_y = I915_BIT_6_SWIZZLE_9; 609 } else { 610 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 611 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 612 } 613 } 614 } else if (IS_GEN(i915, 5)) { 615 /* 616 * On Ironlake whatever DRAM config, GPU always do 617 * same swizzling setup. 618 */ 619 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 620 swizzle_y = I915_BIT_6_SWIZZLE_9; 621 } else if (IS_GEN(i915, 2)) { 622 /* 623 * As far as we know, the 865 doesn't have these bit 6 624 * swizzling issues. 625 */ 626 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 627 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 628 } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) { 629 /* 630 * The 965, G33, and newer, have a very flexible memory 631 * configuration. It will enable dual-channel mode 632 * (interleaving) on as much memory as it can, and the GPU 633 * will additionally sometimes enable different bit 6 634 * swizzling for tiled objects from the CPU. 635 * 636 * Here's what I found on the G965: 637 * slot fill memory size swizzling 638 * 0A 0B 1A 1B 1-ch 2-ch 639 * 512 0 0 0 512 0 O 640 * 512 0 512 0 16 1008 X 641 * 512 0 0 512 16 1008 X 642 * 0 512 0 512 16 1008 X 643 * 1024 1024 1024 0 2048 1024 O 644 * 645 * We could probably detect this based on either the DRB 646 * matching, which was the case for the swizzling required in 647 * the table above, or from the 1-ch value being less than 648 * the minimum size of a rank. 649 * 650 * Reports indicate that the swizzling actually 651 * varies depending upon page placement inside the 652 * channels, i.e. we see swizzled pages where the 653 * banks of memory are paired and unswizzled on the 654 * uneven portion, so leave that as unknown. 655 */ 656 if (intel_uncore_read16(uncore, C0DRB3) == 657 intel_uncore_read16(uncore, C1DRB3)) { 658 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 659 swizzle_y = I915_BIT_6_SWIZZLE_9; 660 } 661 } else { 662 u32 dcc = intel_uncore_read(uncore, DCC); 663 664 /* 665 * On 9xx chipsets, channel interleave by the CPU is 666 * determined by DCC. For single-channel, neither the CPU 667 * nor the GPU do swizzling. For dual channel interleaved, 668 * the GPU's interleave is bit 9 and 10 for X tiled, and bit 669 * 9 for Y tiled. The CPU's interleave is independent, and 670 * can be based on either bit 11 (haven't seen this yet) or 671 * bit 17 (common). 672 */ 673 switch (dcc & DCC_ADDRESSING_MODE_MASK) { 674 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL: 675 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC: 676 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 677 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 678 break; 679 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED: 680 if (dcc & DCC_CHANNEL_XOR_DISABLE) { 681 /* 682 * This is the base swizzling by the GPU for 683 * tiled buffers. 684 */ 685 swizzle_x = I915_BIT_6_SWIZZLE_9_10; 686 swizzle_y = I915_BIT_6_SWIZZLE_9; 687 } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) { 688 /* Bit 11 swizzling by the CPU in addition. */ 689 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11; 690 swizzle_y = I915_BIT_6_SWIZZLE_9_11; 691 } else { 692 /* Bit 17 swizzling by the CPU in addition. */ 693 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17; 694 swizzle_y = I915_BIT_6_SWIZZLE_9_17; 695 } 696 break; 697 } 698 699 /* check for L-shaped memory aka modified enhanced addressing */ 700 if (IS_GEN(i915, 4) && 701 !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) { 702 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; 703 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; 704 } 705 706 if (dcc == 0xffffffff) { 707 drm_err(&i915->drm, "Couldn't read from MCHBAR. " 708 "Disabling tiling.\n"); 709 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN; 710 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN; 711 } 712 } 713 714 if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN || 715 swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) { 716 /* 717 * Userspace likes to explode if it sees unknown swizzling, 718 * so lie. We will finish the lie when reporting through 719 * the get-tiling-ioctl by reporting the physical swizzle 720 * mode as unknown instead. 721 * 722 * As we don't strictly know what the swizzling is, it may be 723 * bit17 dependent, and so we need to also prevent the pages 724 * from being moved. 725 */ 726 i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES; 727 swizzle_x = I915_BIT_6_SWIZZLE_NONE; 728 swizzle_y = I915_BIT_6_SWIZZLE_NONE; 729 } 730 731 i915->ggtt.bit_6_swizzle_x = swizzle_x; 732 i915->ggtt.bit_6_swizzle_y = swizzle_y; 733 } 734 735 /* 736 * Swap every 64 bytes of this page around, to account for it having a new 737 * bit 17 of its physical address and therefore being interpreted differently 738 * by the GPU. 739 */ 740 static void swizzle_page(struct page *page) 741 { 742 char temp[64]; 743 char *vaddr; 744 int i; 745 746 vaddr = kmap(page); 747 748 for (i = 0; i < PAGE_SIZE; i += 128) { 749 memcpy(temp, &vaddr[i], 64); 750 memcpy(&vaddr[i], &vaddr[i + 64], 64); 751 memcpy(&vaddr[i + 64], temp, 64); 752 } 753 754 kunmap(page); 755 } 756 757 /** 758 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling 759 * @obj: i915 GEM buffer object 760 * @pages: the scattergather list of physical pages 761 * 762 * This function fixes up the swizzling in case any page frame number for this 763 * object has changed in bit 17 since that state has been saved with 764 * i915_gem_object_save_bit_17_swizzle(). 765 * 766 * This is called when pinning backing storage again, since the kernel is free 767 * to move unpinned backing storage around (either by directly moving pages or 768 * by swapping them out and back in again). 769 */ 770 void 771 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj, 772 struct sg_table *pages) 773 { 774 struct sgt_iter sgt_iter; 775 struct page *page; 776 int i; 777 778 if (obj->bit_17 == NULL) 779 return; 780 781 i = 0; 782 for_each_sgt_page(page, sgt_iter, pages) { 783 char new_bit_17 = page_to_phys(page) >> 17; 784 785 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) { 786 swizzle_page(page); 787 set_page_dirty(page); 788 } 789 790 i++; 791 } 792 } 793 794 /** 795 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling 796 * @obj: i915 GEM buffer object 797 * @pages: the scattergather list of physical pages 798 * 799 * This function saves the bit 17 of each page frame number so that swizzling 800 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must 801 * be called before the backing storage can be unpinned. 802 */ 803 void 804 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj, 805 struct sg_table *pages) 806 { 807 const unsigned int page_count = obj->base.size >> PAGE_SHIFT; 808 struct sgt_iter sgt_iter; 809 struct page *page; 810 int i; 811 812 if (obj->bit_17 == NULL) { 813 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL); 814 if (obj->bit_17 == NULL) { 815 DRM_ERROR("Failed to allocate memory for bit 17 " 816 "record\n"); 817 return; 818 } 819 } 820 821 i = 0; 822 823 for_each_sgt_page(page, sgt_iter, pages) { 824 if (page_to_phys(page) & (1 << 17)) 825 __set_bit(i, obj->bit_17); 826 else 827 __clear_bit(i, obj->bit_17); 828 i++; 829 } 830 } 831 832 void intel_ggtt_init_fences(struct i915_ggtt *ggtt) 833 { 834 struct drm_i915_private *i915 = ggtt->vm.i915; 835 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 836 int num_fences; 837 int i; 838 839 INIT_LIST_HEAD(&ggtt->fence_list); 840 INIT_LIST_HEAD(&ggtt->userfault_list); 841 intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm); 842 843 detect_bit_6_swizzle(ggtt); 844 845 if (!i915_ggtt_has_aperture(ggtt)) 846 num_fences = 0; 847 else if (INTEL_GEN(i915) >= 7 && 848 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915))) 849 num_fences = 32; 850 else if (INTEL_GEN(i915) >= 4 || 851 IS_I945G(i915) || IS_I945GM(i915) || 852 IS_G33(i915) || IS_PINEVIEW(i915)) 853 num_fences = 16; 854 else 855 num_fences = 8; 856 857 if (intel_vgpu_active(i915)) 858 num_fences = intel_uncore_read(uncore, 859 vgtif_reg(avail_rs.fence_num)); 860 ggtt->fence_regs = kcalloc(num_fences, 861 sizeof(*ggtt->fence_regs), 862 GFP_KERNEL); 863 if (!ggtt->fence_regs) 864 num_fences = 0; 865 866 /* Initialize fence registers to zero */ 867 for (i = 0; i < num_fences; i++) { 868 struct i915_fence_reg *fence = &ggtt->fence_regs[i]; 869 870 i915_active_init(&fence->active, NULL, NULL); 871 fence->ggtt = ggtt; 872 fence->id = i; 873 list_add_tail(&fence->link, &ggtt->fence_list); 874 } 875 ggtt->num_fences = num_fences; 876 877 intel_ggtt_restore_fences(ggtt); 878 } 879 880 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt) 881 { 882 int i; 883 884 for (i = 0; i < ggtt->num_fences; i++) { 885 struct i915_fence_reg *fence = &ggtt->fence_regs[i]; 886 887 i915_active_fini(&fence->active); 888 } 889 890 kfree(ggtt->fence_regs); 891 } 892 893 void intel_gt_init_swizzling(struct intel_gt *gt) 894 { 895 struct drm_i915_private *i915 = gt->i915; 896 struct intel_uncore *uncore = gt->uncore; 897 898 if (INTEL_GEN(i915) < 5 || 899 i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE) 900 return; 901 902 intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING); 903 904 if (IS_GEN(i915, 5)) 905 return; 906 907 intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL); 908 909 if (IS_GEN(i915, 6)) 910 intel_uncore_write(uncore, 911 ARB_MODE, 912 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB)); 913 else if (IS_GEN(i915, 7)) 914 intel_uncore_write(uncore, 915 ARB_MODE, 916 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB)); 917 else if (IS_GEN(i915, 8)) 918 intel_uncore_write(uncore, 919 GAMTARBMODE, 920 _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW)); 921 else 922 MISSING_CASE(INTEL_GEN(i915)); 923 } 924