1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <asm/set_memory.h> 7 #include <asm/smp.h> 8 #include <linux/types.h> 9 #include <linux/stop_machine.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/i915_drm.h> 13 #include <drm/intel-gtt.h> 14 15 #include "display/intel_display.h" 16 #include "gem/i915_gem_lmem.h" 17 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gt.h" 20 #include "intel_gt_regs.h" 21 #include "intel_pci_config.h" 22 #include "i915_drv.h" 23 #include "i915_pci.h" 24 #include "i915_scatterlist.h" 25 #include "i915_utils.h" 26 #include "i915_vgpu.h" 27 28 #include "intel_gtt.h" 29 #include "gen8_ppgtt.h" 30 31 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 32 unsigned long color, 33 u64 *start, 34 u64 *end) 35 { 36 if (i915_node_color_differs(node, color)) 37 *start += I915_GTT_PAGE_SIZE; 38 39 /* 40 * Also leave a space between the unallocated reserved node after the 41 * GTT and any objects within the GTT, i.e. we use the color adjustment 42 * to insert a guard page to prevent prefetches crossing over the 43 * GTT boundary. 44 */ 45 node = list_next_entry(node, node_list); 46 if (node->color != color) 47 *end -= I915_GTT_PAGE_SIZE; 48 } 49 50 static int ggtt_init_hw(struct i915_ggtt *ggtt) 51 { 52 struct drm_i915_private *i915 = ggtt->vm.i915; 53 54 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 55 56 ggtt->vm.is_ggtt = true; 57 58 /* Only VLV supports read-only GGTT mappings */ 59 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 60 61 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 62 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 63 64 if (ggtt->mappable_end) { 65 if (!io_mapping_init_wc(&ggtt->iomap, 66 ggtt->gmadr.start, 67 ggtt->mappable_end)) { 68 ggtt->vm.cleanup(&ggtt->vm); 69 return -EIO; 70 } 71 72 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 73 ggtt->mappable_end); 74 } 75 76 intel_ggtt_init_fences(ggtt); 77 78 return 0; 79 } 80 81 /** 82 * i915_ggtt_init_hw - Initialize GGTT hardware 83 * @i915: i915 device 84 */ 85 int i915_ggtt_init_hw(struct drm_i915_private *i915) 86 { 87 int ret; 88 89 /* 90 * Note that we use page colouring to enforce a guard page at the 91 * end of the address space. This is required as the CS may prefetch 92 * beyond the end of the batch buffer, across the page boundary, 93 * and beyond the end of the GTT if we do not provide a guard. 94 */ 95 ret = ggtt_init_hw(to_gt(i915)->ggtt); 96 if (ret) 97 return ret; 98 99 return 0; 100 } 101 102 /** 103 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 104 * @vm: The VM to suspend the mappings for 105 * 106 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 107 * DPT page table. 108 */ 109 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 110 { 111 struct i915_vma *vma, *vn; 112 int save_skip_rewrite; 113 114 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 115 116 retry: 117 i915_gem_drain_freed_objects(vm->i915); 118 119 mutex_lock(&vm->mutex); 120 121 /* 122 * Skip rewriting PTE on VMA unbind. 123 * FIXME: Use an argument to i915_vma_unbind() instead? 124 */ 125 save_skip_rewrite = vm->skip_pte_rewrite; 126 vm->skip_pte_rewrite = true; 127 128 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 129 struct drm_i915_gem_object *obj = vma->obj; 130 131 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 132 133 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 134 continue; 135 136 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 137 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 138 /* 139 * No dead objects should appear here, GPU should be 140 * completely idle, and userspace suspended 141 */ 142 i915_gem_object_get(obj); 143 144 mutex_unlock(&vm->mutex); 145 146 i915_gem_object_lock(obj, NULL); 147 GEM_WARN_ON(i915_vma_unbind(vma)); 148 i915_gem_object_unlock(obj); 149 i915_gem_object_put(obj); 150 151 vm->skip_pte_rewrite = save_skip_rewrite; 152 goto retry; 153 } 154 155 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 156 i915_vma_wait_for_bind(vma); 157 158 __i915_vma_evict(vma, false); 159 drm_mm_remove_node(&vma->node); 160 } 161 162 i915_gem_object_unlock(obj); 163 } 164 165 vm->clear_range(vm, 0, vm->total); 166 167 vm->skip_pte_rewrite = save_skip_rewrite; 168 169 mutex_unlock(&vm->mutex); 170 } 171 172 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 173 { 174 struct intel_gt *gt; 175 176 i915_ggtt_suspend_vm(&ggtt->vm); 177 ggtt->invalidate(ggtt); 178 179 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 180 intel_gt_check_and_clear_faults(gt); 181 } 182 183 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 184 { 185 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 186 187 spin_lock_irq(&uncore->lock); 188 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 189 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 190 spin_unlock_irq(&uncore->lock); 191 } 192 193 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 194 { 195 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 196 197 /* 198 * Note that as an uncached mmio write, this will flush the 199 * WCB of the writes into the GGTT before it triggers the invalidate. 200 */ 201 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 202 } 203 204 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 205 { 206 struct drm_i915_private *i915 = ggtt->vm.i915; 207 208 gen8_ggtt_invalidate(ggtt); 209 210 if (GRAPHICS_VER(i915) >= 12) { 211 struct intel_gt *gt; 212 213 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 214 intel_uncore_write_fw(gt->uncore, 215 GEN12_GUC_TLB_INV_CR, 216 GEN12_GUC_TLB_INV_CR_INVALIDATE); 217 } else { 218 intel_uncore_write_fw(ggtt->vm.gt->uncore, 219 GEN8_GTCR, GEN8_GTCR_INVALIDATE); 220 } 221 } 222 223 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 224 enum i915_cache_level level, 225 u32 flags) 226 { 227 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 228 229 if (flags & PTE_LM) 230 pte |= GEN12_GGTT_PTE_LM; 231 232 return pte; 233 } 234 235 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 236 { 237 writeq(pte, addr); 238 } 239 240 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 241 dma_addr_t addr, 242 u64 offset, 243 enum i915_cache_level level, 244 u32 flags) 245 { 246 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 247 gen8_pte_t __iomem *pte = 248 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 249 250 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags)); 251 252 ggtt->invalidate(ggtt); 253 } 254 255 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 256 struct i915_vma_resource *vma_res, 257 enum i915_cache_level level, 258 u32 flags) 259 { 260 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags); 261 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 262 gen8_pte_t __iomem *gte; 263 gen8_pte_t __iomem *end; 264 struct sgt_iter iter; 265 dma_addr_t addr; 266 267 /* 268 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 269 * not to allow the user to override access to a read only page. 270 */ 271 272 gte = (gen8_pte_t __iomem *)ggtt->gsm; 273 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 274 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 275 while (gte < end) 276 gen8_set_pte(gte++, vm->scratch[0]->encode); 277 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 278 279 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 280 gen8_set_pte(gte++, pte_encode | addr); 281 GEM_BUG_ON(gte > end); 282 283 /* Fill the allocated but "unused" space beyond the end of the buffer */ 284 while (gte < end) 285 gen8_set_pte(gte++, vm->scratch[0]->encode); 286 287 /* 288 * We want to flush the TLBs only after we're certain all the PTE 289 * updates have finished. 290 */ 291 ggtt->invalidate(ggtt); 292 } 293 294 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 295 dma_addr_t addr, 296 u64 offset, 297 enum i915_cache_level level, 298 u32 flags) 299 { 300 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 301 gen6_pte_t __iomem *pte = 302 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 303 304 iowrite32(vm->pte_encode(addr, level, flags), pte); 305 306 ggtt->invalidate(ggtt); 307 } 308 309 /* 310 * Binds an object into the global gtt with the specified cache level. 311 * The object will be accessible to the GPU via commands whose operands 312 * reference offsets within the global GTT as well as accessible by the GPU 313 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 314 */ 315 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 316 struct i915_vma_resource *vma_res, 317 enum i915_cache_level level, 318 u32 flags) 319 { 320 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 321 gen6_pte_t __iomem *gte; 322 gen6_pte_t __iomem *end; 323 struct sgt_iter iter; 324 dma_addr_t addr; 325 326 gte = (gen6_pte_t __iomem *)ggtt->gsm; 327 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 328 329 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 330 while (gte < end) 331 iowrite32(vm->scratch[0]->encode, gte++); 332 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 333 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 334 iowrite32(vm->pte_encode(addr, level, flags), gte++); 335 GEM_BUG_ON(gte > end); 336 337 /* Fill the allocated but "unused" space beyond the end of the buffer */ 338 while (gte < end) 339 iowrite32(vm->scratch[0]->encode, gte++); 340 341 /* 342 * We want to flush the TLBs only after we're certain all the PTE 343 * updates have finished. 344 */ 345 ggtt->invalidate(ggtt); 346 } 347 348 static void nop_clear_range(struct i915_address_space *vm, 349 u64 start, u64 length) 350 { 351 } 352 353 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 354 { 355 /* 356 * Make sure the internal GAM fifo has been cleared of all GTT 357 * writes before exiting stop_machine(). This guarantees that 358 * any aperture accesses waiting to start in another process 359 * cannot back up behind the GTT writes causing a hang. 360 * The register can be any arbitrary GAM register. 361 */ 362 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 363 } 364 365 struct insert_page { 366 struct i915_address_space *vm; 367 dma_addr_t addr; 368 u64 offset; 369 enum i915_cache_level level; 370 }; 371 372 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 373 { 374 struct insert_page *arg = _arg; 375 376 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 377 bxt_vtd_ggtt_wa(arg->vm); 378 379 return 0; 380 } 381 382 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 383 dma_addr_t addr, 384 u64 offset, 385 enum i915_cache_level level, 386 u32 unused) 387 { 388 struct insert_page arg = { vm, addr, offset, level }; 389 390 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 391 } 392 393 struct insert_entries { 394 struct i915_address_space *vm; 395 struct i915_vma_resource *vma_res; 396 enum i915_cache_level level; 397 u32 flags; 398 }; 399 400 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 401 { 402 struct insert_entries *arg = _arg; 403 404 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags); 405 bxt_vtd_ggtt_wa(arg->vm); 406 407 return 0; 408 } 409 410 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 411 struct i915_vma_resource *vma_res, 412 enum i915_cache_level level, 413 u32 flags) 414 { 415 struct insert_entries arg = { vm, vma_res, level, flags }; 416 417 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 418 } 419 420 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 421 u64 start, u64 length) 422 { 423 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 424 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 425 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 426 gen6_pte_t scratch_pte, __iomem *gtt_base = 427 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 428 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 429 int i; 430 431 if (WARN(num_entries > max_entries, 432 "First entry = %d; Num entries = %d (max=%d)\n", 433 first_entry, num_entries, max_entries)) 434 num_entries = max_entries; 435 436 scratch_pte = vm->scratch[0]->encode; 437 for (i = 0; i < num_entries; i++) 438 iowrite32(scratch_pte, >t_base[i]); 439 } 440 441 void intel_ggtt_bind_vma(struct i915_address_space *vm, 442 struct i915_vm_pt_stash *stash, 443 struct i915_vma_resource *vma_res, 444 enum i915_cache_level cache_level, 445 u32 flags) 446 { 447 u32 pte_flags; 448 449 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 450 return; 451 452 vma_res->bound_flags |= flags; 453 454 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 455 pte_flags = 0; 456 if (vma_res->bi.readonly) 457 pte_flags |= PTE_READ_ONLY; 458 if (vma_res->bi.lmem) 459 pte_flags |= PTE_LM; 460 461 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 462 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 463 } 464 465 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 466 struct i915_vma_resource *vma_res) 467 { 468 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 469 } 470 471 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 472 { 473 u64 size; 474 int ret; 475 476 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 477 return 0; 478 479 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 480 size = ggtt->vm.total - GUC_GGTT_TOP; 481 482 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size, 483 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 484 PIN_NOEVICT); 485 if (ret) 486 drm_dbg(&ggtt->vm.i915->drm, 487 "Failed to reserve top of GGTT for GuC\n"); 488 489 return ret; 490 } 491 492 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 493 { 494 if (drm_mm_node_allocated(&ggtt->uc_fw)) 495 drm_mm_remove_node(&ggtt->uc_fw); 496 } 497 498 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 499 { 500 ggtt_release_guc_top(ggtt); 501 if (drm_mm_node_allocated(&ggtt->error_capture)) 502 drm_mm_remove_node(&ggtt->error_capture); 503 mutex_destroy(&ggtt->error_mutex); 504 } 505 506 static int init_ggtt(struct i915_ggtt *ggtt) 507 { 508 /* 509 * Let GEM Manage all of the aperture. 510 * 511 * However, leave one page at the end still bound to the scratch page. 512 * There are a number of places where the hardware apparently prefetches 513 * past the end of the object, and we've seen multiple hangs with the 514 * GPU head pointer stuck in a batchbuffer bound at the last page of the 515 * aperture. One page should be enough to keep any prefetching inside 516 * of the aperture. 517 */ 518 unsigned long hole_start, hole_end; 519 struct drm_mm_node *entry; 520 int ret; 521 522 /* 523 * GuC requires all resources that we're sharing with it to be placed in 524 * non-WOPCM memory. If GuC is not present or not in use we still need a 525 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 526 * why. 527 */ 528 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 529 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); 530 531 ret = intel_vgt_balloon(ggtt); 532 if (ret) 533 return ret; 534 535 mutex_init(&ggtt->error_mutex); 536 if (ggtt->mappable_end) { 537 /* 538 * Reserve a mappable slot for our lockless error capture. 539 * 540 * We strongly prefer taking address 0x0 in order to protect 541 * other critical buffers against accidental overwrites, 542 * as writing to address 0 is a very common mistake. 543 * 544 * Since 0 may already be in use by the system (e.g. the BIOS 545 * framebuffer), we let the reservation fail quietly and hope 546 * 0 remains reserved always. 547 * 548 * If we fail to reserve 0, and then fail to find any space 549 * for an error-capture, remain silent. We can afford not 550 * to reserve an error_capture node as we have fallback 551 * paths, and we trust that 0 will remain reserved. However, 552 * the only likely reason for failure to insert is a driver 553 * bug, which we expect to cause other failures... 554 */ 555 ggtt->error_capture.size = I915_GTT_PAGE_SIZE; 556 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 557 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 558 drm_mm_insert_node_in_range(&ggtt->vm.mm, 559 &ggtt->error_capture, 560 ggtt->error_capture.size, 0, 561 ggtt->error_capture.color, 562 0, ggtt->mappable_end, 563 DRM_MM_INSERT_LOW); 564 } 565 if (drm_mm_node_allocated(&ggtt->error_capture)) 566 drm_dbg(&ggtt->vm.i915->drm, 567 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 568 ggtt->error_capture.start, 569 ggtt->error_capture.start + ggtt->error_capture.size); 570 571 /* 572 * The upper portion of the GuC address space has a sizeable hole 573 * (several MB) that is inaccessible by GuC. Reserve this range within 574 * GGTT as it can comfortably hold GuC/HuC firmware images. 575 */ 576 ret = ggtt_reserve_guc_top(ggtt); 577 if (ret) 578 goto err; 579 580 /* Clear any non-preallocated blocks */ 581 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 582 drm_dbg(&ggtt->vm.i915->drm, 583 "clearing unused GTT space: [%lx, %lx]\n", 584 hole_start, hole_end); 585 ggtt->vm.clear_range(&ggtt->vm, hole_start, 586 hole_end - hole_start); 587 } 588 589 /* And finally clear the reserved guard page */ 590 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 591 592 return 0; 593 594 err: 595 cleanup_init_ggtt(ggtt); 596 return ret; 597 } 598 599 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 600 struct i915_vm_pt_stash *stash, 601 struct i915_vma_resource *vma_res, 602 enum i915_cache_level cache_level, 603 u32 flags) 604 { 605 u32 pte_flags; 606 607 /* Currently applicable only to VLV */ 608 pte_flags = 0; 609 if (vma_res->bi.readonly) 610 pte_flags |= PTE_READ_ONLY; 611 612 if (flags & I915_VMA_LOCAL_BIND) 613 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 614 stash, vma_res, cache_level, flags); 615 616 if (flags & I915_VMA_GLOBAL_BIND) 617 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 618 619 vma_res->bound_flags |= flags; 620 } 621 622 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 623 struct i915_vma_resource *vma_res) 624 { 625 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 626 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 627 628 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 629 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 630 } 631 632 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 633 { 634 struct i915_vm_pt_stash stash = {}; 635 struct i915_ppgtt *ppgtt; 636 int err; 637 638 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 639 if (IS_ERR(ppgtt)) 640 return PTR_ERR(ppgtt); 641 642 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 643 err = -ENODEV; 644 goto err_ppgtt; 645 } 646 647 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 648 if (err) 649 goto err_ppgtt; 650 651 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 652 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 653 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 654 if (err) 655 goto err_stash; 656 657 /* 658 * Note we only pre-allocate as far as the end of the global 659 * GTT. On 48b / 4-level page-tables, the difference is very, 660 * very significant! We have to preallocate as GVT/vgpu does 661 * not like the page directory disappearing. 662 */ 663 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 664 665 ggtt->alias = ppgtt; 666 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 667 668 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); 669 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 670 671 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); 672 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 673 674 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 675 return 0; 676 677 err_stash: 678 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 679 err_ppgtt: 680 i915_vm_put(&ppgtt->vm); 681 return err; 682 } 683 684 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 685 { 686 struct i915_ppgtt *ppgtt; 687 688 ppgtt = fetch_and_zero(&ggtt->alias); 689 if (!ppgtt) 690 return; 691 692 i915_vm_put(&ppgtt->vm); 693 694 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 695 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 696 } 697 698 int i915_init_ggtt(struct drm_i915_private *i915) 699 { 700 int ret; 701 702 ret = init_ggtt(to_gt(i915)->ggtt); 703 if (ret) 704 return ret; 705 706 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 707 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 708 if (ret) 709 cleanup_init_ggtt(to_gt(i915)->ggtt); 710 } 711 712 return 0; 713 } 714 715 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 716 { 717 struct i915_vma *vma, *vn; 718 719 flush_workqueue(ggtt->vm.i915->wq); 720 i915_gem_drain_freed_objects(ggtt->vm.i915); 721 722 mutex_lock(&ggtt->vm.mutex); 723 724 ggtt->vm.skip_pte_rewrite = true; 725 726 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 727 struct drm_i915_gem_object *obj = vma->obj; 728 bool trylock; 729 730 trylock = i915_gem_object_trylock(obj, NULL); 731 WARN_ON(!trylock); 732 733 WARN_ON(__i915_vma_unbind(vma)); 734 if (trylock) 735 i915_gem_object_unlock(obj); 736 } 737 738 if (drm_mm_node_allocated(&ggtt->error_capture)) 739 drm_mm_remove_node(&ggtt->error_capture); 740 mutex_destroy(&ggtt->error_mutex); 741 742 ggtt_release_guc_top(ggtt); 743 intel_vgt_deballoon(ggtt); 744 745 ggtt->vm.cleanup(&ggtt->vm); 746 747 mutex_unlock(&ggtt->vm.mutex); 748 i915_address_space_fini(&ggtt->vm); 749 750 arch_phys_wc_del(ggtt->mtrr); 751 752 if (ggtt->iomap.size) 753 io_mapping_fini(&ggtt->iomap); 754 } 755 756 /** 757 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 758 * @i915: i915 device 759 */ 760 void i915_ggtt_driver_release(struct drm_i915_private *i915) 761 { 762 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 763 764 fini_aliasing_ppgtt(ggtt); 765 766 intel_ggtt_fini_fences(ggtt); 767 ggtt_cleanup_hw(ggtt); 768 } 769 770 /** 771 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 772 * all free objects have been drained. 773 * @i915: i915 device 774 */ 775 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 776 { 777 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 778 779 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 780 dma_resv_fini(&ggtt->vm._resv); 781 } 782 783 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 784 { 785 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 786 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 787 return snb_gmch_ctl << 20; 788 } 789 790 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 791 { 792 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 793 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 794 if (bdw_gmch_ctl) 795 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 796 797 #ifdef CONFIG_X86_32 798 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 799 if (bdw_gmch_ctl > 4) 800 bdw_gmch_ctl = 4; 801 #endif 802 803 return bdw_gmch_ctl << 20; 804 } 805 806 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 807 { 808 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 809 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 810 811 if (gmch_ctrl) 812 return 1 << (20 + gmch_ctrl); 813 814 return 0; 815 } 816 817 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 818 { 819 /* 820 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 821 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 822 */ 823 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 824 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 825 } 826 827 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 828 { 829 return gen6_gttmmadr_size(i915) / 2; 830 } 831 832 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 833 { 834 struct drm_i915_private *i915 = ggtt->vm.i915; 835 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 836 phys_addr_t phys_addr; 837 u32 pte_flags; 838 int ret; 839 840 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); 841 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); 842 843 /* 844 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 845 * will be dropped. For WC mappings in general we have 64 byte burst 846 * writes when the WC buffer is flushed, so we can't use it, but have to 847 * resort to an uncached mapping. The WC issue is easily caught by the 848 * readback check when writing GTT PTE entries. 849 */ 850 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 851 ggtt->gsm = ioremap(phys_addr, size); 852 else 853 ggtt->gsm = ioremap_wc(phys_addr, size); 854 if (!ggtt->gsm) { 855 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 856 return -ENOMEM; 857 } 858 859 kref_init(&ggtt->vm.resv_ref); 860 ret = setup_scratch_page(&ggtt->vm); 861 if (ret) { 862 drm_err(&i915->drm, "Scratch setup failed\n"); 863 /* iounmap will also get called at remove, but meh */ 864 iounmap(ggtt->gsm); 865 return ret; 866 } 867 868 pte_flags = 0; 869 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 870 pte_flags |= PTE_LM; 871 872 ggtt->vm.scratch[0]->encode = 873 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 874 I915_CACHE_NONE, pte_flags); 875 876 return 0; 877 } 878 879 static void gen6_gmch_remove(struct i915_address_space *vm) 880 { 881 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 882 883 iounmap(ggtt->gsm); 884 free_scratch(vm); 885 } 886 887 static struct resource pci_resource(struct pci_dev *pdev, int bar) 888 { 889 return DEFINE_RES_MEM(pci_resource_start(pdev, bar), 890 pci_resource_len(pdev, bar)); 891 } 892 893 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 894 { 895 struct drm_i915_private *i915 = ggtt->vm.i915; 896 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 897 unsigned int size; 898 u16 snb_gmch_ctl; 899 900 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { 901 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 902 return -ENXIO; 903 904 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 905 ggtt->mappable_end = resource_size(&ggtt->gmadr); 906 } 907 908 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 909 if (IS_CHERRYVIEW(i915)) 910 size = chv_get_total_gtt_size(snb_gmch_ctl); 911 else 912 size = gen8_get_total_gtt_size(snb_gmch_ctl); 913 914 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 915 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 916 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 917 918 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 919 ggtt->vm.cleanup = gen6_gmch_remove; 920 ggtt->vm.insert_page = gen8_ggtt_insert_page; 921 ggtt->vm.clear_range = nop_clear_range; 922 923 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 924 925 /* 926 * Serialize GTT updates with aperture access on BXT if VT-d is on, 927 * and always on CHV. 928 */ 929 if (intel_vm_no_concurrent_access_wa(i915)) { 930 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 931 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 932 933 /* 934 * Calling stop_machine() version of GGTT update function 935 * at error capture/reset path will raise lockdep warning. 936 * Allow calling gen8_ggtt_insert_* directly at reset path 937 * which is safe from parallel GGTT updates. 938 */ 939 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 940 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; 941 942 ggtt->vm.bind_async_flags = 943 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 944 } 945 946 if (intel_uc_wants_guc(&ggtt->vm.gt->uc)) 947 ggtt->invalidate = guc_ggtt_invalidate; 948 else 949 ggtt->invalidate = gen8_ggtt_invalidate; 950 951 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 952 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 953 954 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 955 956 return ggtt_probe_common(ggtt, size); 957 } 958 959 static u64 snb_pte_encode(dma_addr_t addr, 960 enum i915_cache_level level, 961 u32 flags) 962 { 963 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 964 965 switch (level) { 966 case I915_CACHE_L3_LLC: 967 case I915_CACHE_LLC: 968 pte |= GEN6_PTE_CACHE_LLC; 969 break; 970 case I915_CACHE_NONE: 971 pte |= GEN6_PTE_UNCACHED; 972 break; 973 default: 974 MISSING_CASE(level); 975 } 976 977 return pte; 978 } 979 980 static u64 ivb_pte_encode(dma_addr_t addr, 981 enum i915_cache_level level, 982 u32 flags) 983 { 984 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 985 986 switch (level) { 987 case I915_CACHE_L3_LLC: 988 pte |= GEN7_PTE_CACHE_L3_LLC; 989 break; 990 case I915_CACHE_LLC: 991 pte |= GEN6_PTE_CACHE_LLC; 992 break; 993 case I915_CACHE_NONE: 994 pte |= GEN6_PTE_UNCACHED; 995 break; 996 default: 997 MISSING_CASE(level); 998 } 999 1000 return pte; 1001 } 1002 1003 static u64 byt_pte_encode(dma_addr_t addr, 1004 enum i915_cache_level level, 1005 u32 flags) 1006 { 1007 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1008 1009 if (!(flags & PTE_READ_ONLY)) 1010 pte |= BYT_PTE_WRITEABLE; 1011 1012 if (level != I915_CACHE_NONE) 1013 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1014 1015 return pte; 1016 } 1017 1018 static u64 hsw_pte_encode(dma_addr_t addr, 1019 enum i915_cache_level level, 1020 u32 flags) 1021 { 1022 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1023 1024 if (level != I915_CACHE_NONE) 1025 pte |= HSW_WB_LLC_AGE3; 1026 1027 return pte; 1028 } 1029 1030 static u64 iris_pte_encode(dma_addr_t addr, 1031 enum i915_cache_level level, 1032 u32 flags) 1033 { 1034 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1035 1036 switch (level) { 1037 case I915_CACHE_NONE: 1038 break; 1039 case I915_CACHE_WT: 1040 pte |= HSW_WT_ELLC_LLC_AGE3; 1041 break; 1042 default: 1043 pte |= HSW_WB_ELLC_LLC_AGE3; 1044 break; 1045 } 1046 1047 return pte; 1048 } 1049 1050 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1051 { 1052 struct drm_i915_private *i915 = ggtt->vm.i915; 1053 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1054 unsigned int size; 1055 u16 snb_gmch_ctl; 1056 1057 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 1058 return -ENXIO; 1059 1060 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 1061 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1062 1063 /* 1064 * 64/512MB is the current min/max we actually know of, but this is 1065 * just a coarse sanity check. 1066 */ 1067 if (ggtt->mappable_end < (64 << 20) || 1068 ggtt->mappable_end > (512 << 20)) { 1069 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1070 &ggtt->mappable_end); 1071 return -ENXIO; 1072 } 1073 1074 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1075 1076 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1077 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1078 1079 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1080 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1081 1082 ggtt->vm.clear_range = nop_clear_range; 1083 if (!HAS_FULL_PPGTT(i915)) 1084 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1085 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1086 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1087 ggtt->vm.cleanup = gen6_gmch_remove; 1088 1089 ggtt->invalidate = gen6_ggtt_invalidate; 1090 1091 if (HAS_EDRAM(i915)) 1092 ggtt->vm.pte_encode = iris_pte_encode; 1093 else if (IS_HASWELL(i915)) 1094 ggtt->vm.pte_encode = hsw_pte_encode; 1095 else if (IS_VALLEYVIEW(i915)) 1096 ggtt->vm.pte_encode = byt_pte_encode; 1097 else if (GRAPHICS_VER(i915) >= 7) 1098 ggtt->vm.pte_encode = ivb_pte_encode; 1099 else 1100 ggtt->vm.pte_encode = snb_pte_encode; 1101 1102 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1103 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1104 1105 return ggtt_probe_common(ggtt, size); 1106 } 1107 1108 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1109 { 1110 struct drm_i915_private *i915 = gt->i915; 1111 int ret; 1112 1113 ggtt->vm.gt = gt; 1114 ggtt->vm.i915 = i915; 1115 ggtt->vm.dma = i915->drm.dev; 1116 dma_resv_init(&ggtt->vm._resv); 1117 1118 if (GRAPHICS_VER(i915) >= 8) 1119 ret = gen8_gmch_probe(ggtt); 1120 else if (GRAPHICS_VER(i915) >= 6) 1121 ret = gen6_gmch_probe(ggtt); 1122 else 1123 ret = intel_ggtt_gmch_probe(ggtt); 1124 1125 if (ret) { 1126 dma_resv_fini(&ggtt->vm._resv); 1127 return ret; 1128 } 1129 1130 if ((ggtt->vm.total - 1) >> 32) { 1131 drm_err(&i915->drm, 1132 "We never expected a Global GTT with more than 32bits" 1133 " of address space! Found %lldM!\n", 1134 ggtt->vm.total >> 20); 1135 ggtt->vm.total = 1ULL << 32; 1136 ggtt->mappable_end = 1137 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1138 } 1139 1140 if (ggtt->mappable_end > ggtt->vm.total) { 1141 drm_err(&i915->drm, 1142 "mappable aperture extends past end of GGTT," 1143 " aperture=%pa, total=%llx\n", 1144 &ggtt->mappable_end, ggtt->vm.total); 1145 ggtt->mappable_end = ggtt->vm.total; 1146 } 1147 1148 /* GMADR is the PCI mmio aperture into the global GTT. */ 1149 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1150 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1151 (u64)ggtt->mappable_end >> 20); 1152 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1153 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1154 1155 return 0; 1156 } 1157 1158 /** 1159 * i915_ggtt_probe_hw - Probe GGTT hardware location 1160 * @i915: i915 device 1161 */ 1162 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1163 { 1164 struct intel_gt *gt; 1165 int ret, i; 1166 1167 for_each_gt(gt, i915, i) { 1168 ret = intel_gt_assign_ggtt(gt); 1169 if (ret) 1170 return ret; 1171 } 1172 1173 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1174 if (ret) 1175 return ret; 1176 1177 if (i915_vtd_active(i915)) 1178 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1179 1180 return 0; 1181 } 1182 1183 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) 1184 { 1185 struct i915_ggtt *ggtt; 1186 1187 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); 1188 if (!ggtt) 1189 return ERR_PTR(-ENOMEM); 1190 1191 INIT_LIST_HEAD(&ggtt->gt_list); 1192 1193 return ggtt; 1194 } 1195 1196 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1197 { 1198 if (GRAPHICS_VER(i915) < 6) 1199 return intel_ggtt_gmch_enable_hw(i915); 1200 1201 return 0; 1202 } 1203 1204 /** 1205 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1206 * @vm: The VM to restore the mappings for 1207 * 1208 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1209 * DPT page table. 1210 * 1211 * Returns %true if restoring the mapping for any object that was in a write 1212 * domain before suspend. 1213 */ 1214 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1215 { 1216 struct i915_vma *vma; 1217 bool write_domain_objs = false; 1218 1219 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1220 1221 /* First fill our portion of the GTT with scratch pages */ 1222 vm->clear_range(vm, 0, vm->total); 1223 1224 /* clflush objects bound into the GGTT and rebind them. */ 1225 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1226 struct drm_i915_gem_object *obj = vma->obj; 1227 unsigned int was_bound = 1228 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1229 1230 GEM_BUG_ON(!was_bound); 1231 1232 /* 1233 * Clear the bound flags of the vma resource to allow 1234 * ptes to be repopulated. 1235 */ 1236 vma->resource->bound_flags = 0; 1237 vma->ops->bind_vma(vm, NULL, vma->resource, 1238 obj ? obj->cache_level : 0, 1239 was_bound); 1240 1241 if (obj) { /* only used during resume => exclusive access */ 1242 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1243 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1244 } 1245 } 1246 1247 return write_domain_objs; 1248 } 1249 1250 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1251 { 1252 struct intel_gt *gt; 1253 bool flush; 1254 1255 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1256 intel_gt_check_and_clear_faults(gt); 1257 1258 flush = i915_ggtt_resume_vm(&ggtt->vm); 1259 1260 ggtt->invalidate(ggtt); 1261 1262 if (flush) 1263 wbinvd_on_all_cpus(); 1264 1265 intel_ggtt_restore_fences(ggtt); 1266 } 1267