1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <asm/set_memory.h> 7 #include <asm/smp.h> 8 #include <linux/types.h> 9 #include <linux/stop_machine.h> 10 11 #include <drm/i915_drm.h> 12 #include <drm/intel-gtt.h> 13 14 #include "gem/i915_gem_lmem.h" 15 16 #include "intel_ggtt_gmch.h" 17 #include "intel_gt.h" 18 #include "intel_gt_regs.h" 19 #include "i915_drv.h" 20 #include "i915_scatterlist.h" 21 #include "i915_utils.h" 22 #include "i915_vgpu.h" 23 24 #include "intel_gtt.h" 25 #include "gen8_ppgtt.h" 26 27 static inline bool suspend_retains_ptes(struct i915_address_space *vm) 28 { 29 return GRAPHICS_VER(vm->i915) >= 8 && 30 !HAS_LMEM(vm->i915) && 31 vm->is_ggtt; 32 } 33 34 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 35 unsigned long color, 36 u64 *start, 37 u64 *end) 38 { 39 if (i915_node_color_differs(node, color)) 40 *start += I915_GTT_PAGE_SIZE; 41 42 /* 43 * Also leave a space between the unallocated reserved node after the 44 * GTT and any objects within the GTT, i.e. we use the color adjustment 45 * to insert a guard page to prevent prefetches crossing over the 46 * GTT boundary. 47 */ 48 node = list_next_entry(node, node_list); 49 if (node->color != color) 50 *end -= I915_GTT_PAGE_SIZE; 51 } 52 53 static int ggtt_init_hw(struct i915_ggtt *ggtt) 54 { 55 struct drm_i915_private *i915 = ggtt->vm.i915; 56 57 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 58 59 ggtt->vm.is_ggtt = true; 60 61 /* Only VLV supports read-only GGTT mappings */ 62 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 63 64 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 65 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 66 67 if (ggtt->mappable_end) { 68 if (!io_mapping_init_wc(&ggtt->iomap, 69 ggtt->gmadr.start, 70 ggtt->mappable_end)) { 71 ggtt->vm.cleanup(&ggtt->vm); 72 return -EIO; 73 } 74 75 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 76 ggtt->mappable_end); 77 } 78 79 intel_ggtt_init_fences(ggtt); 80 81 return 0; 82 } 83 84 /** 85 * i915_ggtt_init_hw - Initialize GGTT hardware 86 * @i915: i915 device 87 */ 88 int i915_ggtt_init_hw(struct drm_i915_private *i915) 89 { 90 int ret; 91 92 /* 93 * Note that we use page colouring to enforce a guard page at the 94 * end of the address space. This is required as the CS may prefetch 95 * beyond the end of the batch buffer, across the page boundary, 96 * and beyond the end of the GTT if we do not provide a guard. 97 */ 98 ret = ggtt_init_hw(to_gt(i915)->ggtt); 99 if (ret) 100 return ret; 101 102 return 0; 103 } 104 105 /* 106 * Return the value of the last GGTT pte cast to an u64, if 107 * the system is supposed to retain ptes across resume. 0 otherwise. 108 */ 109 static u64 read_last_pte(struct i915_address_space *vm) 110 { 111 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 112 gen8_pte_t __iomem *ptep; 113 114 if (!suspend_retains_ptes(vm)) 115 return 0; 116 117 GEM_BUG_ON(GRAPHICS_VER(vm->i915) < 8); 118 ptep = (typeof(ptep))ggtt->gsm + (ggtt_total_entries(ggtt) - 1); 119 return readq(ptep); 120 } 121 122 /** 123 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 124 * @vm: The VM to suspend the mappings for 125 * 126 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 127 * DPT page table. 128 */ 129 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 130 { 131 struct i915_vma *vma, *vn; 132 int save_skip_rewrite; 133 134 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 135 136 retry: 137 i915_gem_drain_freed_objects(vm->i915); 138 139 mutex_lock(&vm->mutex); 140 141 /* 142 * Skip rewriting PTE on VMA unbind. 143 * FIXME: Use an argument to i915_vma_unbind() instead? 144 */ 145 save_skip_rewrite = vm->skip_pte_rewrite; 146 vm->skip_pte_rewrite = true; 147 148 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 149 struct drm_i915_gem_object *obj = vma->obj; 150 151 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 152 153 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 154 continue; 155 156 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 157 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 158 /* 159 * No dead objects should appear here, GPU should be 160 * completely idle, and userspace suspended 161 */ 162 i915_gem_object_get(obj); 163 164 mutex_unlock(&vm->mutex); 165 166 i915_gem_object_lock(obj, NULL); 167 GEM_WARN_ON(i915_vma_unbind(vma)); 168 i915_gem_object_unlock(obj); 169 i915_gem_object_put(obj); 170 171 vm->skip_pte_rewrite = save_skip_rewrite; 172 goto retry; 173 } 174 175 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 176 i915_vma_wait_for_bind(vma); 177 178 __i915_vma_evict(vma, false); 179 drm_mm_remove_node(&vma->node); 180 } 181 182 i915_gem_object_unlock(obj); 183 } 184 185 if (!suspend_retains_ptes(vm)) 186 vm->clear_range(vm, 0, vm->total); 187 else 188 i915_vm_to_ggtt(vm)->probed_pte = read_last_pte(vm); 189 190 vm->skip_pte_rewrite = save_skip_rewrite; 191 192 mutex_unlock(&vm->mutex); 193 } 194 195 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 196 { 197 i915_ggtt_suspend_vm(&ggtt->vm); 198 ggtt->invalidate(ggtt); 199 200 intel_gt_check_and_clear_faults(ggtt->vm.gt); 201 } 202 203 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 204 { 205 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 206 207 spin_lock_irq(&uncore->lock); 208 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 209 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 210 spin_unlock_irq(&uncore->lock); 211 } 212 213 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 214 { 215 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 216 217 /* 218 * Note that as an uncached mmio write, this will flush the 219 * WCB of the writes into the GGTT before it triggers the invalidate. 220 */ 221 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 222 } 223 224 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 225 { 226 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 227 struct drm_i915_private *i915 = ggtt->vm.i915; 228 229 gen8_ggtt_invalidate(ggtt); 230 231 if (GRAPHICS_VER(i915) >= 12) 232 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR, 233 GEN12_GUC_TLB_INV_CR_INVALIDATE); 234 else 235 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); 236 } 237 238 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 239 enum i915_cache_level level, 240 u32 flags) 241 { 242 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 243 244 if (flags & PTE_LM) 245 pte |= GEN12_GGTT_PTE_LM; 246 247 return pte; 248 } 249 250 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 251 { 252 writeq(pte, addr); 253 } 254 255 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 256 dma_addr_t addr, 257 u64 offset, 258 enum i915_cache_level level, 259 u32 flags) 260 { 261 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 262 gen8_pte_t __iomem *pte = 263 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 264 265 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags)); 266 267 ggtt->invalidate(ggtt); 268 } 269 270 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 271 struct i915_vma_resource *vma_res, 272 enum i915_cache_level level, 273 u32 flags) 274 { 275 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags); 276 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 277 gen8_pte_t __iomem *gte; 278 gen8_pte_t __iomem *end; 279 struct sgt_iter iter; 280 dma_addr_t addr; 281 282 /* 283 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 284 * not to allow the user to override access to a read only page. 285 */ 286 287 gte = (gen8_pte_t __iomem *)ggtt->gsm; 288 gte += vma_res->start / I915_GTT_PAGE_SIZE; 289 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE; 290 291 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 292 gen8_set_pte(gte++, pte_encode | addr); 293 GEM_BUG_ON(gte > end); 294 295 /* Fill the allocated but "unused" space beyond the end of the buffer */ 296 while (gte < end) 297 gen8_set_pte(gte++, vm->scratch[0]->encode); 298 299 /* 300 * We want to flush the TLBs only after we're certain all the PTE 301 * updates have finished. 302 */ 303 ggtt->invalidate(ggtt); 304 } 305 306 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 307 dma_addr_t addr, 308 u64 offset, 309 enum i915_cache_level level, 310 u32 flags) 311 { 312 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 313 gen6_pte_t __iomem *pte = 314 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 315 316 iowrite32(vm->pte_encode(addr, level, flags), pte); 317 318 ggtt->invalidate(ggtt); 319 } 320 321 /* 322 * Binds an object into the global gtt with the specified cache level. 323 * The object will be accessible to the GPU via commands whose operands 324 * reference offsets within the global GTT as well as accessible by the GPU 325 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 326 */ 327 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 328 struct i915_vma_resource *vma_res, 329 enum i915_cache_level level, 330 u32 flags) 331 { 332 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 333 gen6_pte_t __iomem *gte; 334 gen6_pte_t __iomem *end; 335 struct sgt_iter iter; 336 dma_addr_t addr; 337 338 gte = (gen6_pte_t __iomem *)ggtt->gsm; 339 gte += vma_res->start / I915_GTT_PAGE_SIZE; 340 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE; 341 342 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 343 iowrite32(vm->pte_encode(addr, level, flags), gte++); 344 GEM_BUG_ON(gte > end); 345 346 /* Fill the allocated but "unused" space beyond the end of the buffer */ 347 while (gte < end) 348 iowrite32(vm->scratch[0]->encode, gte++); 349 350 /* 351 * We want to flush the TLBs only after we're certain all the PTE 352 * updates have finished. 353 */ 354 ggtt->invalidate(ggtt); 355 } 356 357 static void nop_clear_range(struct i915_address_space *vm, 358 u64 start, u64 length) 359 { 360 } 361 362 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 363 u64 start, u64 length) 364 { 365 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 366 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 367 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 368 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 369 gen8_pte_t __iomem *gtt_base = 370 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 371 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 372 int i; 373 374 if (WARN(num_entries > max_entries, 375 "First entry = %d; Num entries = %d (max=%d)\n", 376 first_entry, num_entries, max_entries)) 377 num_entries = max_entries; 378 379 for (i = 0; i < num_entries; i++) 380 gen8_set_pte(>t_base[i], scratch_pte); 381 } 382 383 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 384 { 385 /* 386 * Make sure the internal GAM fifo has been cleared of all GTT 387 * writes before exiting stop_machine(). This guarantees that 388 * any aperture accesses waiting to start in another process 389 * cannot back up behind the GTT writes causing a hang. 390 * The register can be any arbitrary GAM register. 391 */ 392 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 393 } 394 395 struct insert_page { 396 struct i915_address_space *vm; 397 dma_addr_t addr; 398 u64 offset; 399 enum i915_cache_level level; 400 }; 401 402 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 403 { 404 struct insert_page *arg = _arg; 405 406 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 407 bxt_vtd_ggtt_wa(arg->vm); 408 409 return 0; 410 } 411 412 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 413 dma_addr_t addr, 414 u64 offset, 415 enum i915_cache_level level, 416 u32 unused) 417 { 418 struct insert_page arg = { vm, addr, offset, level }; 419 420 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 421 } 422 423 struct insert_entries { 424 struct i915_address_space *vm; 425 struct i915_vma_resource *vma_res; 426 enum i915_cache_level level; 427 u32 flags; 428 }; 429 430 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 431 { 432 struct insert_entries *arg = _arg; 433 434 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags); 435 bxt_vtd_ggtt_wa(arg->vm); 436 437 return 0; 438 } 439 440 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 441 struct i915_vma_resource *vma_res, 442 enum i915_cache_level level, 443 u32 flags) 444 { 445 struct insert_entries arg = { vm, vma_res, level, flags }; 446 447 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 448 } 449 450 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 451 u64 start, u64 length) 452 { 453 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 454 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 455 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 456 gen6_pte_t scratch_pte, __iomem *gtt_base = 457 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 458 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 459 int i; 460 461 if (WARN(num_entries > max_entries, 462 "First entry = %d; Num entries = %d (max=%d)\n", 463 first_entry, num_entries, max_entries)) 464 num_entries = max_entries; 465 466 scratch_pte = vm->scratch[0]->encode; 467 for (i = 0; i < num_entries; i++) 468 iowrite32(scratch_pte, >t_base[i]); 469 } 470 471 void intel_ggtt_bind_vma(struct i915_address_space *vm, 472 struct i915_vm_pt_stash *stash, 473 struct i915_vma_resource *vma_res, 474 enum i915_cache_level cache_level, 475 u32 flags) 476 { 477 u32 pte_flags; 478 479 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 480 return; 481 482 vma_res->bound_flags |= flags; 483 484 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 485 pte_flags = 0; 486 if (vma_res->bi.readonly) 487 pte_flags |= PTE_READ_ONLY; 488 if (vma_res->bi.lmem) 489 pte_flags |= PTE_LM; 490 491 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 492 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 493 } 494 495 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 496 struct i915_vma_resource *vma_res) 497 { 498 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 499 } 500 501 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 502 { 503 u64 size; 504 int ret; 505 506 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 507 return 0; 508 509 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 510 size = ggtt->vm.total - GUC_GGTT_TOP; 511 512 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size, 513 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 514 PIN_NOEVICT); 515 if (ret) 516 drm_dbg(&ggtt->vm.i915->drm, 517 "Failed to reserve top of GGTT for GuC\n"); 518 519 return ret; 520 } 521 522 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 523 { 524 if (drm_mm_node_allocated(&ggtt->uc_fw)) 525 drm_mm_remove_node(&ggtt->uc_fw); 526 } 527 528 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 529 { 530 ggtt_release_guc_top(ggtt); 531 if (drm_mm_node_allocated(&ggtt->error_capture)) 532 drm_mm_remove_node(&ggtt->error_capture); 533 mutex_destroy(&ggtt->error_mutex); 534 } 535 536 static int init_ggtt(struct i915_ggtt *ggtt) 537 { 538 /* 539 * Let GEM Manage all of the aperture. 540 * 541 * However, leave one page at the end still bound to the scratch page. 542 * There are a number of places where the hardware apparently prefetches 543 * past the end of the object, and we've seen multiple hangs with the 544 * GPU head pointer stuck in a batchbuffer bound at the last page of the 545 * aperture. One page should be enough to keep any prefetching inside 546 * of the aperture. 547 */ 548 unsigned long hole_start, hole_end; 549 struct drm_mm_node *entry; 550 int ret; 551 552 ggtt->pte_lost = true; 553 554 /* 555 * GuC requires all resources that we're sharing with it to be placed in 556 * non-WOPCM memory. If GuC is not present or not in use we still need a 557 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 558 * why. 559 */ 560 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 561 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm)); 562 563 ret = intel_vgt_balloon(ggtt); 564 if (ret) 565 return ret; 566 567 mutex_init(&ggtt->error_mutex); 568 if (ggtt->mappable_end) { 569 /* 570 * Reserve a mappable slot for our lockless error capture. 571 * 572 * We strongly prefer taking address 0x0 in order to protect 573 * other critical buffers against accidental overwrites, 574 * as writing to address 0 is a very common mistake. 575 * 576 * Since 0 may already be in use by the system (e.g. the BIOS 577 * framebuffer), we let the reservation fail quietly and hope 578 * 0 remains reserved always. 579 * 580 * If we fail to reserve 0, and then fail to find any space 581 * for an error-capture, remain silent. We can afford not 582 * to reserve an error_capture node as we have fallback 583 * paths, and we trust that 0 will remain reserved. However, 584 * the only likely reason for failure to insert is a driver 585 * bug, which we expect to cause other failures... 586 */ 587 ggtt->error_capture.size = I915_GTT_PAGE_SIZE; 588 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 589 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 590 drm_mm_insert_node_in_range(&ggtt->vm.mm, 591 &ggtt->error_capture, 592 ggtt->error_capture.size, 0, 593 ggtt->error_capture.color, 594 0, ggtt->mappable_end, 595 DRM_MM_INSERT_LOW); 596 } 597 if (drm_mm_node_allocated(&ggtt->error_capture)) 598 drm_dbg(&ggtt->vm.i915->drm, 599 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 600 ggtt->error_capture.start, 601 ggtt->error_capture.start + ggtt->error_capture.size); 602 603 /* 604 * The upper portion of the GuC address space has a sizeable hole 605 * (several MB) that is inaccessible by GuC. Reserve this range within 606 * GGTT as it can comfortably hold GuC/HuC firmware images. 607 */ 608 ret = ggtt_reserve_guc_top(ggtt); 609 if (ret) 610 goto err; 611 612 /* Clear any non-preallocated blocks */ 613 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 614 drm_dbg(&ggtt->vm.i915->drm, 615 "clearing unused GTT space: [%lx, %lx]\n", 616 hole_start, hole_end); 617 ggtt->vm.clear_range(&ggtt->vm, hole_start, 618 hole_end - hole_start); 619 } 620 621 /* And finally clear the reserved guard page */ 622 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 623 624 return 0; 625 626 err: 627 cleanup_init_ggtt(ggtt); 628 return ret; 629 } 630 631 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 632 struct i915_vm_pt_stash *stash, 633 struct i915_vma_resource *vma_res, 634 enum i915_cache_level cache_level, 635 u32 flags) 636 { 637 u32 pte_flags; 638 639 /* Currently applicable only to VLV */ 640 pte_flags = 0; 641 if (vma_res->bi.readonly) 642 pte_flags |= PTE_READ_ONLY; 643 644 if (flags & I915_VMA_LOCAL_BIND) 645 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 646 stash, vma_res, cache_level, flags); 647 648 if (flags & I915_VMA_GLOBAL_BIND) 649 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 650 651 vma_res->bound_flags |= flags; 652 } 653 654 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 655 struct i915_vma_resource *vma_res) 656 { 657 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 658 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 659 660 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 661 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 662 } 663 664 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 665 { 666 struct i915_vm_pt_stash stash = {}; 667 struct i915_ppgtt *ppgtt; 668 int err; 669 670 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 671 if (IS_ERR(ppgtt)) 672 return PTR_ERR(ppgtt); 673 674 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 675 err = -ENODEV; 676 goto err_ppgtt; 677 } 678 679 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 680 if (err) 681 goto err_ppgtt; 682 683 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 684 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 685 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 686 if (err) 687 goto err_stash; 688 689 /* 690 * Note we only pre-allocate as far as the end of the global 691 * GTT. On 48b / 4-level page-tables, the difference is very, 692 * very significant! We have to preallocate as GVT/vgpu does 693 * not like the page directory disappearing. 694 */ 695 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 696 697 ggtt->alias = ppgtt; 698 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 699 700 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); 701 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 702 703 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); 704 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 705 706 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 707 return 0; 708 709 err_stash: 710 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 711 err_ppgtt: 712 i915_vm_put(&ppgtt->vm); 713 return err; 714 } 715 716 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 717 { 718 struct i915_ppgtt *ppgtt; 719 720 ppgtt = fetch_and_zero(&ggtt->alias); 721 if (!ppgtt) 722 return; 723 724 i915_vm_put(&ppgtt->vm); 725 726 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 727 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 728 } 729 730 int i915_init_ggtt(struct drm_i915_private *i915) 731 { 732 int ret; 733 734 ret = init_ggtt(to_gt(i915)->ggtt); 735 if (ret) 736 return ret; 737 738 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 739 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 740 if (ret) 741 cleanup_init_ggtt(to_gt(i915)->ggtt); 742 } 743 744 return 0; 745 } 746 747 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 748 { 749 struct i915_vma *vma, *vn; 750 751 flush_workqueue(ggtt->vm.i915->wq); 752 i915_gem_drain_freed_objects(ggtt->vm.i915); 753 754 mutex_lock(&ggtt->vm.mutex); 755 756 ggtt->vm.skip_pte_rewrite = true; 757 758 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 759 struct drm_i915_gem_object *obj = vma->obj; 760 bool trylock; 761 762 trylock = i915_gem_object_trylock(obj, NULL); 763 WARN_ON(!trylock); 764 765 WARN_ON(__i915_vma_unbind(vma)); 766 if (trylock) 767 i915_gem_object_unlock(obj); 768 } 769 770 if (drm_mm_node_allocated(&ggtt->error_capture)) 771 drm_mm_remove_node(&ggtt->error_capture); 772 mutex_destroy(&ggtt->error_mutex); 773 774 ggtt_release_guc_top(ggtt); 775 intel_vgt_deballoon(ggtt); 776 777 ggtt->vm.cleanup(&ggtt->vm); 778 779 mutex_unlock(&ggtt->vm.mutex); 780 i915_address_space_fini(&ggtt->vm); 781 782 arch_phys_wc_del(ggtt->mtrr); 783 784 if (ggtt->iomap.size) 785 io_mapping_fini(&ggtt->iomap); 786 } 787 788 /** 789 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 790 * @i915: i915 device 791 */ 792 void i915_ggtt_driver_release(struct drm_i915_private *i915) 793 { 794 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 795 796 fini_aliasing_ppgtt(ggtt); 797 798 intel_ggtt_fini_fences(ggtt); 799 ggtt_cleanup_hw(ggtt); 800 } 801 802 /** 803 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 804 * all free objects have been drained. 805 * @i915: i915 device 806 */ 807 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 808 { 809 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 810 811 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 812 dma_resv_fini(&ggtt->vm._resv); 813 } 814 815 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 816 { 817 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 818 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 819 return snb_gmch_ctl << 20; 820 } 821 822 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 823 { 824 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 825 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 826 if (bdw_gmch_ctl) 827 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 828 829 #ifdef CONFIG_X86_32 830 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 831 if (bdw_gmch_ctl > 4) 832 bdw_gmch_ctl = 4; 833 #endif 834 835 return bdw_gmch_ctl << 20; 836 } 837 838 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 839 { 840 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 841 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 842 843 if (gmch_ctrl) 844 return 1 << (20 + gmch_ctrl); 845 846 return 0; 847 } 848 849 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 850 { 851 /* 852 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 853 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 854 */ 855 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 856 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 857 } 858 859 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 860 { 861 return gen6_gttmmadr_size(i915) / 2; 862 } 863 864 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 865 { 866 struct drm_i915_private *i915 = ggtt->vm.i915; 867 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 868 phys_addr_t phys_addr; 869 u32 pte_flags; 870 int ret; 871 872 GEM_WARN_ON(pci_resource_len(pdev, 0) != gen6_gttmmadr_size(i915)); 873 phys_addr = pci_resource_start(pdev, 0) + gen6_gttadr_offset(i915); 874 875 /* 876 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 877 * will be dropped. For WC mappings in general we have 64 byte burst 878 * writes when the WC buffer is flushed, so we can't use it, but have to 879 * resort to an uncached mapping. The WC issue is easily caught by the 880 * readback check when writing GTT PTE entries. 881 */ 882 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 883 ggtt->gsm = ioremap(phys_addr, size); 884 else 885 ggtt->gsm = ioremap_wc(phys_addr, size); 886 if (!ggtt->gsm) { 887 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 888 return -ENOMEM; 889 } 890 891 kref_init(&ggtt->vm.resv_ref); 892 ret = setup_scratch_page(&ggtt->vm); 893 if (ret) { 894 drm_err(&i915->drm, "Scratch setup failed\n"); 895 /* iounmap will also get called at remove, but meh */ 896 iounmap(ggtt->gsm); 897 return ret; 898 } 899 900 pte_flags = 0; 901 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 902 pte_flags |= PTE_LM; 903 904 ggtt->vm.scratch[0]->encode = 905 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 906 I915_CACHE_NONE, pte_flags); 907 908 return 0; 909 } 910 911 static void gen6_gmch_remove(struct i915_address_space *vm) 912 { 913 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 914 915 iounmap(ggtt->gsm); 916 free_scratch(vm); 917 } 918 919 static struct resource pci_resource(struct pci_dev *pdev, int bar) 920 { 921 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar), 922 pci_resource_len(pdev, bar)); 923 } 924 925 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 926 { 927 struct drm_i915_private *i915 = ggtt->vm.i915; 928 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 929 unsigned int size; 930 u16 snb_gmch_ctl; 931 932 if (!HAS_LMEM(i915)) { 933 ggtt->gmadr = pci_resource(pdev, 2); 934 ggtt->mappable_end = resource_size(&ggtt->gmadr); 935 } 936 937 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 938 if (IS_CHERRYVIEW(i915)) 939 size = chv_get_total_gtt_size(snb_gmch_ctl); 940 else 941 size = gen8_get_total_gtt_size(snb_gmch_ctl); 942 943 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 944 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 945 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 946 947 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 948 ggtt->vm.cleanup = gen6_gmch_remove; 949 ggtt->vm.insert_page = gen8_ggtt_insert_page; 950 ggtt->vm.clear_range = nop_clear_range; 951 if (intel_scanout_needs_vtd_wa(i915)) 952 ggtt->vm.clear_range = gen8_ggtt_clear_range; 953 954 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 955 956 /* 957 * Serialize GTT updates with aperture access on BXT if VT-d is on, 958 * and always on CHV. 959 */ 960 if (intel_vm_no_concurrent_access_wa(i915)) { 961 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 962 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 963 964 /* 965 * Calling stop_machine() version of GGTT update function 966 * at error capture/reset path will raise lockdep warning. 967 * Allow calling gen8_ggtt_insert_* directly at reset path 968 * which is safe from parallel GGTT updates. 969 */ 970 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 971 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; 972 973 ggtt->vm.bind_async_flags = 974 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 975 } 976 977 ggtt->invalidate = gen8_ggtt_invalidate; 978 979 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 980 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 981 982 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 983 984 setup_private_pat(ggtt->vm.gt->uncore); 985 986 return ggtt_probe_common(ggtt, size); 987 } 988 989 static u64 snb_pte_encode(dma_addr_t addr, 990 enum i915_cache_level level, 991 u32 flags) 992 { 993 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 994 995 switch (level) { 996 case I915_CACHE_L3_LLC: 997 case I915_CACHE_LLC: 998 pte |= GEN6_PTE_CACHE_LLC; 999 break; 1000 case I915_CACHE_NONE: 1001 pte |= GEN6_PTE_UNCACHED; 1002 break; 1003 default: 1004 MISSING_CASE(level); 1005 } 1006 1007 return pte; 1008 } 1009 1010 static u64 ivb_pte_encode(dma_addr_t addr, 1011 enum i915_cache_level level, 1012 u32 flags) 1013 { 1014 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1015 1016 switch (level) { 1017 case I915_CACHE_L3_LLC: 1018 pte |= GEN7_PTE_CACHE_L3_LLC; 1019 break; 1020 case I915_CACHE_LLC: 1021 pte |= GEN6_PTE_CACHE_LLC; 1022 break; 1023 case I915_CACHE_NONE: 1024 pte |= GEN6_PTE_UNCACHED; 1025 break; 1026 default: 1027 MISSING_CASE(level); 1028 } 1029 1030 return pte; 1031 } 1032 1033 static u64 byt_pte_encode(dma_addr_t addr, 1034 enum i915_cache_level level, 1035 u32 flags) 1036 { 1037 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1038 1039 if (!(flags & PTE_READ_ONLY)) 1040 pte |= BYT_PTE_WRITEABLE; 1041 1042 if (level != I915_CACHE_NONE) 1043 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1044 1045 return pte; 1046 } 1047 1048 static u64 hsw_pte_encode(dma_addr_t addr, 1049 enum i915_cache_level level, 1050 u32 flags) 1051 { 1052 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1053 1054 if (level != I915_CACHE_NONE) 1055 pte |= HSW_WB_LLC_AGE3; 1056 1057 return pte; 1058 } 1059 1060 static u64 iris_pte_encode(dma_addr_t addr, 1061 enum i915_cache_level level, 1062 u32 flags) 1063 { 1064 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1065 1066 switch (level) { 1067 case I915_CACHE_NONE: 1068 break; 1069 case I915_CACHE_WT: 1070 pte |= HSW_WT_ELLC_LLC_AGE3; 1071 break; 1072 default: 1073 pte |= HSW_WB_ELLC_LLC_AGE3; 1074 break; 1075 } 1076 1077 return pte; 1078 } 1079 1080 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1081 { 1082 struct drm_i915_private *i915 = ggtt->vm.i915; 1083 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1084 unsigned int size; 1085 u16 snb_gmch_ctl; 1086 1087 ggtt->gmadr = pci_resource(pdev, 2); 1088 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1089 1090 /* 1091 * 64/512MB is the current min/max we actually know of, but this is 1092 * just a coarse sanity check. 1093 */ 1094 if (ggtt->mappable_end < (64 << 20) || 1095 ggtt->mappable_end > (512 << 20)) { 1096 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1097 &ggtt->mappable_end); 1098 return -ENXIO; 1099 } 1100 1101 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1102 1103 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1104 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1105 1106 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1107 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1108 1109 ggtt->vm.clear_range = nop_clear_range; 1110 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915)) 1111 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1112 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1113 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1114 ggtt->vm.cleanup = gen6_gmch_remove; 1115 1116 ggtt->invalidate = gen6_ggtt_invalidate; 1117 1118 if (HAS_EDRAM(i915)) 1119 ggtt->vm.pte_encode = iris_pte_encode; 1120 else if (IS_HASWELL(i915)) 1121 ggtt->vm.pte_encode = hsw_pte_encode; 1122 else if (IS_VALLEYVIEW(i915)) 1123 ggtt->vm.pte_encode = byt_pte_encode; 1124 else if (GRAPHICS_VER(i915) >= 7) 1125 ggtt->vm.pte_encode = ivb_pte_encode; 1126 else 1127 ggtt->vm.pte_encode = snb_pte_encode; 1128 1129 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1130 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1131 1132 return ggtt_probe_common(ggtt, size); 1133 } 1134 1135 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1136 { 1137 struct drm_i915_private *i915 = gt->i915; 1138 int ret; 1139 1140 ggtt->vm.gt = gt; 1141 ggtt->vm.i915 = i915; 1142 ggtt->vm.dma = i915->drm.dev; 1143 dma_resv_init(&ggtt->vm._resv); 1144 1145 if (GRAPHICS_VER(i915) >= 8) 1146 ret = gen8_gmch_probe(ggtt); 1147 else if (GRAPHICS_VER(i915) >= 6) 1148 ret = gen6_gmch_probe(ggtt); 1149 else 1150 ret = intel_ggtt_gmch_probe(ggtt); 1151 1152 if (ret) { 1153 dma_resv_fini(&ggtt->vm._resv); 1154 return ret; 1155 } 1156 1157 if ((ggtt->vm.total - 1) >> 32) { 1158 drm_err(&i915->drm, 1159 "We never expected a Global GTT with more than 32bits" 1160 " of address space! Found %lldM!\n", 1161 ggtt->vm.total >> 20); 1162 ggtt->vm.total = 1ULL << 32; 1163 ggtt->mappable_end = 1164 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1165 } 1166 1167 if (ggtt->mappable_end > ggtt->vm.total) { 1168 drm_err(&i915->drm, 1169 "mappable aperture extends past end of GGTT," 1170 " aperture=%pa, total=%llx\n", 1171 &ggtt->mappable_end, ggtt->vm.total); 1172 ggtt->mappable_end = ggtt->vm.total; 1173 } 1174 1175 /* GMADR is the PCI mmio aperture into the global GTT. */ 1176 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1177 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1178 (u64)ggtt->mappable_end >> 20); 1179 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1180 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1181 1182 return 0; 1183 } 1184 1185 /** 1186 * i915_ggtt_probe_hw - Probe GGTT hardware location 1187 * @i915: i915 device 1188 */ 1189 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1190 { 1191 int ret; 1192 1193 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1194 if (ret) 1195 return ret; 1196 1197 if (i915_vtd_active(i915)) 1198 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1199 1200 return 0; 1201 } 1202 1203 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1204 { 1205 if (GRAPHICS_VER(i915) < 6) 1206 return intel_ggtt_gmch_enable_hw(i915); 1207 1208 return 0; 1209 } 1210 1211 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt) 1212 { 1213 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate); 1214 1215 ggtt->invalidate = guc_ggtt_invalidate; 1216 1217 ggtt->invalidate(ggtt); 1218 } 1219 1220 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt) 1221 { 1222 /* XXX Temporary pardon for error unload */ 1223 if (ggtt->invalidate == gen8_ggtt_invalidate) 1224 return; 1225 1226 /* We should only be called after i915_ggtt_enable_guc() */ 1227 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate); 1228 1229 ggtt->invalidate = gen8_ggtt_invalidate; 1230 1231 ggtt->invalidate(ggtt); 1232 } 1233 1234 /** 1235 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1236 * @vm: The VM to restore the mappings for 1237 * 1238 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1239 * DPT page table. 1240 * 1241 * Returns %true if restoring the mapping for any object that was in a write 1242 * domain before suspend. 1243 */ 1244 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1245 { 1246 struct i915_vma *vma; 1247 bool write_domain_objs = false; 1248 bool retained_ptes; 1249 1250 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1251 1252 /* 1253 * First fill our portion of the GTT with scratch pages if 1254 * they were not retained across suspend. 1255 */ 1256 retained_ptes = suspend_retains_ptes(vm) && 1257 !i915_vm_to_ggtt(vm)->pte_lost && 1258 !GEM_WARN_ON(i915_vm_to_ggtt(vm)->probed_pte != read_last_pte(vm)); 1259 1260 if (!retained_ptes) 1261 vm->clear_range(vm, 0, vm->total); 1262 1263 /* clflush objects bound into the GGTT and rebind them. */ 1264 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1265 struct drm_i915_gem_object *obj = vma->obj; 1266 unsigned int was_bound = 1267 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1268 1269 GEM_BUG_ON(!was_bound); 1270 if (!retained_ptes) 1271 vma->ops->bind_vma(vm, NULL, vma->resource, 1272 obj ? obj->cache_level : 0, 1273 was_bound); 1274 if (obj) { /* only used during resume => exclusive access */ 1275 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1276 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1277 } 1278 } 1279 1280 return write_domain_objs; 1281 } 1282 1283 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1284 { 1285 bool flush; 1286 1287 intel_gt_check_and_clear_faults(ggtt->vm.gt); 1288 1289 flush = i915_ggtt_resume_vm(&ggtt->vm); 1290 1291 ggtt->invalidate(ggtt); 1292 1293 if (flush) 1294 wbinvd_on_all_cpus(); 1295 1296 if (GRAPHICS_VER(ggtt->vm.i915) >= 8) 1297 setup_private_pat(ggtt->vm.gt->uncore); 1298 1299 intel_ggtt_restore_fences(ggtt); 1300 } 1301 1302 void i915_ggtt_mark_pte_lost(struct drm_i915_private *i915, bool val) 1303 { 1304 to_gt(i915)->ggtt->pte_lost = val; 1305 } 1306