1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/agp_backend.h> 7 #include <linux/stop_machine.h> 8 9 #include <asm/set_memory.h> 10 #include <asm/smp.h> 11 12 #include <drm/i915_drm.h> 13 #include <drm/intel-gtt.h> 14 15 #include "gem/i915_gem_lmem.h" 16 17 #include "intel_gt.h" 18 #include "intel_gt_regs.h" 19 #include "i915_drv.h" 20 #include "i915_scatterlist.h" 21 #include "i915_vgpu.h" 22 23 #include "intel_gtt.h" 24 #include "gen8_ppgtt.h" 25 26 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 27 unsigned long color, 28 u64 *start, 29 u64 *end) 30 { 31 if (i915_node_color_differs(node, color)) 32 *start += I915_GTT_PAGE_SIZE; 33 34 /* 35 * Also leave a space between the unallocated reserved node after the 36 * GTT and any objects within the GTT, i.e. we use the color adjustment 37 * to insert a guard page to prevent prefetches crossing over the 38 * GTT boundary. 39 */ 40 node = list_next_entry(node, node_list); 41 if (node->color != color) 42 *end -= I915_GTT_PAGE_SIZE; 43 } 44 45 static int ggtt_init_hw(struct i915_ggtt *ggtt) 46 { 47 struct drm_i915_private *i915 = ggtt->vm.i915; 48 49 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 50 51 ggtt->vm.is_ggtt = true; 52 53 /* Only VLV supports read-only GGTT mappings */ 54 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 55 56 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 57 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 58 59 if (ggtt->mappable_end) { 60 if (!io_mapping_init_wc(&ggtt->iomap, 61 ggtt->gmadr.start, 62 ggtt->mappable_end)) { 63 ggtt->vm.cleanup(&ggtt->vm); 64 return -EIO; 65 } 66 67 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 68 ggtt->mappable_end); 69 } 70 71 intel_ggtt_init_fences(ggtt); 72 73 return 0; 74 } 75 76 /** 77 * i915_ggtt_init_hw - Initialize GGTT hardware 78 * @i915: i915 device 79 */ 80 int i915_ggtt_init_hw(struct drm_i915_private *i915) 81 { 82 int ret; 83 84 /* 85 * Note that we use page colouring to enforce a guard page at the 86 * end of the address space. This is required as the CS may prefetch 87 * beyond the end of the batch buffer, across the page boundary, 88 * and beyond the end of the GTT if we do not provide a guard. 89 */ 90 ret = ggtt_init_hw(to_gt(i915)->ggtt); 91 if (ret) 92 return ret; 93 94 return 0; 95 } 96 97 /* 98 * Certain Gen5 chipsets require idling the GPU before 99 * unmapping anything from the GTT when VT-d is enabled. 100 */ 101 static bool needs_idle_maps(struct drm_i915_private *i915) 102 { 103 /* 104 * Query intel_iommu to see if we need the workaround. Presumably that 105 * was loaded first. 106 */ 107 if (!intel_vtd_active(i915)) 108 return false; 109 110 if (GRAPHICS_VER(i915) == 5 && IS_MOBILE(i915)) 111 return true; 112 113 if (GRAPHICS_VER(i915) == 12) 114 return true; /* XXX DMAR fault reason 7 */ 115 116 return false; 117 } 118 119 /** 120 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 121 * @vm: The VM to suspend the mappings for 122 * 123 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 124 * DPT page table. 125 */ 126 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 127 { 128 struct i915_vma *vma, *vn; 129 int open; 130 131 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 132 133 retry: 134 i915_gem_drain_freed_objects(vm->i915); 135 136 mutex_lock(&vm->mutex); 137 138 /* Skip rewriting PTE on VMA unbind. */ 139 open = atomic_xchg(&vm->open, 0); 140 141 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 142 struct drm_i915_gem_object *obj = vma->obj; 143 144 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 145 146 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 147 continue; 148 149 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 150 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 151 /* 152 * No dead objects should appear here, GPU should be 153 * completely idle, and userspace suspended 154 */ 155 i915_gem_object_get(obj); 156 157 atomic_set(&vm->open, open); 158 mutex_unlock(&vm->mutex); 159 160 i915_gem_object_lock(obj, NULL); 161 open = i915_vma_unbind(vma); 162 i915_gem_object_unlock(obj); 163 164 GEM_WARN_ON(open); 165 166 i915_gem_object_put(obj); 167 goto retry; 168 } 169 170 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 171 i915_vma_wait_for_bind(vma); 172 173 __i915_vma_evict(vma, false); 174 drm_mm_remove_node(&vma->node); 175 } 176 177 i915_gem_object_unlock(obj); 178 } 179 180 vm->clear_range(vm, 0, vm->total); 181 182 atomic_set(&vm->open, open); 183 184 mutex_unlock(&vm->mutex); 185 } 186 187 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 188 { 189 i915_ggtt_suspend_vm(&ggtt->vm); 190 ggtt->invalidate(ggtt); 191 192 intel_gt_check_and_clear_faults(ggtt->vm.gt); 193 } 194 195 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 196 { 197 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 198 199 spin_lock_irq(&uncore->lock); 200 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 201 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 202 spin_unlock_irq(&uncore->lock); 203 } 204 205 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 206 { 207 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 208 209 /* 210 * Note that as an uncached mmio write, this will flush the 211 * WCB of the writes into the GGTT before it triggers the invalidate. 212 */ 213 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 214 } 215 216 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 217 { 218 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 219 struct drm_i915_private *i915 = ggtt->vm.i915; 220 221 gen8_ggtt_invalidate(ggtt); 222 223 if (GRAPHICS_VER(i915) >= 12) 224 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR, 225 GEN12_GUC_TLB_INV_CR_INVALIDATE); 226 else 227 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); 228 } 229 230 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt) 231 { 232 intel_gtt_chipset_flush(); 233 } 234 235 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 236 enum i915_cache_level level, 237 u32 flags) 238 { 239 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 240 241 if (flags & PTE_LM) 242 pte |= GEN12_GGTT_PTE_LM; 243 244 return pte; 245 } 246 247 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 248 { 249 writeq(pte, addr); 250 } 251 252 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 253 dma_addr_t addr, 254 u64 offset, 255 enum i915_cache_level level, 256 u32 flags) 257 { 258 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 259 gen8_pte_t __iomem *pte = 260 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 261 262 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags)); 263 264 ggtt->invalidate(ggtt); 265 } 266 267 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 268 struct i915_vma_resource *vma_res, 269 enum i915_cache_level level, 270 u32 flags) 271 { 272 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags); 273 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 274 gen8_pte_t __iomem *gte; 275 gen8_pte_t __iomem *end; 276 struct sgt_iter iter; 277 dma_addr_t addr; 278 279 /* 280 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 281 * not to allow the user to override access to a read only page. 282 */ 283 284 gte = (gen8_pte_t __iomem *)ggtt->gsm; 285 gte += vma_res->start / I915_GTT_PAGE_SIZE; 286 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE; 287 288 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 289 gen8_set_pte(gte++, pte_encode | addr); 290 GEM_BUG_ON(gte > end); 291 292 /* Fill the allocated but "unused" space beyond the end of the buffer */ 293 while (gte < end) 294 gen8_set_pte(gte++, vm->scratch[0]->encode); 295 296 /* 297 * We want to flush the TLBs only after we're certain all the PTE 298 * updates have finished. 299 */ 300 ggtt->invalidate(ggtt); 301 } 302 303 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 304 dma_addr_t addr, 305 u64 offset, 306 enum i915_cache_level level, 307 u32 flags) 308 { 309 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 310 gen6_pte_t __iomem *pte = 311 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 312 313 iowrite32(vm->pte_encode(addr, level, flags), pte); 314 315 ggtt->invalidate(ggtt); 316 } 317 318 /* 319 * Binds an object into the global gtt with the specified cache level. 320 * The object will be accessible to the GPU via commands whose operands 321 * reference offsets within the global GTT as well as accessible by the GPU 322 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 323 */ 324 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 325 struct i915_vma_resource *vma_res, 326 enum i915_cache_level level, 327 u32 flags) 328 { 329 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 330 gen6_pte_t __iomem *gte; 331 gen6_pte_t __iomem *end; 332 struct sgt_iter iter; 333 dma_addr_t addr; 334 335 gte = (gen6_pte_t __iomem *)ggtt->gsm; 336 gte += vma_res->start / I915_GTT_PAGE_SIZE; 337 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE; 338 339 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 340 iowrite32(vm->pte_encode(addr, level, flags), gte++); 341 GEM_BUG_ON(gte > end); 342 343 /* Fill the allocated but "unused" space beyond the end of the buffer */ 344 while (gte < end) 345 iowrite32(vm->scratch[0]->encode, gte++); 346 347 /* 348 * We want to flush the TLBs only after we're certain all the PTE 349 * updates have finished. 350 */ 351 ggtt->invalidate(ggtt); 352 } 353 354 static void nop_clear_range(struct i915_address_space *vm, 355 u64 start, u64 length) 356 { 357 } 358 359 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 360 u64 start, u64 length) 361 { 362 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 363 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 364 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 365 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 366 gen8_pte_t __iomem *gtt_base = 367 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 368 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 369 int i; 370 371 if (WARN(num_entries > max_entries, 372 "First entry = %d; Num entries = %d (max=%d)\n", 373 first_entry, num_entries, max_entries)) 374 num_entries = max_entries; 375 376 for (i = 0; i < num_entries; i++) 377 gen8_set_pte(>t_base[i], scratch_pte); 378 } 379 380 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 381 { 382 /* 383 * Make sure the internal GAM fifo has been cleared of all GTT 384 * writes before exiting stop_machine(). This guarantees that 385 * any aperture accesses waiting to start in another process 386 * cannot back up behind the GTT writes causing a hang. 387 * The register can be any arbitrary GAM register. 388 */ 389 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 390 } 391 392 struct insert_page { 393 struct i915_address_space *vm; 394 dma_addr_t addr; 395 u64 offset; 396 enum i915_cache_level level; 397 }; 398 399 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 400 { 401 struct insert_page *arg = _arg; 402 403 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 404 bxt_vtd_ggtt_wa(arg->vm); 405 406 return 0; 407 } 408 409 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 410 dma_addr_t addr, 411 u64 offset, 412 enum i915_cache_level level, 413 u32 unused) 414 { 415 struct insert_page arg = { vm, addr, offset, level }; 416 417 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 418 } 419 420 struct insert_entries { 421 struct i915_address_space *vm; 422 struct i915_vma_resource *vma_res; 423 enum i915_cache_level level; 424 u32 flags; 425 }; 426 427 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 428 { 429 struct insert_entries *arg = _arg; 430 431 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags); 432 bxt_vtd_ggtt_wa(arg->vm); 433 434 return 0; 435 } 436 437 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 438 struct i915_vma_resource *vma_res, 439 enum i915_cache_level level, 440 u32 flags) 441 { 442 struct insert_entries arg = { vm, vma_res, level, flags }; 443 444 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 445 } 446 447 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 448 u64 start, u64 length) 449 { 450 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 451 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 452 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 453 gen6_pte_t scratch_pte, __iomem *gtt_base = 454 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 455 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 456 int i; 457 458 if (WARN(num_entries > max_entries, 459 "First entry = %d; Num entries = %d (max=%d)\n", 460 first_entry, num_entries, max_entries)) 461 num_entries = max_entries; 462 463 scratch_pte = vm->scratch[0]->encode; 464 for (i = 0; i < num_entries; i++) 465 iowrite32(scratch_pte, >t_base[i]); 466 } 467 468 static void i915_ggtt_insert_page(struct i915_address_space *vm, 469 dma_addr_t addr, 470 u64 offset, 471 enum i915_cache_level cache_level, 472 u32 unused) 473 { 474 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 475 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 476 477 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 478 } 479 480 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 481 struct i915_vma_resource *vma_res, 482 enum i915_cache_level cache_level, 483 u32 unused) 484 { 485 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 486 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 487 488 intel_gtt_insert_sg_entries(vma_res->bi.pages, vma_res->start >> PAGE_SHIFT, 489 flags); 490 } 491 492 static void i915_ggtt_clear_range(struct i915_address_space *vm, 493 u64 start, u64 length) 494 { 495 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 496 } 497 498 static void ggtt_bind_vma(struct i915_address_space *vm, 499 struct i915_vm_pt_stash *stash, 500 struct i915_vma_resource *vma_res, 501 enum i915_cache_level cache_level, 502 u32 flags) 503 { 504 u32 pte_flags; 505 506 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 507 return; 508 509 vma_res->bound_flags |= flags; 510 511 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 512 pte_flags = 0; 513 if (vma_res->bi.readonly) 514 pte_flags |= PTE_READ_ONLY; 515 if (vma_res->bi.lmem) 516 pte_flags |= PTE_LM; 517 518 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 519 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 520 } 521 522 static void ggtt_unbind_vma(struct i915_address_space *vm, 523 struct i915_vma_resource *vma_res) 524 { 525 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 526 } 527 528 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 529 { 530 u64 size; 531 int ret; 532 533 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 534 return 0; 535 536 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 537 size = ggtt->vm.total - GUC_GGTT_TOP; 538 539 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size, 540 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 541 PIN_NOEVICT); 542 if (ret) 543 drm_dbg(&ggtt->vm.i915->drm, 544 "Failed to reserve top of GGTT for GuC\n"); 545 546 return ret; 547 } 548 549 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 550 { 551 if (drm_mm_node_allocated(&ggtt->uc_fw)) 552 drm_mm_remove_node(&ggtt->uc_fw); 553 } 554 555 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 556 { 557 ggtt_release_guc_top(ggtt); 558 if (drm_mm_node_allocated(&ggtt->error_capture)) 559 drm_mm_remove_node(&ggtt->error_capture); 560 mutex_destroy(&ggtt->error_mutex); 561 } 562 563 static int init_ggtt(struct i915_ggtt *ggtt) 564 { 565 /* 566 * Let GEM Manage all of the aperture. 567 * 568 * However, leave one page at the end still bound to the scratch page. 569 * There are a number of places where the hardware apparently prefetches 570 * past the end of the object, and we've seen multiple hangs with the 571 * GPU head pointer stuck in a batchbuffer bound at the last page of the 572 * aperture. One page should be enough to keep any prefetching inside 573 * of the aperture. 574 */ 575 unsigned long hole_start, hole_end; 576 struct drm_mm_node *entry; 577 int ret; 578 579 /* 580 * GuC requires all resources that we're sharing with it to be placed in 581 * non-WOPCM memory. If GuC is not present or not in use we still need a 582 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 583 * why. 584 */ 585 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 586 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm)); 587 588 ret = intel_vgt_balloon(ggtt); 589 if (ret) 590 return ret; 591 592 mutex_init(&ggtt->error_mutex); 593 if (ggtt->mappable_end) { 594 /* 595 * Reserve a mappable slot for our lockless error capture. 596 * 597 * We strongly prefer taking address 0x0 in order to protect 598 * other critical buffers against accidental overwrites, 599 * as writing to address 0 is a very common mistake. 600 * 601 * Since 0 may already be in use by the system (e.g. the BIOS 602 * framebuffer), we let the reservation fail quietly and hope 603 * 0 remains reserved always. 604 * 605 * If we fail to reserve 0, and then fail to find any space 606 * for an error-capture, remain silent. We can afford not 607 * to reserve an error_capture node as we have fallback 608 * paths, and we trust that 0 will remain reserved. However, 609 * the only likely reason for failure to insert is a driver 610 * bug, which we expect to cause other failures... 611 */ 612 ggtt->error_capture.size = I915_GTT_PAGE_SIZE; 613 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 614 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 615 drm_mm_insert_node_in_range(&ggtt->vm.mm, 616 &ggtt->error_capture, 617 ggtt->error_capture.size, 0, 618 ggtt->error_capture.color, 619 0, ggtt->mappable_end, 620 DRM_MM_INSERT_LOW); 621 } 622 if (drm_mm_node_allocated(&ggtt->error_capture)) 623 drm_dbg(&ggtt->vm.i915->drm, 624 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 625 ggtt->error_capture.start, 626 ggtt->error_capture.start + ggtt->error_capture.size); 627 628 /* 629 * The upper portion of the GuC address space has a sizeable hole 630 * (several MB) that is inaccessible by GuC. Reserve this range within 631 * GGTT as it can comfortably hold GuC/HuC firmware images. 632 */ 633 ret = ggtt_reserve_guc_top(ggtt); 634 if (ret) 635 goto err; 636 637 /* Clear any non-preallocated blocks */ 638 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 639 drm_dbg(&ggtt->vm.i915->drm, 640 "clearing unused GTT space: [%lx, %lx]\n", 641 hole_start, hole_end); 642 ggtt->vm.clear_range(&ggtt->vm, hole_start, 643 hole_end - hole_start); 644 } 645 646 /* And finally clear the reserved guard page */ 647 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 648 649 return 0; 650 651 err: 652 cleanup_init_ggtt(ggtt); 653 return ret; 654 } 655 656 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 657 struct i915_vm_pt_stash *stash, 658 struct i915_vma_resource *vma_res, 659 enum i915_cache_level cache_level, 660 u32 flags) 661 { 662 u32 pte_flags; 663 664 /* Currently applicable only to VLV */ 665 pte_flags = 0; 666 if (vma_res->bi.readonly) 667 pte_flags |= PTE_READ_ONLY; 668 669 if (flags & I915_VMA_LOCAL_BIND) 670 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 671 stash, vma_res, cache_level, flags); 672 673 if (flags & I915_VMA_GLOBAL_BIND) 674 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 675 676 vma_res->bound_flags |= flags; 677 } 678 679 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 680 struct i915_vma_resource *vma_res) 681 { 682 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 683 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 684 685 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 686 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 687 } 688 689 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 690 { 691 struct i915_vm_pt_stash stash = {}; 692 struct i915_ppgtt *ppgtt; 693 int err; 694 695 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 696 if (IS_ERR(ppgtt)) 697 return PTR_ERR(ppgtt); 698 699 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 700 err = -ENODEV; 701 goto err_ppgtt; 702 } 703 704 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 705 if (err) 706 goto err_ppgtt; 707 708 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 709 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 710 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 711 if (err) 712 goto err_stash; 713 714 /* 715 * Note we only pre-allocate as far as the end of the global 716 * GTT. On 48b / 4-level page-tables, the difference is very, 717 * very significant! We have to preallocate as GVT/vgpu does 718 * not like the page directory disappearing. 719 */ 720 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 721 722 ggtt->alias = ppgtt; 723 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 724 725 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); 726 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 727 728 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); 729 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 730 731 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 732 return 0; 733 734 err_stash: 735 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 736 err_ppgtt: 737 i915_vm_put(&ppgtt->vm); 738 return err; 739 } 740 741 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 742 { 743 struct i915_ppgtt *ppgtt; 744 745 ppgtt = fetch_and_zero(&ggtt->alias); 746 if (!ppgtt) 747 return; 748 749 i915_vm_put(&ppgtt->vm); 750 751 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 752 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 753 } 754 755 int i915_init_ggtt(struct drm_i915_private *i915) 756 { 757 int ret; 758 759 ret = init_ggtt(to_gt(i915)->ggtt); 760 if (ret) 761 return ret; 762 763 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 764 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 765 if (ret) 766 cleanup_init_ggtt(to_gt(i915)->ggtt); 767 } 768 769 return 0; 770 } 771 772 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 773 { 774 struct i915_vma *vma, *vn; 775 776 atomic_set(&ggtt->vm.open, 0); 777 778 flush_workqueue(ggtt->vm.i915->wq); 779 i915_gem_drain_freed_objects(ggtt->vm.i915); 780 781 mutex_lock(&ggtt->vm.mutex); 782 783 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 784 struct drm_i915_gem_object *obj = vma->obj; 785 bool trylock; 786 787 trylock = i915_gem_object_trylock(obj, NULL); 788 WARN_ON(!trylock); 789 790 WARN_ON(__i915_vma_unbind(vma)); 791 if (trylock) 792 i915_gem_object_unlock(obj); 793 } 794 795 if (drm_mm_node_allocated(&ggtt->error_capture)) 796 drm_mm_remove_node(&ggtt->error_capture); 797 mutex_destroy(&ggtt->error_mutex); 798 799 ggtt_release_guc_top(ggtt); 800 intel_vgt_deballoon(ggtt); 801 802 ggtt->vm.cleanup(&ggtt->vm); 803 804 mutex_unlock(&ggtt->vm.mutex); 805 i915_address_space_fini(&ggtt->vm); 806 807 arch_phys_wc_del(ggtt->mtrr); 808 809 if (ggtt->iomap.size) 810 io_mapping_fini(&ggtt->iomap); 811 } 812 813 /** 814 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 815 * @i915: i915 device 816 */ 817 void i915_ggtt_driver_release(struct drm_i915_private *i915) 818 { 819 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 820 821 fini_aliasing_ppgtt(ggtt); 822 823 intel_ggtt_fini_fences(ggtt); 824 ggtt_cleanup_hw(ggtt); 825 } 826 827 /** 828 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 829 * all free objects have been drained. 830 * @i915: i915 device 831 */ 832 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 833 { 834 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 835 836 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 837 dma_resv_fini(&ggtt->vm._resv); 838 } 839 840 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 841 { 842 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 843 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 844 return snb_gmch_ctl << 20; 845 } 846 847 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 848 { 849 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 850 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 851 if (bdw_gmch_ctl) 852 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 853 854 #ifdef CONFIG_X86_32 855 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 856 if (bdw_gmch_ctl > 4) 857 bdw_gmch_ctl = 4; 858 #endif 859 860 return bdw_gmch_ctl << 20; 861 } 862 863 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 864 { 865 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 866 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 867 868 if (gmch_ctrl) 869 return 1 << (20 + gmch_ctrl); 870 871 return 0; 872 } 873 874 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 875 { 876 /* 877 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 878 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 879 */ 880 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 881 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 882 } 883 884 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 885 { 886 return gen6_gttmmadr_size(i915) / 2; 887 } 888 889 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 890 { 891 struct drm_i915_private *i915 = ggtt->vm.i915; 892 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 893 phys_addr_t phys_addr; 894 u32 pte_flags; 895 int ret; 896 897 GEM_WARN_ON(pci_resource_len(pdev, 0) != gen6_gttmmadr_size(i915)); 898 phys_addr = pci_resource_start(pdev, 0) + gen6_gttadr_offset(i915); 899 900 /* 901 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 902 * will be dropped. For WC mappings in general we have 64 byte burst 903 * writes when the WC buffer is flushed, so we can't use it, but have to 904 * resort to an uncached mapping. The WC issue is easily caught by the 905 * readback check when writing GTT PTE entries. 906 */ 907 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 908 ggtt->gsm = ioremap(phys_addr, size); 909 else 910 ggtt->gsm = ioremap_wc(phys_addr, size); 911 if (!ggtt->gsm) { 912 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 913 return -ENOMEM; 914 } 915 916 kref_init(&ggtt->vm.resv_ref); 917 ret = setup_scratch_page(&ggtt->vm); 918 if (ret) { 919 drm_err(&i915->drm, "Scratch setup failed\n"); 920 /* iounmap will also get called at remove, but meh */ 921 iounmap(ggtt->gsm); 922 return ret; 923 } 924 925 pte_flags = 0; 926 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 927 pte_flags |= PTE_LM; 928 929 ggtt->vm.scratch[0]->encode = 930 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 931 I915_CACHE_NONE, pte_flags); 932 933 return 0; 934 } 935 936 static void gen6_gmch_remove(struct i915_address_space *vm) 937 { 938 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 939 940 iounmap(ggtt->gsm); 941 free_scratch(vm); 942 } 943 944 static struct resource pci_resource(struct pci_dev *pdev, int bar) 945 { 946 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar), 947 pci_resource_len(pdev, bar)); 948 } 949 950 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 951 { 952 struct drm_i915_private *i915 = ggtt->vm.i915; 953 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 954 unsigned int size; 955 u16 snb_gmch_ctl; 956 957 /* TODO: We're not aware of mappable constraints on gen8 yet */ 958 if (!HAS_LMEM(i915)) { 959 ggtt->gmadr = pci_resource(pdev, 2); 960 ggtt->mappable_end = resource_size(&ggtt->gmadr); 961 } 962 963 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 964 if (IS_CHERRYVIEW(i915)) 965 size = chv_get_total_gtt_size(snb_gmch_ctl); 966 else 967 size = gen8_get_total_gtt_size(snb_gmch_ctl); 968 969 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 970 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 971 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 972 973 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 974 ggtt->vm.cleanup = gen6_gmch_remove; 975 ggtt->vm.insert_page = gen8_ggtt_insert_page; 976 ggtt->vm.clear_range = nop_clear_range; 977 if (intel_scanout_needs_vtd_wa(i915)) 978 ggtt->vm.clear_range = gen8_ggtt_clear_range; 979 980 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 981 982 /* 983 * Serialize GTT updates with aperture access on BXT if VT-d is on, 984 * and always on CHV. 985 */ 986 if (intel_vm_no_concurrent_access_wa(i915)) { 987 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 988 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 989 ggtt->vm.bind_async_flags = 990 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 991 } 992 993 ggtt->invalidate = gen8_ggtt_invalidate; 994 995 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 996 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 997 998 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 999 1000 setup_private_pat(ggtt->vm.gt->uncore); 1001 1002 return ggtt_probe_common(ggtt, size); 1003 } 1004 1005 static u64 snb_pte_encode(dma_addr_t addr, 1006 enum i915_cache_level level, 1007 u32 flags) 1008 { 1009 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1010 1011 switch (level) { 1012 case I915_CACHE_L3_LLC: 1013 case I915_CACHE_LLC: 1014 pte |= GEN6_PTE_CACHE_LLC; 1015 break; 1016 case I915_CACHE_NONE: 1017 pte |= GEN6_PTE_UNCACHED; 1018 break; 1019 default: 1020 MISSING_CASE(level); 1021 } 1022 1023 return pte; 1024 } 1025 1026 static u64 ivb_pte_encode(dma_addr_t addr, 1027 enum i915_cache_level level, 1028 u32 flags) 1029 { 1030 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1031 1032 switch (level) { 1033 case I915_CACHE_L3_LLC: 1034 pte |= GEN7_PTE_CACHE_L3_LLC; 1035 break; 1036 case I915_CACHE_LLC: 1037 pte |= GEN6_PTE_CACHE_LLC; 1038 break; 1039 case I915_CACHE_NONE: 1040 pte |= GEN6_PTE_UNCACHED; 1041 break; 1042 default: 1043 MISSING_CASE(level); 1044 } 1045 1046 return pte; 1047 } 1048 1049 static u64 byt_pte_encode(dma_addr_t addr, 1050 enum i915_cache_level level, 1051 u32 flags) 1052 { 1053 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1054 1055 if (!(flags & PTE_READ_ONLY)) 1056 pte |= BYT_PTE_WRITEABLE; 1057 1058 if (level != I915_CACHE_NONE) 1059 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1060 1061 return pte; 1062 } 1063 1064 static u64 hsw_pte_encode(dma_addr_t addr, 1065 enum i915_cache_level level, 1066 u32 flags) 1067 { 1068 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1069 1070 if (level != I915_CACHE_NONE) 1071 pte |= HSW_WB_LLC_AGE3; 1072 1073 return pte; 1074 } 1075 1076 static u64 iris_pte_encode(dma_addr_t addr, 1077 enum i915_cache_level level, 1078 u32 flags) 1079 { 1080 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1081 1082 switch (level) { 1083 case I915_CACHE_NONE: 1084 break; 1085 case I915_CACHE_WT: 1086 pte |= HSW_WT_ELLC_LLC_AGE3; 1087 break; 1088 default: 1089 pte |= HSW_WB_ELLC_LLC_AGE3; 1090 break; 1091 } 1092 1093 return pte; 1094 } 1095 1096 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1097 { 1098 struct drm_i915_private *i915 = ggtt->vm.i915; 1099 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1100 unsigned int size; 1101 u16 snb_gmch_ctl; 1102 1103 ggtt->gmadr = pci_resource(pdev, 2); 1104 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1105 1106 /* 1107 * 64/512MB is the current min/max we actually know of, but this is 1108 * just a coarse sanity check. 1109 */ 1110 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 1111 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1112 &ggtt->mappable_end); 1113 return -ENXIO; 1114 } 1115 1116 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1117 1118 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1119 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1120 1121 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1122 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1123 1124 ggtt->vm.clear_range = nop_clear_range; 1125 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915)) 1126 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1127 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1128 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1129 ggtt->vm.cleanup = gen6_gmch_remove; 1130 1131 ggtt->invalidate = gen6_ggtt_invalidate; 1132 1133 if (HAS_EDRAM(i915)) 1134 ggtt->vm.pte_encode = iris_pte_encode; 1135 else if (IS_HASWELL(i915)) 1136 ggtt->vm.pte_encode = hsw_pte_encode; 1137 else if (IS_VALLEYVIEW(i915)) 1138 ggtt->vm.pte_encode = byt_pte_encode; 1139 else if (GRAPHICS_VER(i915) >= 7) 1140 ggtt->vm.pte_encode = ivb_pte_encode; 1141 else 1142 ggtt->vm.pte_encode = snb_pte_encode; 1143 1144 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 1145 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 1146 1147 return ggtt_probe_common(ggtt, size); 1148 } 1149 1150 static void i915_gmch_remove(struct i915_address_space *vm) 1151 { 1152 intel_gmch_remove(); 1153 } 1154 1155 static int i915_gmch_probe(struct i915_ggtt *ggtt) 1156 { 1157 struct drm_i915_private *i915 = ggtt->vm.i915; 1158 phys_addr_t gmadr_base; 1159 int ret; 1160 1161 ret = intel_gmch_probe(i915->bridge_dev, to_pci_dev(i915->drm.dev), NULL); 1162 if (!ret) { 1163 drm_err(&i915->drm, "failed to set up gmch\n"); 1164 return -EIO; 1165 } 1166 1167 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); 1168 1169 ggtt->gmadr = 1170 (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end); 1171 1172 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1173 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1174 1175 if (needs_idle_maps(i915)) { 1176 drm_notice(&i915->drm, 1177 "Flushing DMA requests before IOMMU unmaps; performance may be degraded\n"); 1178 ggtt->do_idle_maps = true; 1179 } 1180 1181 ggtt->vm.insert_page = i915_ggtt_insert_page; 1182 ggtt->vm.insert_entries = i915_ggtt_insert_entries; 1183 ggtt->vm.clear_range = i915_ggtt_clear_range; 1184 ggtt->vm.cleanup = i915_gmch_remove; 1185 1186 ggtt->invalidate = gmch_ggtt_invalidate; 1187 1188 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 1189 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 1190 1191 if (unlikely(ggtt->do_idle_maps)) 1192 drm_notice(&i915->drm, 1193 "Applying Ironlake quirks for intel_iommu\n"); 1194 1195 return 0; 1196 } 1197 1198 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1199 { 1200 struct drm_i915_private *i915 = gt->i915; 1201 int ret; 1202 1203 ggtt->vm.gt = gt; 1204 ggtt->vm.i915 = i915; 1205 ggtt->vm.dma = i915->drm.dev; 1206 dma_resv_init(&ggtt->vm._resv); 1207 1208 if (GRAPHICS_VER(i915) <= 5) 1209 ret = i915_gmch_probe(ggtt); 1210 else if (GRAPHICS_VER(i915) < 8) 1211 ret = gen6_gmch_probe(ggtt); 1212 else 1213 ret = gen8_gmch_probe(ggtt); 1214 if (ret) { 1215 dma_resv_fini(&ggtt->vm._resv); 1216 return ret; 1217 } 1218 1219 if ((ggtt->vm.total - 1) >> 32) { 1220 drm_err(&i915->drm, 1221 "We never expected a Global GTT with more than 32bits" 1222 " of address space! Found %lldM!\n", 1223 ggtt->vm.total >> 20); 1224 ggtt->vm.total = 1ULL << 32; 1225 ggtt->mappable_end = 1226 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1227 } 1228 1229 if (ggtt->mappable_end > ggtt->vm.total) { 1230 drm_err(&i915->drm, 1231 "mappable aperture extends past end of GGTT," 1232 " aperture=%pa, total=%llx\n", 1233 &ggtt->mappable_end, ggtt->vm.total); 1234 ggtt->mappable_end = ggtt->vm.total; 1235 } 1236 1237 /* GMADR is the PCI mmio aperture into the global GTT. */ 1238 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1239 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1240 (u64)ggtt->mappable_end >> 20); 1241 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1242 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1243 1244 return 0; 1245 } 1246 1247 /** 1248 * i915_ggtt_probe_hw - Probe GGTT hardware location 1249 * @i915: i915 device 1250 */ 1251 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1252 { 1253 int ret; 1254 1255 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1256 if (ret) 1257 return ret; 1258 1259 if (intel_vtd_active(i915)) 1260 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1261 1262 return 0; 1263 } 1264 1265 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1266 { 1267 if (GRAPHICS_VER(i915) < 6 && !intel_enable_gtt()) 1268 return -EIO; 1269 1270 return 0; 1271 } 1272 1273 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt) 1274 { 1275 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate); 1276 1277 ggtt->invalidate = guc_ggtt_invalidate; 1278 1279 ggtt->invalidate(ggtt); 1280 } 1281 1282 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt) 1283 { 1284 /* XXX Temporary pardon for error unload */ 1285 if (ggtt->invalidate == gen8_ggtt_invalidate) 1286 return; 1287 1288 /* We should only be called after i915_ggtt_enable_guc() */ 1289 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate); 1290 1291 ggtt->invalidate = gen8_ggtt_invalidate; 1292 1293 ggtt->invalidate(ggtt); 1294 } 1295 1296 /** 1297 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1298 * @vm: The VM to restore the mappings for 1299 * 1300 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1301 * DPT page table. 1302 * 1303 * Returns %true if restoring the mapping for any object that was in a write 1304 * domain before suspend. 1305 */ 1306 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1307 { 1308 struct i915_vma *vma; 1309 bool write_domain_objs = false; 1310 int open; 1311 1312 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1313 1314 /* First fill our portion of the GTT with scratch pages */ 1315 vm->clear_range(vm, 0, vm->total); 1316 1317 /* Skip rewriting PTE on VMA unbind. */ 1318 open = atomic_xchg(&vm->open, 0); 1319 1320 /* clflush objects bound into the GGTT and rebind them. */ 1321 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1322 struct drm_i915_gem_object *obj = vma->obj; 1323 unsigned int was_bound = 1324 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1325 1326 GEM_BUG_ON(!was_bound); 1327 vma->ops->bind_vma(vm, NULL, vma->resource, 1328 obj ? obj->cache_level : 0, 1329 was_bound); 1330 if (obj) { /* only used during resume => exclusive access */ 1331 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1332 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1333 } 1334 } 1335 1336 atomic_set(&vm->open, open); 1337 1338 return write_domain_objs; 1339 } 1340 1341 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1342 { 1343 bool flush; 1344 1345 intel_gt_check_and_clear_faults(ggtt->vm.gt); 1346 1347 flush = i915_ggtt_resume_vm(&ggtt->vm); 1348 1349 ggtt->invalidate(ggtt); 1350 1351 if (flush) 1352 wbinvd_on_all_cpus(); 1353 1354 if (GRAPHICS_VER(ggtt->vm.i915) >= 8) 1355 setup_private_pat(ggtt->vm.gt->uncore); 1356 1357 intel_ggtt_restore_fences(ggtt); 1358 } 1359