1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2008-2015 Intel Corporation
4  */
5 
6 #include <linux/highmem.h>
7 
8 #include "i915_drv.h"
9 #include "i915_reg.h"
10 #include "i915_scatterlist.h"
11 #include "i915_pvinfo.h"
12 #include "i915_vgpu.h"
13 #include "intel_gt_regs.h"
14 #include "intel_mchbar_regs.h"
15 
16 /**
17  * DOC: fence register handling
18  *
19  * Important to avoid confusions: "fences" in the i915 driver are not execution
20  * fences used to track command completion but hardware detiler objects which
21  * wrap a given range of the global GTT. Each platform has only a fairly limited
22  * set of these objects.
23  *
24  * Fences are used to detile GTT memory mappings. They're also connected to the
25  * hardware frontbuffer render tracking and hence interact with frontbuffer
26  * compression. Furthermore on older platforms fences are required for tiled
27  * objects used by the display engine. They can also be used by the render
28  * engine - they're required for blitter commands and are optional for render
29  * commands. But on gen4+ both display (with the exception of fbc) and rendering
30  * have their own tiling state bits and don't need fences.
31  *
32  * Also note that fences only support X and Y tiling and hence can't be used for
33  * the fancier new tiling formats like W, Ys and Yf.
34  *
35  * Finally note that because fences are such a restricted resource they're
36  * dynamically associated with objects. Furthermore fence state is committed to
37  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
38  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
39  * for cpu access. Also note that some code wants an unfenced view, for those
40  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
41  *
42  * Internally these functions will synchronize with userspace access by removing
43  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
44  */
45 
46 #define pipelined 0
47 
48 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
49 {
50 	return fence->ggtt->vm.i915;
51 }
52 
53 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
54 {
55 	return fence->ggtt->vm.gt->uncore;
56 }
57 
58 static void i965_write_fence_reg(struct i915_fence_reg *fence)
59 {
60 	i915_reg_t fence_reg_lo, fence_reg_hi;
61 	int fence_pitch_shift;
62 	u64 val;
63 
64 	if (GRAPHICS_VER(fence_to_i915(fence)) >= 6) {
65 		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
66 		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
67 		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
68 
69 	} else {
70 		fence_reg_lo = FENCE_REG_965_LO(fence->id);
71 		fence_reg_hi = FENCE_REG_965_HI(fence->id);
72 		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
73 	}
74 
75 	val = 0;
76 	if (fence->tiling) {
77 		unsigned int stride = fence->stride;
78 
79 		GEM_BUG_ON(!IS_ALIGNED(stride, 128));
80 
81 		val = fence->start + fence->size - I965_FENCE_PAGE;
82 		val <<= 32;
83 		val |= fence->start;
84 		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
85 		if (fence->tiling == I915_TILING_Y)
86 			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
87 		val |= I965_FENCE_REG_VALID;
88 	}
89 
90 	if (!pipelined) {
91 		struct intel_uncore *uncore = fence_to_uncore(fence);
92 
93 		/*
94 		 * To w/a incoherency with non-atomic 64-bit register updates,
95 		 * we split the 64-bit update into two 32-bit writes. In order
96 		 * for a partial fence not to be evaluated between writes, we
97 		 * precede the update with write to turn off the fence register,
98 		 * and only enable the fence as the last step.
99 		 *
100 		 * For extra levels of paranoia, we make sure each step lands
101 		 * before applying the next step.
102 		 */
103 		intel_uncore_write_fw(uncore, fence_reg_lo, 0);
104 		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
105 
106 		intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
107 		intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
108 		intel_uncore_posting_read_fw(uncore, fence_reg_lo);
109 	}
110 }
111 
112 static void i915_write_fence_reg(struct i915_fence_reg *fence)
113 {
114 	u32 val;
115 
116 	val = 0;
117 	if (fence->tiling) {
118 		unsigned int stride = fence->stride;
119 		unsigned int tiling = fence->tiling;
120 		bool is_y_tiled = tiling == I915_TILING_Y;
121 
122 		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
123 			stride /= 128;
124 		else
125 			stride /= 512;
126 		GEM_BUG_ON(!is_power_of_2(stride));
127 
128 		val = fence->start;
129 		if (is_y_tiled)
130 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
131 		val |= I915_FENCE_SIZE_BITS(fence->size);
132 		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
133 
134 		val |= I830_FENCE_REG_VALID;
135 	}
136 
137 	if (!pipelined) {
138 		struct intel_uncore *uncore = fence_to_uncore(fence);
139 		i915_reg_t reg = FENCE_REG(fence->id);
140 
141 		intel_uncore_write_fw(uncore, reg, val);
142 		intel_uncore_posting_read_fw(uncore, reg);
143 	}
144 }
145 
146 static void i830_write_fence_reg(struct i915_fence_reg *fence)
147 {
148 	u32 val;
149 
150 	val = 0;
151 	if (fence->tiling) {
152 		unsigned int stride = fence->stride;
153 
154 		val = fence->start;
155 		if (fence->tiling == I915_TILING_Y)
156 			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
157 		val |= I830_FENCE_SIZE_BITS(fence->size);
158 		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
159 		val |= I830_FENCE_REG_VALID;
160 	}
161 
162 	if (!pipelined) {
163 		struct intel_uncore *uncore = fence_to_uncore(fence);
164 		i915_reg_t reg = FENCE_REG(fence->id);
165 
166 		intel_uncore_write_fw(uncore, reg, val);
167 		intel_uncore_posting_read_fw(uncore, reg);
168 	}
169 }
170 
171 static void fence_write(struct i915_fence_reg *fence)
172 {
173 	struct drm_i915_private *i915 = fence_to_i915(fence);
174 
175 	/*
176 	 * Previous access through the fence register is marshalled by
177 	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
178 	 * and explicitly managed for internal users.
179 	 */
180 
181 	if (GRAPHICS_VER(i915) == 2)
182 		i830_write_fence_reg(fence);
183 	else if (GRAPHICS_VER(i915) == 3)
184 		i915_write_fence_reg(fence);
185 	else
186 		i965_write_fence_reg(fence);
187 
188 	/*
189 	 * Access through the fenced region afterwards is
190 	 * ordered by the posting reads whilst writing the registers.
191 	 */
192 }
193 
194 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
195 {
196 	return GRAPHICS_VER(fence_to_i915(fence)) < 4;
197 }
198 
199 static int fence_update(struct i915_fence_reg *fence,
200 			struct i915_vma *vma)
201 {
202 	struct i915_ggtt *ggtt = fence->ggtt;
203 	struct intel_uncore *uncore = fence_to_uncore(fence);
204 	intel_wakeref_t wakeref;
205 	struct i915_vma *old;
206 	int ret;
207 
208 	fence->tiling = 0;
209 	if (vma) {
210 		GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
211 			   !i915_gem_object_get_tiling(vma->obj));
212 
213 		if (!i915_vma_is_map_and_fenceable(vma))
214 			return -EINVAL;
215 
216 		if (gpu_uses_fence_registers(fence)) {
217 			/* implicit 'unfenced' GPU blits */
218 			ret = i915_vma_sync(vma);
219 			if (ret)
220 				return ret;
221 		}
222 
223 		fence->start = vma->node.start;
224 		fence->size = vma->fence_size;
225 		fence->stride = i915_gem_object_get_stride(vma->obj);
226 		fence->tiling = i915_gem_object_get_tiling(vma->obj);
227 	}
228 	WRITE_ONCE(fence->dirty, false);
229 
230 	old = xchg(&fence->vma, NULL);
231 	if (old) {
232 		/* XXX Ideally we would move the waiting to outside the mutex */
233 		ret = i915_active_wait(&fence->active);
234 		if (ret) {
235 			fence->vma = old;
236 			return ret;
237 		}
238 
239 		i915_vma_flush_writes(old);
240 
241 		/*
242 		 * Ensure that all userspace CPU access is completed before
243 		 * stealing the fence.
244 		 */
245 		if (old != vma) {
246 			GEM_BUG_ON(old->fence != fence);
247 			i915_vma_revoke_mmap(old);
248 			old->fence = NULL;
249 		}
250 
251 		list_move(&fence->link, &ggtt->fence_list);
252 	}
253 
254 	/*
255 	 * We only need to update the register itself if the device is awake.
256 	 * If the device is currently powered down, we will defer the write
257 	 * to the runtime resume, see intel_ggtt_restore_fences().
258 	 *
259 	 * This only works for removing the fence register, on acquisition
260 	 * the caller must hold the rpm wakeref. The fence register must
261 	 * be cleared before we can use any other fences to ensure that
262 	 * the new fences do not overlap the elided clears, confusing HW.
263 	 */
264 	wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
265 	if (!wakeref) {
266 		GEM_BUG_ON(vma);
267 		return 0;
268 	}
269 
270 	WRITE_ONCE(fence->vma, vma);
271 	fence_write(fence);
272 
273 	if (vma) {
274 		vma->fence = fence;
275 		list_move_tail(&fence->link, &ggtt->fence_list);
276 	}
277 
278 	intel_runtime_pm_put(uncore->rpm, wakeref);
279 	return 0;
280 }
281 
282 /**
283  * i915_vma_revoke_fence - force-remove fence for a VMA
284  * @vma: vma to map linearly (not through a fence reg)
285  *
286  * This function force-removes any fence from the given object, which is useful
287  * if the kernel wants to do untiled GTT access.
288  */
289 void i915_vma_revoke_fence(struct i915_vma *vma)
290 {
291 	struct i915_fence_reg *fence = vma->fence;
292 	intel_wakeref_t wakeref;
293 
294 	lockdep_assert_held(&vma->vm->mutex);
295 	if (!fence)
296 		return;
297 
298 	GEM_BUG_ON(fence->vma != vma);
299 	GEM_BUG_ON(!i915_active_is_idle(&fence->active));
300 	GEM_BUG_ON(atomic_read(&fence->pin_count));
301 
302 	fence->tiling = 0;
303 	WRITE_ONCE(fence->vma, NULL);
304 	vma->fence = NULL;
305 
306 	/*
307 	 * Skip the write to HW if and only if the device is currently
308 	 * suspended.
309 	 *
310 	 * If the driver does not currently hold a wakeref (if_in_use == 0),
311 	 * the device may currently be runtime suspended, or it may be woken
312 	 * up before the suspend takes place. If the device is not suspended
313 	 * (powered down) and we skip clearing the fence register, the HW is
314 	 * left in an undefined state where we may end up with multiple
315 	 * registers overlapping.
316 	 */
317 	with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
318 		fence_write(fence);
319 }
320 
321 static bool fence_is_active(const struct i915_fence_reg *fence)
322 {
323 	return fence->vma && i915_vma_is_active(fence->vma);
324 }
325 
326 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
327 {
328 	struct i915_fence_reg *active = NULL;
329 	struct i915_fence_reg *fence, *fn;
330 
331 	list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
332 		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
333 
334 		if (fence == active) /* now seen this fence twice */
335 			active = ERR_PTR(-EAGAIN);
336 
337 		/* Prefer idle fences so we do not have to wait on the GPU */
338 		if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
339 			if (!active)
340 				active = fence;
341 
342 			list_move_tail(&fence->link, &ggtt->fence_list);
343 			continue;
344 		}
345 
346 		if (atomic_read(&fence->pin_count))
347 			continue;
348 
349 		return fence;
350 	}
351 
352 	/* Wait for completion of pending flips which consume fences */
353 	if (intel_has_pending_fb_unpin(ggtt->vm.i915))
354 		return ERR_PTR(-EAGAIN);
355 
356 	return ERR_PTR(-ENOBUFS);
357 }
358 
359 int __i915_vma_pin_fence(struct i915_vma *vma)
360 {
361 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
362 	struct i915_fence_reg *fence;
363 	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
364 	int err;
365 
366 	lockdep_assert_held(&vma->vm->mutex);
367 
368 	/* Just update our place in the LRU if our fence is getting reused. */
369 	if (vma->fence) {
370 		fence = vma->fence;
371 		GEM_BUG_ON(fence->vma != vma);
372 		atomic_inc(&fence->pin_count);
373 		if (!fence->dirty) {
374 			list_move_tail(&fence->link, &ggtt->fence_list);
375 			return 0;
376 		}
377 	} else if (set) {
378 		fence = fence_find(ggtt);
379 		if (IS_ERR(fence))
380 			return PTR_ERR(fence);
381 
382 		GEM_BUG_ON(atomic_read(&fence->pin_count));
383 		atomic_inc(&fence->pin_count);
384 	} else {
385 		return 0;
386 	}
387 
388 	err = fence_update(fence, set);
389 	if (err)
390 		goto out_unpin;
391 
392 	GEM_BUG_ON(fence->vma != set);
393 	GEM_BUG_ON(vma->fence != (set ? fence : NULL));
394 
395 	if (set)
396 		return 0;
397 
398 out_unpin:
399 	atomic_dec(&fence->pin_count);
400 	return err;
401 }
402 
403 /**
404  * i915_vma_pin_fence - set up fencing for a vma
405  * @vma: vma to map through a fence reg
406  *
407  * When mapping objects through the GTT, userspace wants to be able to write
408  * to them without having to worry about swizzling if the object is tiled.
409  * This function walks the fence regs looking for a free one for @obj,
410  * stealing one if it can't find any.
411  *
412  * It then sets up the reg based on the object's properties: address, pitch
413  * and tiling format.
414  *
415  * For an untiled surface, this removes any existing fence.
416  *
417  * Returns:
418  *
419  * 0 on success, negative error code on failure.
420  */
421 int i915_vma_pin_fence(struct i915_vma *vma)
422 {
423 	int err;
424 
425 	if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
426 		return 0;
427 
428 	/*
429 	 * Note that we revoke fences on runtime suspend. Therefore the user
430 	 * must keep the device awake whilst using the fence.
431 	 */
432 	assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
433 	GEM_BUG_ON(!i915_vma_is_ggtt(vma));
434 
435 	err = mutex_lock_interruptible(&vma->vm->mutex);
436 	if (err)
437 		return err;
438 
439 	err = __i915_vma_pin_fence(vma);
440 	mutex_unlock(&vma->vm->mutex);
441 
442 	return err;
443 }
444 
445 /**
446  * i915_reserve_fence - Reserve a fence for vGPU
447  * @ggtt: Global GTT
448  *
449  * This function walks the fence regs looking for a free one and remove
450  * it from the fence_list. It is used to reserve fence for vGPU to use.
451  */
452 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
453 {
454 	struct i915_fence_reg *fence;
455 	int count;
456 	int ret;
457 
458 	lockdep_assert_held(&ggtt->vm.mutex);
459 
460 	/* Keep at least one fence available for the display engine. */
461 	count = 0;
462 	list_for_each_entry(fence, &ggtt->fence_list, link)
463 		count += !atomic_read(&fence->pin_count);
464 	if (count <= 1)
465 		return ERR_PTR(-ENOSPC);
466 
467 	fence = fence_find(ggtt);
468 	if (IS_ERR(fence))
469 		return fence;
470 
471 	if (fence->vma) {
472 		/* Force-remove fence from VMA */
473 		ret = fence_update(fence, NULL);
474 		if (ret)
475 			return ERR_PTR(ret);
476 	}
477 
478 	list_del(&fence->link);
479 
480 	return fence;
481 }
482 
483 /**
484  * i915_unreserve_fence - Reclaim a reserved fence
485  * @fence: the fence reg
486  *
487  * This function add a reserved fence register from vGPU to the fence_list.
488  */
489 void i915_unreserve_fence(struct i915_fence_reg *fence)
490 {
491 	struct i915_ggtt *ggtt = fence->ggtt;
492 
493 	lockdep_assert_held(&ggtt->vm.mutex);
494 
495 	list_add(&fence->link, &ggtt->fence_list);
496 }
497 
498 /**
499  * intel_ggtt_restore_fences - restore fence state
500  * @ggtt: Global GTT
501  *
502  * Restore the hw fence state to match the software tracking again, to be called
503  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
504  * the fences, to be reacquired by the user later.
505  */
506 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
507 {
508 	int i;
509 
510 	for (i = 0; i < ggtt->num_fences; i++)
511 		fence_write(&ggtt->fence_regs[i]);
512 }
513 
514 /**
515  * DOC: tiling swizzling details
516  *
517  * The idea behind tiling is to increase cache hit rates by rearranging
518  * pixel data so that a group of pixel accesses are in the same cacheline.
519  * Performance improvement from doing this on the back/depth buffer are on
520  * the order of 30%.
521  *
522  * Intel architectures make this somewhat more complicated, though, by
523  * adjustments made to addressing of data when the memory is in interleaved
524  * mode (matched pairs of DIMMS) to improve memory bandwidth.
525  * For interleaved memory, the CPU sends every sequential 64 bytes
526  * to an alternate memory channel so it can get the bandwidth from both.
527  *
528  * The GPU also rearranges its accesses for increased bandwidth to interleaved
529  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
530  * it does it a little differently, since one walks addresses not just in the
531  * X direction but also Y.  So, along with alternating channels when bit
532  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
533  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
534  * are common to both the 915 and 965-class hardware.
535  *
536  * The CPU also sometimes XORs in higher bits as well, to improve
537  * bandwidth doing strided access like we do so frequently in graphics.  This
538  * is called "Channel XOR Randomization" in the MCH documentation.  The result
539  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
540  * decode.
541  *
542  * All of this bit 6 XORing has an effect on our memory management,
543  * as we need to make sure that the 3d driver can correctly address object
544  * contents.
545  *
546  * If we don't have interleaved memory, all tiling is safe and no swizzling is
547  * required.
548  *
549  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
550  * 17 is not just a page offset, so as we page an object out and back in,
551  * individual pages in it will have different bit 17 addresses, resulting in
552  * each 64 bytes being swapped with its neighbor!
553  *
554  * Otherwise, if interleaved, we have to tell the 3d driver what the address
555  * swizzling it needs to do is, since it's writing with the CPU to the pages
556  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
557  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
558  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
559  * to match what the GPU expects.
560  */
561 
562 /**
563  * detect_bit_6_swizzle - detect bit 6 swizzling pattern
564  * @ggtt: Global GGTT
565  *
566  * Detects bit 6 swizzling of address lookup between IGD access and CPU
567  * access through main memory.
568  */
569 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
570 {
571 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
572 	struct drm_i915_private *i915 = ggtt->vm.i915;
573 	u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
574 	u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
575 
576 	if (GRAPHICS_VER(i915) >= 8 || IS_VALLEYVIEW(i915)) {
577 		/*
578 		 * On BDW+, swizzling is not used. We leave the CPU memory
579 		 * controller in charge of optimizing memory accesses without
580 		 * the extra address manipulation GPU side.
581 		 *
582 		 * VLV and CHV don't have GPU swizzling.
583 		 */
584 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
585 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
586 	} else if (GRAPHICS_VER(i915) >= 6) {
587 		if (i915->preserve_bios_swizzle) {
588 			if (intel_uncore_read(uncore, DISP_ARB_CTL) &
589 			    DISP_TILE_SURFACE_SWIZZLING) {
590 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
591 				swizzle_y = I915_BIT_6_SWIZZLE_9;
592 			} else {
593 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
594 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
595 			}
596 		} else {
597 			u32 dimm_c0, dimm_c1;
598 
599 			dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
600 			dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
601 			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
602 			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
603 			/*
604 			 * Enable swizzling when the channels are populated
605 			 * with identically sized dimms. We don't need to check
606 			 * the 3rd channel because no cpu with gpu attached
607 			 * ships in that configuration. Also, swizzling only
608 			 * makes sense for 2 channels anyway.
609 			 */
610 			if (dimm_c0 == dimm_c1) {
611 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
612 				swizzle_y = I915_BIT_6_SWIZZLE_9;
613 			} else {
614 				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
615 				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
616 			}
617 		}
618 	} else if (GRAPHICS_VER(i915) == 5) {
619 		/*
620 		 * On Ironlake whatever DRAM config, GPU always do
621 		 * same swizzling setup.
622 		 */
623 		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
624 		swizzle_y = I915_BIT_6_SWIZZLE_9;
625 	} else if (GRAPHICS_VER(i915) == 2) {
626 		/*
627 		 * As far as we know, the 865 doesn't have these bit 6
628 		 * swizzling issues.
629 		 */
630 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
631 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
632 	} else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
633 		/*
634 		 * The 965, G33, and newer, have a very flexible memory
635 		 * configuration.  It will enable dual-channel mode
636 		 * (interleaving) on as much memory as it can, and the GPU
637 		 * will additionally sometimes enable different bit 6
638 		 * swizzling for tiled objects from the CPU.
639 		 *
640 		 * Here's what I found on the G965:
641 		 *    slot fill         memory size  swizzling
642 		 * 0A   0B   1A   1B    1-ch   2-ch
643 		 * 512  0    0    0     512    0     O
644 		 * 512  0    512  0     16     1008  X
645 		 * 512  0    0    512   16     1008  X
646 		 * 0    512  0    512   16     1008  X
647 		 * 1024 1024 1024 0     2048   1024  O
648 		 *
649 		 * We could probably detect this based on either the DRB
650 		 * matching, which was the case for the swizzling required in
651 		 * the table above, or from the 1-ch value being less than
652 		 * the minimum size of a rank.
653 		 *
654 		 * Reports indicate that the swizzling actually
655 		 * varies depending upon page placement inside the
656 		 * channels, i.e. we see swizzled pages where the
657 		 * banks of memory are paired and unswizzled on the
658 		 * uneven portion, so leave that as unknown.
659 		 */
660 		if (intel_uncore_read16(uncore, C0DRB3_BW) ==
661 		    intel_uncore_read16(uncore, C1DRB3_BW)) {
662 			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
663 			swizzle_y = I915_BIT_6_SWIZZLE_9;
664 		}
665 	} else {
666 		u32 dcc = intel_uncore_read(uncore, DCC);
667 
668 		/*
669 		 * On 9xx chipsets, channel interleave by the CPU is
670 		 * determined by DCC.  For single-channel, neither the CPU
671 		 * nor the GPU do swizzling.  For dual channel interleaved,
672 		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
673 		 * 9 for Y tiled.  The CPU's interleave is independent, and
674 		 * can be based on either bit 11 (haven't seen this yet) or
675 		 * bit 17 (common).
676 		 */
677 		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
678 		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
679 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
680 			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
681 			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
682 			break;
683 		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
684 			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
685 				/*
686 				 * This is the base swizzling by the GPU for
687 				 * tiled buffers.
688 				 */
689 				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
690 				swizzle_y = I915_BIT_6_SWIZZLE_9;
691 			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
692 				/* Bit 11 swizzling by the CPU in addition. */
693 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
694 				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
695 			} else {
696 				/* Bit 17 swizzling by the CPU in addition. */
697 				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
698 				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
699 			}
700 			break;
701 		}
702 
703 		/* check for L-shaped memory aka modified enhanced addressing */
704 		if (GRAPHICS_VER(i915) == 4 &&
705 		    !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
706 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
707 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
708 		}
709 
710 		if (dcc == 0xffffffff) {
711 			drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
712 				  "Disabling tiling.\n");
713 			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
714 			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
715 		}
716 	}
717 
718 	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
719 	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
720 		/*
721 		 * Userspace likes to explode if it sees unknown swizzling,
722 		 * so lie. We will finish the lie when reporting through
723 		 * the get-tiling-ioctl by reporting the physical swizzle
724 		 * mode as unknown instead.
725 		 *
726 		 * As we don't strictly know what the swizzling is, it may be
727 		 * bit17 dependent, and so we need to also prevent the pages
728 		 * from being moved.
729 		 */
730 		i915->gem_quirks |= GEM_QUIRK_PIN_SWIZZLED_PAGES;
731 		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
732 		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
733 	}
734 
735 	to_gt(i915)->ggtt->bit_6_swizzle_x = swizzle_x;
736 	to_gt(i915)->ggtt->bit_6_swizzle_y = swizzle_y;
737 }
738 
739 /*
740  * Swap every 64 bytes of this page around, to account for it having a new
741  * bit 17 of its physical address and therefore being interpreted differently
742  * by the GPU.
743  */
744 static void swizzle_page(struct page *page)
745 {
746 	char temp[64];
747 	char *vaddr;
748 	int i;
749 
750 	vaddr = kmap(page);
751 
752 	for (i = 0; i < PAGE_SIZE; i += 128) {
753 		memcpy(temp, &vaddr[i], 64);
754 		memcpy(&vaddr[i], &vaddr[i + 64], 64);
755 		memcpy(&vaddr[i + 64], temp, 64);
756 	}
757 
758 	kunmap(page);
759 }
760 
761 /**
762  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
763  * @obj: i915 GEM buffer object
764  * @pages: the scattergather list of physical pages
765  *
766  * This function fixes up the swizzling in case any page frame number for this
767  * object has changed in bit 17 since that state has been saved with
768  * i915_gem_object_save_bit_17_swizzle().
769  *
770  * This is called when pinning backing storage again, since the kernel is free
771  * to move unpinned backing storage around (either by directly moving pages or
772  * by swapping them out and back in again).
773  */
774 void
775 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
776 				  struct sg_table *pages)
777 {
778 	struct sgt_iter sgt_iter;
779 	struct page *page;
780 	int i;
781 
782 	if (obj->bit_17 == NULL)
783 		return;
784 
785 	i = 0;
786 	for_each_sgt_page(page, sgt_iter, pages) {
787 		char new_bit_17 = page_to_phys(page) >> 17;
788 
789 		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
790 			swizzle_page(page);
791 			set_page_dirty(page);
792 		}
793 
794 		i++;
795 	}
796 }
797 
798 /**
799  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
800  * @obj: i915 GEM buffer object
801  * @pages: the scattergather list of physical pages
802  *
803  * This function saves the bit 17 of each page frame number so that swizzling
804  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
805  * be called before the backing storage can be unpinned.
806  */
807 void
808 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
809 				    struct sg_table *pages)
810 {
811 	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
812 	struct sgt_iter sgt_iter;
813 	struct page *page;
814 	int i;
815 
816 	if (obj->bit_17 == NULL) {
817 		obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
818 		if (obj->bit_17 == NULL) {
819 			DRM_ERROR("Failed to allocate memory for bit 17 "
820 				  "record\n");
821 			return;
822 		}
823 	}
824 
825 	i = 0;
826 
827 	for_each_sgt_page(page, sgt_iter, pages) {
828 		if (page_to_phys(page) & (1 << 17))
829 			__set_bit(i, obj->bit_17);
830 		else
831 			__clear_bit(i, obj->bit_17);
832 		i++;
833 	}
834 }
835 
836 void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
837 {
838 	struct drm_i915_private *i915 = ggtt->vm.i915;
839 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
840 	int num_fences;
841 	int i;
842 
843 	INIT_LIST_HEAD(&ggtt->fence_list);
844 	INIT_LIST_HEAD(&ggtt->userfault_list);
845 
846 	detect_bit_6_swizzle(ggtt);
847 
848 	if (!i915_ggtt_has_aperture(ggtt))
849 		num_fences = 0;
850 	else if (GRAPHICS_VER(i915) >= 7 &&
851 		 !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
852 		num_fences = 32;
853 	else if (GRAPHICS_VER(i915) >= 4 ||
854 		 IS_I945G(i915) || IS_I945GM(i915) ||
855 		 IS_G33(i915) || IS_PINEVIEW(i915))
856 		num_fences = 16;
857 	else
858 		num_fences = 8;
859 
860 	if (intel_vgpu_active(i915))
861 		num_fences = intel_uncore_read(uncore,
862 					       vgtif_reg(avail_rs.fence_num));
863 	ggtt->fence_regs = kcalloc(num_fences,
864 				   sizeof(*ggtt->fence_regs),
865 				   GFP_KERNEL);
866 	if (!ggtt->fence_regs)
867 		num_fences = 0;
868 
869 	/* Initialize fence registers to zero */
870 	for (i = 0; i < num_fences; i++) {
871 		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
872 
873 		i915_active_init(&fence->active, NULL, NULL, 0);
874 		fence->ggtt = ggtt;
875 		fence->id = i;
876 		list_add_tail(&fence->link, &ggtt->fence_list);
877 	}
878 	ggtt->num_fences = num_fences;
879 
880 	intel_ggtt_restore_fences(ggtt);
881 }
882 
883 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
884 {
885 	int i;
886 
887 	for (i = 0; i < ggtt->num_fences; i++) {
888 		struct i915_fence_reg *fence = &ggtt->fence_regs[i];
889 
890 		i915_active_fini(&fence->active);
891 	}
892 
893 	kfree(ggtt->fence_regs);
894 }
895 
896 void intel_gt_init_swizzling(struct intel_gt *gt)
897 {
898 	struct drm_i915_private *i915 = gt->i915;
899 	struct intel_uncore *uncore = gt->uncore;
900 
901 	if (GRAPHICS_VER(i915) < 5 ||
902 	    to_gt(i915)->ggtt->bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
903 		return;
904 
905 	intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
906 
907 	if (GRAPHICS_VER(i915) == 5)
908 		return;
909 
910 	intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
911 
912 	if (GRAPHICS_VER(i915) == 6)
913 		intel_uncore_write(uncore,
914 				   ARB_MODE,
915 				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
916 	else if (GRAPHICS_VER(i915) == 7)
917 		intel_uncore_write(uncore,
918 				   ARB_MODE,
919 				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
920 	else if (GRAPHICS_VER(i915) == 8)
921 		intel_uncore_write(uncore,
922 				   GAMTARBMODE,
923 				   _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
924 	else
925 		MISSING_CASE(GRAPHICS_VER(i915));
926 }
927