1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <asm/set_memory.h> 7 #include <asm/smp.h> 8 #include <linux/types.h> 9 #include <linux/stop_machine.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/i915_drm.h> 13 #include <drm/intel-gtt.h> 14 15 #include "display/intel_display.h" 16 #include "gem/i915_gem_lmem.h" 17 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gt.h" 20 #include "intel_gt_regs.h" 21 #include "intel_pci_config.h" 22 #include "i915_drv.h" 23 #include "i915_pci.h" 24 #include "i915_scatterlist.h" 25 #include "i915_utils.h" 26 #include "i915_vgpu.h" 27 28 #include "intel_gtt.h" 29 #include "gen8_ppgtt.h" 30 31 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 32 unsigned long color, 33 u64 *start, 34 u64 *end) 35 { 36 if (i915_node_color_differs(node, color)) 37 *start += I915_GTT_PAGE_SIZE; 38 39 /* 40 * Also leave a space between the unallocated reserved node after the 41 * GTT and any objects within the GTT, i.e. we use the color adjustment 42 * to insert a guard page to prevent prefetches crossing over the 43 * GTT boundary. 44 */ 45 node = list_next_entry(node, node_list); 46 if (node->color != color) 47 *end -= I915_GTT_PAGE_SIZE; 48 } 49 50 static int ggtt_init_hw(struct i915_ggtt *ggtt) 51 { 52 struct drm_i915_private *i915 = ggtt->vm.i915; 53 54 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 55 56 ggtt->vm.is_ggtt = true; 57 58 /* Only VLV supports read-only GGTT mappings */ 59 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 60 61 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 62 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 63 64 if (ggtt->mappable_end) { 65 if (!io_mapping_init_wc(&ggtt->iomap, 66 ggtt->gmadr.start, 67 ggtt->mappable_end)) { 68 ggtt->vm.cleanup(&ggtt->vm); 69 return -EIO; 70 } 71 72 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 73 ggtt->mappable_end); 74 } 75 76 intel_ggtt_init_fences(ggtt); 77 78 return 0; 79 } 80 81 /** 82 * i915_ggtt_init_hw - Initialize GGTT hardware 83 * @i915: i915 device 84 */ 85 int i915_ggtt_init_hw(struct drm_i915_private *i915) 86 { 87 int ret; 88 89 /* 90 * Note that we use page colouring to enforce a guard page at the 91 * end of the address space. This is required as the CS may prefetch 92 * beyond the end of the batch buffer, across the page boundary, 93 * and beyond the end of the GTT if we do not provide a guard. 94 */ 95 ret = ggtt_init_hw(to_gt(i915)->ggtt); 96 if (ret) 97 return ret; 98 99 return 0; 100 } 101 102 /** 103 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 104 * @vm: The VM to suspend the mappings for 105 * 106 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 107 * DPT page table. 108 */ 109 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 110 { 111 struct i915_vma *vma, *vn; 112 int save_skip_rewrite; 113 114 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 115 116 retry: 117 i915_gem_drain_freed_objects(vm->i915); 118 119 mutex_lock(&vm->mutex); 120 121 /* 122 * Skip rewriting PTE on VMA unbind. 123 * FIXME: Use an argument to i915_vma_unbind() instead? 124 */ 125 save_skip_rewrite = vm->skip_pte_rewrite; 126 vm->skip_pte_rewrite = true; 127 128 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 129 struct drm_i915_gem_object *obj = vma->obj; 130 131 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 132 133 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 134 continue; 135 136 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 137 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 138 /* 139 * No dead objects should appear here, GPU should be 140 * completely idle, and userspace suspended 141 */ 142 i915_gem_object_get(obj); 143 144 mutex_unlock(&vm->mutex); 145 146 i915_gem_object_lock(obj, NULL); 147 GEM_WARN_ON(i915_vma_unbind(vma)); 148 i915_gem_object_unlock(obj); 149 i915_gem_object_put(obj); 150 151 vm->skip_pte_rewrite = save_skip_rewrite; 152 goto retry; 153 } 154 155 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 156 i915_vma_wait_for_bind(vma); 157 158 __i915_vma_evict(vma, false); 159 drm_mm_remove_node(&vma->node); 160 } 161 162 i915_gem_object_unlock(obj); 163 } 164 165 vm->clear_range(vm, 0, vm->total); 166 167 vm->skip_pte_rewrite = save_skip_rewrite; 168 169 mutex_unlock(&vm->mutex); 170 } 171 172 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 173 { 174 struct intel_gt *gt; 175 176 i915_ggtt_suspend_vm(&ggtt->vm); 177 ggtt->invalidate(ggtt); 178 179 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 180 intel_gt_check_and_clear_faults(gt); 181 } 182 183 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 184 { 185 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 186 187 spin_lock_irq(&uncore->lock); 188 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 189 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 190 spin_unlock_irq(&uncore->lock); 191 } 192 193 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 194 { 195 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 196 197 /* 198 * Note that as an uncached mmio write, this will flush the 199 * WCB of the writes into the GGTT before it triggers the invalidate. 200 */ 201 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 202 } 203 204 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 205 { 206 struct drm_i915_private *i915 = ggtt->vm.i915; 207 208 gen8_ggtt_invalidate(ggtt); 209 210 if (GRAPHICS_VER(i915) >= 12) { 211 struct intel_gt *gt; 212 213 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 214 intel_uncore_write_fw(gt->uncore, 215 GEN12_GUC_TLB_INV_CR, 216 GEN12_GUC_TLB_INV_CR_INVALIDATE); 217 } else { 218 intel_uncore_write_fw(ggtt->vm.gt->uncore, 219 GEN8_GTCR, GEN8_GTCR_INVALIDATE); 220 } 221 } 222 223 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 224 enum i915_cache_level level, 225 u32 flags) 226 { 227 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 228 229 if (flags & PTE_LM) 230 pte |= GEN12_GGTT_PTE_LM; 231 232 return pte; 233 } 234 235 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 236 { 237 writeq(pte, addr); 238 } 239 240 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 241 dma_addr_t addr, 242 u64 offset, 243 enum i915_cache_level level, 244 u32 flags) 245 { 246 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 247 gen8_pte_t __iomem *pte = 248 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 249 250 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags)); 251 252 ggtt->invalidate(ggtt); 253 } 254 255 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 256 struct i915_vma_resource *vma_res, 257 enum i915_cache_level level, 258 u32 flags) 259 { 260 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags); 261 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 262 gen8_pte_t __iomem *gte; 263 gen8_pte_t __iomem *end; 264 struct sgt_iter iter; 265 dma_addr_t addr; 266 267 /* 268 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 269 * not to allow the user to override access to a read only page. 270 */ 271 272 gte = (gen8_pte_t __iomem *)ggtt->gsm; 273 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 274 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 275 while (gte < end) 276 gen8_set_pte(gte++, vm->scratch[0]->encode); 277 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 278 279 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 280 gen8_set_pte(gte++, pte_encode | addr); 281 GEM_BUG_ON(gte > end); 282 283 /* Fill the allocated but "unused" space beyond the end of the buffer */ 284 while (gte < end) 285 gen8_set_pte(gte++, vm->scratch[0]->encode); 286 287 /* 288 * We want to flush the TLBs only after we're certain all the PTE 289 * updates have finished. 290 */ 291 ggtt->invalidate(ggtt); 292 } 293 294 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 295 u64 start, u64 length) 296 { 297 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 298 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 299 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 300 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 301 gen8_pte_t __iomem *gtt_base = 302 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 303 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 304 int i; 305 306 if (WARN(num_entries > max_entries, 307 "First entry = %d; Num entries = %d (max=%d)\n", 308 first_entry, num_entries, max_entries)) 309 num_entries = max_entries; 310 311 for (i = 0; i < num_entries; i++) 312 gen8_set_pte(>t_base[i], scratch_pte); 313 } 314 315 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 316 dma_addr_t addr, 317 u64 offset, 318 enum i915_cache_level level, 319 u32 flags) 320 { 321 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 322 gen6_pte_t __iomem *pte = 323 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 324 325 iowrite32(vm->pte_encode(addr, level, flags), pte); 326 327 ggtt->invalidate(ggtt); 328 } 329 330 /* 331 * Binds an object into the global gtt with the specified cache level. 332 * The object will be accessible to the GPU via commands whose operands 333 * reference offsets within the global GTT as well as accessible by the GPU 334 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 335 */ 336 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 337 struct i915_vma_resource *vma_res, 338 enum i915_cache_level level, 339 u32 flags) 340 { 341 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 342 gen6_pte_t __iomem *gte; 343 gen6_pte_t __iomem *end; 344 struct sgt_iter iter; 345 dma_addr_t addr; 346 347 gte = (gen6_pte_t __iomem *)ggtt->gsm; 348 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 349 350 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 351 while (gte < end) 352 iowrite32(vm->scratch[0]->encode, gte++); 353 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 354 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 355 iowrite32(vm->pte_encode(addr, level, flags), gte++); 356 GEM_BUG_ON(gte > end); 357 358 /* Fill the allocated but "unused" space beyond the end of the buffer */ 359 while (gte < end) 360 iowrite32(vm->scratch[0]->encode, gte++); 361 362 /* 363 * We want to flush the TLBs only after we're certain all the PTE 364 * updates have finished. 365 */ 366 ggtt->invalidate(ggtt); 367 } 368 369 static void nop_clear_range(struct i915_address_space *vm, 370 u64 start, u64 length) 371 { 372 } 373 374 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 375 { 376 /* 377 * Make sure the internal GAM fifo has been cleared of all GTT 378 * writes before exiting stop_machine(). This guarantees that 379 * any aperture accesses waiting to start in another process 380 * cannot back up behind the GTT writes causing a hang. 381 * The register can be any arbitrary GAM register. 382 */ 383 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 384 } 385 386 struct insert_page { 387 struct i915_address_space *vm; 388 dma_addr_t addr; 389 u64 offset; 390 enum i915_cache_level level; 391 }; 392 393 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 394 { 395 struct insert_page *arg = _arg; 396 397 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 398 bxt_vtd_ggtt_wa(arg->vm); 399 400 return 0; 401 } 402 403 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 404 dma_addr_t addr, 405 u64 offset, 406 enum i915_cache_level level, 407 u32 unused) 408 { 409 struct insert_page arg = { vm, addr, offset, level }; 410 411 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 412 } 413 414 struct insert_entries { 415 struct i915_address_space *vm; 416 struct i915_vma_resource *vma_res; 417 enum i915_cache_level level; 418 u32 flags; 419 }; 420 421 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 422 { 423 struct insert_entries *arg = _arg; 424 425 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags); 426 bxt_vtd_ggtt_wa(arg->vm); 427 428 return 0; 429 } 430 431 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 432 struct i915_vma_resource *vma_res, 433 enum i915_cache_level level, 434 u32 flags) 435 { 436 struct insert_entries arg = { vm, vma_res, level, flags }; 437 438 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 439 } 440 441 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 442 u64 start, u64 length) 443 { 444 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 445 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 446 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 447 gen6_pte_t scratch_pte, __iomem *gtt_base = 448 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 449 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 450 int i; 451 452 if (WARN(num_entries > max_entries, 453 "First entry = %d; Num entries = %d (max=%d)\n", 454 first_entry, num_entries, max_entries)) 455 num_entries = max_entries; 456 457 scratch_pte = vm->scratch[0]->encode; 458 for (i = 0; i < num_entries; i++) 459 iowrite32(scratch_pte, >t_base[i]); 460 } 461 462 void intel_ggtt_bind_vma(struct i915_address_space *vm, 463 struct i915_vm_pt_stash *stash, 464 struct i915_vma_resource *vma_res, 465 enum i915_cache_level cache_level, 466 u32 flags) 467 { 468 u32 pte_flags; 469 470 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 471 return; 472 473 vma_res->bound_flags |= flags; 474 475 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 476 pte_flags = 0; 477 if (vma_res->bi.readonly) 478 pte_flags |= PTE_READ_ONLY; 479 if (vma_res->bi.lmem) 480 pte_flags |= PTE_LM; 481 482 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 483 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 484 } 485 486 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 487 struct i915_vma_resource *vma_res) 488 { 489 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 490 } 491 492 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 493 { 494 u64 size; 495 int ret; 496 497 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 498 return 0; 499 500 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 501 size = ggtt->vm.total - GUC_GGTT_TOP; 502 503 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size, 504 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 505 PIN_NOEVICT); 506 if (ret) 507 drm_dbg(&ggtt->vm.i915->drm, 508 "Failed to reserve top of GGTT for GuC\n"); 509 510 return ret; 511 } 512 513 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 514 { 515 if (drm_mm_node_allocated(&ggtt->uc_fw)) 516 drm_mm_remove_node(&ggtt->uc_fw); 517 } 518 519 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 520 { 521 ggtt_release_guc_top(ggtt); 522 if (drm_mm_node_allocated(&ggtt->error_capture)) 523 drm_mm_remove_node(&ggtt->error_capture); 524 mutex_destroy(&ggtt->error_mutex); 525 } 526 527 static int init_ggtt(struct i915_ggtt *ggtt) 528 { 529 /* 530 * Let GEM Manage all of the aperture. 531 * 532 * However, leave one page at the end still bound to the scratch page. 533 * There are a number of places where the hardware apparently prefetches 534 * past the end of the object, and we've seen multiple hangs with the 535 * GPU head pointer stuck in a batchbuffer bound at the last page of the 536 * aperture. One page should be enough to keep any prefetching inside 537 * of the aperture. 538 */ 539 unsigned long hole_start, hole_end; 540 struct drm_mm_node *entry; 541 int ret; 542 543 /* 544 * GuC requires all resources that we're sharing with it to be placed in 545 * non-WOPCM memory. If GuC is not present or not in use we still need a 546 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 547 * why. 548 */ 549 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 550 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); 551 552 ret = intel_vgt_balloon(ggtt); 553 if (ret) 554 return ret; 555 556 mutex_init(&ggtt->error_mutex); 557 if (ggtt->mappable_end) { 558 /* 559 * Reserve a mappable slot for our lockless error capture. 560 * 561 * We strongly prefer taking address 0x0 in order to protect 562 * other critical buffers against accidental overwrites, 563 * as writing to address 0 is a very common mistake. 564 * 565 * Since 0 may already be in use by the system (e.g. the BIOS 566 * framebuffer), we let the reservation fail quietly and hope 567 * 0 remains reserved always. 568 * 569 * If we fail to reserve 0, and then fail to find any space 570 * for an error-capture, remain silent. We can afford not 571 * to reserve an error_capture node as we have fallback 572 * paths, and we trust that 0 will remain reserved. However, 573 * the only likely reason for failure to insert is a driver 574 * bug, which we expect to cause other failures... 575 * 576 * Since CPU can perform speculative reads on error capture 577 * (write-combining allows it) add scratch page after error 578 * capture to avoid DMAR errors. 579 */ 580 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE; 581 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 582 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 583 drm_mm_insert_node_in_range(&ggtt->vm.mm, 584 &ggtt->error_capture, 585 ggtt->error_capture.size, 0, 586 ggtt->error_capture.color, 587 0, ggtt->mappable_end, 588 DRM_MM_INSERT_LOW); 589 } 590 if (drm_mm_node_allocated(&ggtt->error_capture)) { 591 u64 start = ggtt->error_capture.start; 592 u64 size = ggtt->error_capture.size; 593 594 ggtt->vm.scratch_range(&ggtt->vm, start, size); 595 drm_dbg(&ggtt->vm.i915->drm, 596 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 597 start, start + size); 598 } 599 600 /* 601 * The upper portion of the GuC address space has a sizeable hole 602 * (several MB) that is inaccessible by GuC. Reserve this range within 603 * GGTT as it can comfortably hold GuC/HuC firmware images. 604 */ 605 ret = ggtt_reserve_guc_top(ggtt); 606 if (ret) 607 goto err; 608 609 /* Clear any non-preallocated blocks */ 610 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 611 drm_dbg(&ggtt->vm.i915->drm, 612 "clearing unused GTT space: [%lx, %lx]\n", 613 hole_start, hole_end); 614 ggtt->vm.clear_range(&ggtt->vm, hole_start, 615 hole_end - hole_start); 616 } 617 618 /* And finally clear the reserved guard page */ 619 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 620 621 return 0; 622 623 err: 624 cleanup_init_ggtt(ggtt); 625 return ret; 626 } 627 628 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 629 struct i915_vm_pt_stash *stash, 630 struct i915_vma_resource *vma_res, 631 enum i915_cache_level cache_level, 632 u32 flags) 633 { 634 u32 pte_flags; 635 636 /* Currently applicable only to VLV */ 637 pte_flags = 0; 638 if (vma_res->bi.readonly) 639 pte_flags |= PTE_READ_ONLY; 640 641 if (flags & I915_VMA_LOCAL_BIND) 642 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 643 stash, vma_res, cache_level, flags); 644 645 if (flags & I915_VMA_GLOBAL_BIND) 646 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 647 648 vma_res->bound_flags |= flags; 649 } 650 651 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 652 struct i915_vma_resource *vma_res) 653 { 654 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 655 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 656 657 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 658 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 659 } 660 661 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 662 { 663 struct i915_vm_pt_stash stash = {}; 664 struct i915_ppgtt *ppgtt; 665 int err; 666 667 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 668 if (IS_ERR(ppgtt)) 669 return PTR_ERR(ppgtt); 670 671 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 672 err = -ENODEV; 673 goto err_ppgtt; 674 } 675 676 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 677 if (err) 678 goto err_ppgtt; 679 680 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 681 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 682 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 683 if (err) 684 goto err_stash; 685 686 /* 687 * Note we only pre-allocate as far as the end of the global 688 * GTT. On 48b / 4-level page-tables, the difference is very, 689 * very significant! We have to preallocate as GVT/vgpu does 690 * not like the page directory disappearing. 691 */ 692 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 693 694 ggtt->alias = ppgtt; 695 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 696 697 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); 698 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 699 700 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); 701 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 702 703 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 704 return 0; 705 706 err_stash: 707 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 708 err_ppgtt: 709 i915_vm_put(&ppgtt->vm); 710 return err; 711 } 712 713 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 714 { 715 struct i915_ppgtt *ppgtt; 716 717 ppgtt = fetch_and_zero(&ggtt->alias); 718 if (!ppgtt) 719 return; 720 721 i915_vm_put(&ppgtt->vm); 722 723 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 724 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 725 } 726 727 int i915_init_ggtt(struct drm_i915_private *i915) 728 { 729 int ret; 730 731 ret = init_ggtt(to_gt(i915)->ggtt); 732 if (ret) 733 return ret; 734 735 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 736 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 737 if (ret) 738 cleanup_init_ggtt(to_gt(i915)->ggtt); 739 } 740 741 return 0; 742 } 743 744 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 745 { 746 struct i915_vma *vma, *vn; 747 748 flush_workqueue(ggtt->vm.i915->wq); 749 i915_gem_drain_freed_objects(ggtt->vm.i915); 750 751 mutex_lock(&ggtt->vm.mutex); 752 753 ggtt->vm.skip_pte_rewrite = true; 754 755 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 756 struct drm_i915_gem_object *obj = vma->obj; 757 bool trylock; 758 759 trylock = i915_gem_object_trylock(obj, NULL); 760 WARN_ON(!trylock); 761 762 WARN_ON(__i915_vma_unbind(vma)); 763 if (trylock) 764 i915_gem_object_unlock(obj); 765 } 766 767 if (drm_mm_node_allocated(&ggtt->error_capture)) 768 drm_mm_remove_node(&ggtt->error_capture); 769 mutex_destroy(&ggtt->error_mutex); 770 771 ggtt_release_guc_top(ggtt); 772 intel_vgt_deballoon(ggtt); 773 774 ggtt->vm.cleanup(&ggtt->vm); 775 776 mutex_unlock(&ggtt->vm.mutex); 777 i915_address_space_fini(&ggtt->vm); 778 779 arch_phys_wc_del(ggtt->mtrr); 780 781 if (ggtt->iomap.size) 782 io_mapping_fini(&ggtt->iomap); 783 } 784 785 /** 786 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 787 * @i915: i915 device 788 */ 789 void i915_ggtt_driver_release(struct drm_i915_private *i915) 790 { 791 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 792 793 fini_aliasing_ppgtt(ggtt); 794 795 intel_ggtt_fini_fences(ggtt); 796 ggtt_cleanup_hw(ggtt); 797 } 798 799 /** 800 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 801 * all free objects have been drained. 802 * @i915: i915 device 803 */ 804 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 805 { 806 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 807 808 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 809 dma_resv_fini(&ggtt->vm._resv); 810 } 811 812 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 813 { 814 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 815 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 816 return snb_gmch_ctl << 20; 817 } 818 819 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 820 { 821 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 822 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 823 if (bdw_gmch_ctl) 824 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 825 826 #ifdef CONFIG_X86_32 827 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 828 if (bdw_gmch_ctl > 4) 829 bdw_gmch_ctl = 4; 830 #endif 831 832 return bdw_gmch_ctl << 20; 833 } 834 835 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 836 { 837 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 838 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 839 840 if (gmch_ctrl) 841 return 1 << (20 + gmch_ctrl); 842 843 return 0; 844 } 845 846 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 847 { 848 /* 849 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 850 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 851 */ 852 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 853 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 854 } 855 856 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 857 { 858 return gen6_gttmmadr_size(i915) / 2; 859 } 860 861 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 862 { 863 struct drm_i915_private *i915 = ggtt->vm.i915; 864 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 865 phys_addr_t phys_addr; 866 u32 pte_flags; 867 int ret; 868 869 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); 870 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); 871 872 /* 873 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 874 * will be dropped. For WC mappings in general we have 64 byte burst 875 * writes when the WC buffer is flushed, so we can't use it, but have to 876 * resort to an uncached mapping. The WC issue is easily caught by the 877 * readback check when writing GTT PTE entries. 878 */ 879 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 880 ggtt->gsm = ioremap(phys_addr, size); 881 else 882 ggtt->gsm = ioremap_wc(phys_addr, size); 883 if (!ggtt->gsm) { 884 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 885 return -ENOMEM; 886 } 887 888 kref_init(&ggtt->vm.resv_ref); 889 ret = setup_scratch_page(&ggtt->vm); 890 if (ret) { 891 drm_err(&i915->drm, "Scratch setup failed\n"); 892 /* iounmap will also get called at remove, but meh */ 893 iounmap(ggtt->gsm); 894 return ret; 895 } 896 897 pte_flags = 0; 898 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 899 pte_flags |= PTE_LM; 900 901 ggtt->vm.scratch[0]->encode = 902 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 903 I915_CACHE_NONE, pte_flags); 904 905 return 0; 906 } 907 908 static void gen6_gmch_remove(struct i915_address_space *vm) 909 { 910 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 911 912 iounmap(ggtt->gsm); 913 free_scratch(vm); 914 } 915 916 static struct resource pci_resource(struct pci_dev *pdev, int bar) 917 { 918 return DEFINE_RES_MEM(pci_resource_start(pdev, bar), 919 pci_resource_len(pdev, bar)); 920 } 921 922 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 923 { 924 struct drm_i915_private *i915 = ggtt->vm.i915; 925 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 926 unsigned int size; 927 u16 snb_gmch_ctl; 928 929 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { 930 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 931 return -ENXIO; 932 933 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 934 ggtt->mappable_end = resource_size(&ggtt->gmadr); 935 } 936 937 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 938 if (IS_CHERRYVIEW(i915)) 939 size = chv_get_total_gtt_size(snb_gmch_ctl); 940 else 941 size = gen8_get_total_gtt_size(snb_gmch_ctl); 942 943 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 944 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 945 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 946 947 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 948 ggtt->vm.cleanup = gen6_gmch_remove; 949 ggtt->vm.insert_page = gen8_ggtt_insert_page; 950 ggtt->vm.clear_range = nop_clear_range; 951 ggtt->vm.scratch_range = gen8_ggtt_clear_range; 952 953 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 954 955 /* 956 * Serialize GTT updates with aperture access on BXT if VT-d is on, 957 * and always on CHV. 958 */ 959 if (intel_vm_no_concurrent_access_wa(i915)) { 960 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 961 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 962 963 /* 964 * Calling stop_machine() version of GGTT update function 965 * at error capture/reset path will raise lockdep warning. 966 * Allow calling gen8_ggtt_insert_* directly at reset path 967 * which is safe from parallel GGTT updates. 968 */ 969 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 970 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; 971 972 ggtt->vm.bind_async_flags = 973 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 974 } 975 976 if (intel_uc_wants_guc(&ggtt->vm.gt->uc)) 977 ggtt->invalidate = guc_ggtt_invalidate; 978 else 979 ggtt->invalidate = gen8_ggtt_invalidate; 980 981 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 982 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 983 984 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 985 986 return ggtt_probe_common(ggtt, size); 987 } 988 989 static u64 snb_pte_encode(dma_addr_t addr, 990 enum i915_cache_level level, 991 u32 flags) 992 { 993 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 994 995 switch (level) { 996 case I915_CACHE_L3_LLC: 997 case I915_CACHE_LLC: 998 pte |= GEN6_PTE_CACHE_LLC; 999 break; 1000 case I915_CACHE_NONE: 1001 pte |= GEN6_PTE_UNCACHED; 1002 break; 1003 default: 1004 MISSING_CASE(level); 1005 } 1006 1007 return pte; 1008 } 1009 1010 static u64 ivb_pte_encode(dma_addr_t addr, 1011 enum i915_cache_level level, 1012 u32 flags) 1013 { 1014 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1015 1016 switch (level) { 1017 case I915_CACHE_L3_LLC: 1018 pte |= GEN7_PTE_CACHE_L3_LLC; 1019 break; 1020 case I915_CACHE_LLC: 1021 pte |= GEN6_PTE_CACHE_LLC; 1022 break; 1023 case I915_CACHE_NONE: 1024 pte |= GEN6_PTE_UNCACHED; 1025 break; 1026 default: 1027 MISSING_CASE(level); 1028 } 1029 1030 return pte; 1031 } 1032 1033 static u64 byt_pte_encode(dma_addr_t addr, 1034 enum i915_cache_level level, 1035 u32 flags) 1036 { 1037 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1038 1039 if (!(flags & PTE_READ_ONLY)) 1040 pte |= BYT_PTE_WRITEABLE; 1041 1042 if (level != I915_CACHE_NONE) 1043 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1044 1045 return pte; 1046 } 1047 1048 static u64 hsw_pte_encode(dma_addr_t addr, 1049 enum i915_cache_level level, 1050 u32 flags) 1051 { 1052 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1053 1054 if (level != I915_CACHE_NONE) 1055 pte |= HSW_WB_LLC_AGE3; 1056 1057 return pte; 1058 } 1059 1060 static u64 iris_pte_encode(dma_addr_t addr, 1061 enum i915_cache_level level, 1062 u32 flags) 1063 { 1064 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1065 1066 switch (level) { 1067 case I915_CACHE_NONE: 1068 break; 1069 case I915_CACHE_WT: 1070 pte |= HSW_WT_ELLC_LLC_AGE3; 1071 break; 1072 default: 1073 pte |= HSW_WB_ELLC_LLC_AGE3; 1074 break; 1075 } 1076 1077 return pte; 1078 } 1079 1080 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1081 { 1082 struct drm_i915_private *i915 = ggtt->vm.i915; 1083 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1084 unsigned int size; 1085 u16 snb_gmch_ctl; 1086 1087 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 1088 return -ENXIO; 1089 1090 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 1091 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1092 1093 /* 1094 * 64/512MB is the current min/max we actually know of, but this is 1095 * just a coarse sanity check. 1096 */ 1097 if (ggtt->mappable_end < (64 << 20) || 1098 ggtt->mappable_end > (512 << 20)) { 1099 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1100 &ggtt->mappable_end); 1101 return -ENXIO; 1102 } 1103 1104 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1105 1106 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1107 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1108 1109 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1110 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1111 1112 ggtt->vm.clear_range = nop_clear_range; 1113 if (!HAS_FULL_PPGTT(i915)) 1114 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1115 ggtt->vm.scratch_range = gen6_ggtt_clear_range; 1116 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1117 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1118 ggtt->vm.cleanup = gen6_gmch_remove; 1119 1120 ggtt->invalidate = gen6_ggtt_invalidate; 1121 1122 if (HAS_EDRAM(i915)) 1123 ggtt->vm.pte_encode = iris_pte_encode; 1124 else if (IS_HASWELL(i915)) 1125 ggtt->vm.pte_encode = hsw_pte_encode; 1126 else if (IS_VALLEYVIEW(i915)) 1127 ggtt->vm.pte_encode = byt_pte_encode; 1128 else if (GRAPHICS_VER(i915) >= 7) 1129 ggtt->vm.pte_encode = ivb_pte_encode; 1130 else 1131 ggtt->vm.pte_encode = snb_pte_encode; 1132 1133 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1134 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1135 1136 return ggtt_probe_common(ggtt, size); 1137 } 1138 1139 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1140 { 1141 struct drm_i915_private *i915 = gt->i915; 1142 int ret; 1143 1144 ggtt->vm.gt = gt; 1145 ggtt->vm.i915 = i915; 1146 ggtt->vm.dma = i915->drm.dev; 1147 dma_resv_init(&ggtt->vm._resv); 1148 1149 if (GRAPHICS_VER(i915) >= 8) 1150 ret = gen8_gmch_probe(ggtt); 1151 else if (GRAPHICS_VER(i915) >= 6) 1152 ret = gen6_gmch_probe(ggtt); 1153 else 1154 ret = intel_ggtt_gmch_probe(ggtt); 1155 1156 if (ret) { 1157 dma_resv_fini(&ggtt->vm._resv); 1158 return ret; 1159 } 1160 1161 if ((ggtt->vm.total - 1) >> 32) { 1162 drm_err(&i915->drm, 1163 "We never expected a Global GTT with more than 32bits" 1164 " of address space! Found %lldM!\n", 1165 ggtt->vm.total >> 20); 1166 ggtt->vm.total = 1ULL << 32; 1167 ggtt->mappable_end = 1168 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1169 } 1170 1171 if (ggtt->mappable_end > ggtt->vm.total) { 1172 drm_err(&i915->drm, 1173 "mappable aperture extends past end of GGTT," 1174 " aperture=%pa, total=%llx\n", 1175 &ggtt->mappable_end, ggtt->vm.total); 1176 ggtt->mappable_end = ggtt->vm.total; 1177 } 1178 1179 /* GMADR is the PCI mmio aperture into the global GTT. */ 1180 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1181 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1182 (u64)ggtt->mappable_end >> 20); 1183 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1184 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1185 1186 return 0; 1187 } 1188 1189 /** 1190 * i915_ggtt_probe_hw - Probe GGTT hardware location 1191 * @i915: i915 device 1192 */ 1193 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1194 { 1195 struct intel_gt *gt; 1196 int ret, i; 1197 1198 for_each_gt(gt, i915, i) { 1199 ret = intel_gt_assign_ggtt(gt); 1200 if (ret) 1201 return ret; 1202 } 1203 1204 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1205 if (ret) 1206 return ret; 1207 1208 if (i915_vtd_active(i915)) 1209 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1210 1211 return 0; 1212 } 1213 1214 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) 1215 { 1216 struct i915_ggtt *ggtt; 1217 1218 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); 1219 if (!ggtt) 1220 return ERR_PTR(-ENOMEM); 1221 1222 INIT_LIST_HEAD(&ggtt->gt_list); 1223 1224 return ggtt; 1225 } 1226 1227 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1228 { 1229 if (GRAPHICS_VER(i915) < 6) 1230 return intel_ggtt_gmch_enable_hw(i915); 1231 1232 return 0; 1233 } 1234 1235 /** 1236 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1237 * @vm: The VM to restore the mappings for 1238 * 1239 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1240 * DPT page table. 1241 * 1242 * Returns %true if restoring the mapping for any object that was in a write 1243 * domain before suspend. 1244 */ 1245 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1246 { 1247 struct i915_vma *vma; 1248 bool write_domain_objs = false; 1249 1250 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1251 1252 /* First fill our portion of the GTT with scratch pages */ 1253 vm->clear_range(vm, 0, vm->total); 1254 1255 /* clflush objects bound into the GGTT and rebind them. */ 1256 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1257 struct drm_i915_gem_object *obj = vma->obj; 1258 unsigned int was_bound = 1259 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1260 1261 GEM_BUG_ON(!was_bound); 1262 1263 /* 1264 * Clear the bound flags of the vma resource to allow 1265 * ptes to be repopulated. 1266 */ 1267 vma->resource->bound_flags = 0; 1268 vma->ops->bind_vma(vm, NULL, vma->resource, 1269 obj ? obj->cache_level : 0, 1270 was_bound); 1271 1272 if (obj) { /* only used during resume => exclusive access */ 1273 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1274 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1275 } 1276 } 1277 1278 return write_domain_objs; 1279 } 1280 1281 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1282 { 1283 struct intel_gt *gt; 1284 bool flush; 1285 1286 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1287 intel_gt_check_and_clear_faults(gt); 1288 1289 flush = i915_ggtt_resume_vm(&ggtt->vm); 1290 1291 if (drm_mm_node_allocated(&ggtt->error_capture)) 1292 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start, 1293 ggtt->error_capture.size); 1294 1295 ggtt->invalidate(ggtt); 1296 1297 if (flush) 1298 wbinvd_on_all_cpus(); 1299 1300 intel_ggtt_restore_fences(ggtt); 1301 } 1302