xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision 630dce2810b9f09d312aed4189300e785254c24b)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/stop_machine.h>
7 
8 #include <asm/set_memory.h>
9 #include <asm/smp.h>
10 
11 #include <drm/i915_drm.h>
12 
13 #include "intel_gt.h"
14 #include "i915_drv.h"
15 #include "i915_scatterlist.h"
16 #include "i915_vgpu.h"
17 
18 #include "intel_gtt.h"
19 
20 static int
21 i915_get_ggtt_vma_pages(struct i915_vma *vma);
22 
23 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
24 				   unsigned long color,
25 				   u64 *start,
26 				   u64 *end)
27 {
28 	if (i915_node_color_differs(node, color))
29 		*start += I915_GTT_PAGE_SIZE;
30 
31 	/*
32 	 * Also leave a space between the unallocated reserved node after the
33 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
34 	 * to insert a guard page to prevent prefetches crossing over the
35 	 * GTT boundary.
36 	 */
37 	node = list_next_entry(node, node_list);
38 	if (node->color != color)
39 		*end -= I915_GTT_PAGE_SIZE;
40 }
41 
42 static int ggtt_init_hw(struct i915_ggtt *ggtt)
43 {
44 	struct drm_i915_private *i915 = ggtt->vm.i915;
45 
46 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
47 
48 	ggtt->vm.is_ggtt = true;
49 
50 	/* Only VLV supports read-only GGTT mappings */
51 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
52 
53 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
54 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
55 
56 	if (ggtt->mappable_end) {
57 		if (!io_mapping_init_wc(&ggtt->iomap,
58 					ggtt->gmadr.start,
59 					ggtt->mappable_end)) {
60 			ggtt->vm.cleanup(&ggtt->vm);
61 			return -EIO;
62 		}
63 
64 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
65 					      ggtt->mappable_end);
66 	}
67 
68 	intel_ggtt_init_fences(ggtt);
69 
70 	return 0;
71 }
72 
73 /**
74  * i915_ggtt_init_hw - Initialize GGTT hardware
75  * @i915: i915 device
76  */
77 int i915_ggtt_init_hw(struct drm_i915_private *i915)
78 {
79 	int ret;
80 
81 	/*
82 	 * Note that we use page colouring to enforce a guard page at the
83 	 * end of the address space. This is required as the CS may prefetch
84 	 * beyond the end of the batch buffer, across the page boundary,
85 	 * and beyond the end of the GTT if we do not provide a guard.
86 	 */
87 	ret = ggtt_init_hw(&i915->ggtt);
88 	if (ret)
89 		return ret;
90 
91 	return 0;
92 }
93 
94 /*
95  * Certain Gen5 chipsets require require idling the GPU before
96  * unmapping anything from the GTT when VT-d is enabled.
97  */
98 static bool needs_idle_maps(struct drm_i915_private *i915)
99 {
100 	/*
101 	 * Query intel_iommu to see if we need the workaround. Presumably that
102 	 * was loaded first.
103 	 */
104 	return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active();
105 }
106 
107 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
108 {
109 	struct i915_vma *vma, *vn;
110 	int open;
111 
112 	mutex_lock(&ggtt->vm.mutex);
113 
114 	/* Skip rewriting PTE on VMA unbind. */
115 	open = atomic_xchg(&ggtt->vm.open, 0);
116 
117 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
118 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
119 		i915_vma_wait_for_bind(vma);
120 
121 		if (i915_vma_is_pinned(vma))
122 			continue;
123 
124 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
125 			__i915_vma_evict(vma);
126 			drm_mm_remove_node(&vma->node);
127 		}
128 	}
129 
130 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
131 	ggtt->invalidate(ggtt);
132 	atomic_set(&ggtt->vm.open, open);
133 
134 	mutex_unlock(&ggtt->vm.mutex);
135 
136 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
137 }
138 
139 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
140 {
141 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
142 
143 	spin_lock_irq(&uncore->lock);
144 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
145 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
146 	spin_unlock_irq(&uncore->lock);
147 }
148 
149 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
150 {
151 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
152 
153 	/*
154 	 * Note that as an uncached mmio write, this will flush the
155 	 * WCB of the writes into the GGTT before it triggers the invalidate.
156 	 */
157 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
158 }
159 
160 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
161 {
162 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
163 	struct drm_i915_private *i915 = ggtt->vm.i915;
164 
165 	gen8_ggtt_invalidate(ggtt);
166 
167 	if (INTEL_GEN(i915) >= 12)
168 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
169 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
170 	else
171 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
172 }
173 
174 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
175 {
176 	intel_gtt_chipset_flush();
177 }
178 
179 static u64 gen8_ggtt_pte_encode(dma_addr_t addr,
180 				enum i915_cache_level level,
181 				u32 flags)
182 {
183 	return addr | _PAGE_PRESENT;
184 }
185 
186 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
187 {
188 	writeq(pte, addr);
189 }
190 
191 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
192 				  dma_addr_t addr,
193 				  u64 offset,
194 				  enum i915_cache_level level,
195 				  u32 unused)
196 {
197 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
198 	gen8_pte_t __iomem *pte =
199 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
200 
201 	gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, 0));
202 
203 	ggtt->invalidate(ggtt);
204 }
205 
206 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
207 				     struct i915_vma *vma,
208 				     enum i915_cache_level level,
209 				     u32 flags)
210 {
211 	const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, 0);
212 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
213 	gen8_pte_t __iomem *gte;
214 	gen8_pte_t __iomem *end;
215 	struct sgt_iter iter;
216 	dma_addr_t addr;
217 
218 	/*
219 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
220 	 * not to allow the user to override access to a read only page.
221 	 */
222 
223 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
224 	gte += vma->node.start / I915_GTT_PAGE_SIZE;
225 	end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
226 
227 	for_each_sgt_daddr(addr, iter, vma->pages)
228 		gen8_set_pte(gte++, pte_encode | addr);
229 	GEM_BUG_ON(gte > end);
230 
231 	/* Fill the allocated but "unused" space beyond the end of the buffer */
232 	while (gte < end)
233 		gen8_set_pte(gte++, vm->scratch[0]->encode);
234 
235 	/*
236 	 * We want to flush the TLBs only after we're certain all the PTE
237 	 * updates have finished.
238 	 */
239 	ggtt->invalidate(ggtt);
240 }
241 
242 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
243 				  dma_addr_t addr,
244 				  u64 offset,
245 				  enum i915_cache_level level,
246 				  u32 flags)
247 {
248 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
249 	gen6_pte_t __iomem *pte =
250 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
251 
252 	iowrite32(vm->pte_encode(addr, level, flags), pte);
253 
254 	ggtt->invalidate(ggtt);
255 }
256 
257 /*
258  * Binds an object into the global gtt with the specified cache level.
259  * The object will be accessible to the GPU via commands whose operands
260  * reference offsets within the global GTT as well as accessible by the GPU
261  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
262  */
263 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
264 				     struct i915_vma *vma,
265 				     enum i915_cache_level level,
266 				     u32 flags)
267 {
268 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
269 	gen6_pte_t __iomem *gte;
270 	gen6_pte_t __iomem *end;
271 	struct sgt_iter iter;
272 	dma_addr_t addr;
273 
274 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
275 	gte += vma->node.start / I915_GTT_PAGE_SIZE;
276 	end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
277 
278 	for_each_sgt_daddr(addr, iter, vma->pages)
279 		iowrite32(vm->pte_encode(addr, level, flags), gte++);
280 	GEM_BUG_ON(gte > end);
281 
282 	/* Fill the allocated but "unused" space beyond the end of the buffer */
283 	while (gte < end)
284 		iowrite32(vm->scratch[0]->encode, gte++);
285 
286 	/*
287 	 * We want to flush the TLBs only after we're certain all the PTE
288 	 * updates have finished.
289 	 */
290 	ggtt->invalidate(ggtt);
291 }
292 
293 static void nop_clear_range(struct i915_address_space *vm,
294 			    u64 start, u64 length)
295 {
296 }
297 
298 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
299 				  u64 start, u64 length)
300 {
301 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
302 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
303 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
304 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
305 	gen8_pte_t __iomem *gtt_base =
306 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
307 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
308 	int i;
309 
310 	if (WARN(num_entries > max_entries,
311 		 "First entry = %d; Num entries = %d (max=%d)\n",
312 		 first_entry, num_entries, max_entries))
313 		num_entries = max_entries;
314 
315 	for (i = 0; i < num_entries; i++)
316 		gen8_set_pte(&gtt_base[i], scratch_pte);
317 }
318 
319 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
320 {
321 	/*
322 	 * Make sure the internal GAM fifo has been cleared of all GTT
323 	 * writes before exiting stop_machine(). This guarantees that
324 	 * any aperture accesses waiting to start in another process
325 	 * cannot back up behind the GTT writes causing a hang.
326 	 * The register can be any arbitrary GAM register.
327 	 */
328 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
329 }
330 
331 struct insert_page {
332 	struct i915_address_space *vm;
333 	dma_addr_t addr;
334 	u64 offset;
335 	enum i915_cache_level level;
336 };
337 
338 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
339 {
340 	struct insert_page *arg = _arg;
341 
342 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
343 	bxt_vtd_ggtt_wa(arg->vm);
344 
345 	return 0;
346 }
347 
348 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
349 					  dma_addr_t addr,
350 					  u64 offset,
351 					  enum i915_cache_level level,
352 					  u32 unused)
353 {
354 	struct insert_page arg = { vm, addr, offset, level };
355 
356 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
357 }
358 
359 struct insert_entries {
360 	struct i915_address_space *vm;
361 	struct i915_vma *vma;
362 	enum i915_cache_level level;
363 	u32 flags;
364 };
365 
366 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
367 {
368 	struct insert_entries *arg = _arg;
369 
370 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
371 	bxt_vtd_ggtt_wa(arg->vm);
372 
373 	return 0;
374 }
375 
376 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
377 					     struct i915_vma *vma,
378 					     enum i915_cache_level level,
379 					     u32 flags)
380 {
381 	struct insert_entries arg = { vm, vma, level, flags };
382 
383 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
384 }
385 
386 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
387 				  u64 start, u64 length)
388 {
389 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
390 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
391 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
392 	gen6_pte_t scratch_pte, __iomem *gtt_base =
393 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
394 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
395 	int i;
396 
397 	if (WARN(num_entries > max_entries,
398 		 "First entry = %d; Num entries = %d (max=%d)\n",
399 		 first_entry, num_entries, max_entries))
400 		num_entries = max_entries;
401 
402 	scratch_pte = vm->scratch[0]->encode;
403 	for (i = 0; i < num_entries; i++)
404 		iowrite32(scratch_pte, &gtt_base[i]);
405 }
406 
407 static void i915_ggtt_insert_page(struct i915_address_space *vm,
408 				  dma_addr_t addr,
409 				  u64 offset,
410 				  enum i915_cache_level cache_level,
411 				  u32 unused)
412 {
413 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
414 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
415 
416 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
417 }
418 
419 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
420 				     struct i915_vma *vma,
421 				     enum i915_cache_level cache_level,
422 				     u32 unused)
423 {
424 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
425 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
426 
427 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
428 				    flags);
429 }
430 
431 static void i915_ggtt_clear_range(struct i915_address_space *vm,
432 				  u64 start, u64 length)
433 {
434 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
435 }
436 
437 static void ggtt_bind_vma(struct i915_address_space *vm,
438 			  struct i915_vm_pt_stash *stash,
439 			  struct i915_vma *vma,
440 			  enum i915_cache_level cache_level,
441 			  u32 flags)
442 {
443 	struct drm_i915_gem_object *obj = vma->obj;
444 	u32 pte_flags;
445 
446 	if (i915_vma_is_bound(vma, ~flags & I915_VMA_BIND_MASK))
447 		return;
448 
449 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
450 	pte_flags = 0;
451 	if (i915_gem_object_is_readonly(obj))
452 		pte_flags |= PTE_READ_ONLY;
453 
454 	vm->insert_entries(vm, vma, cache_level, pte_flags);
455 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
456 }
457 
458 static void ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma)
459 {
460 	vm->clear_range(vm, vma->node.start, vma->size);
461 }
462 
463 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
464 {
465 	u64 size;
466 	int ret;
467 
468 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
469 		return 0;
470 
471 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
472 	size = ggtt->vm.total - GUC_GGTT_TOP;
473 
474 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
475 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
476 				   PIN_NOEVICT);
477 	if (ret)
478 		drm_dbg(&ggtt->vm.i915->drm,
479 			"Failed to reserve top of GGTT for GuC\n");
480 
481 	return ret;
482 }
483 
484 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
485 {
486 	if (drm_mm_node_allocated(&ggtt->uc_fw))
487 		drm_mm_remove_node(&ggtt->uc_fw);
488 }
489 
490 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
491 {
492 	ggtt_release_guc_top(ggtt);
493 	if (drm_mm_node_allocated(&ggtt->error_capture))
494 		drm_mm_remove_node(&ggtt->error_capture);
495 	mutex_destroy(&ggtt->error_mutex);
496 }
497 
498 static int init_ggtt(struct i915_ggtt *ggtt)
499 {
500 	/*
501 	 * Let GEM Manage all of the aperture.
502 	 *
503 	 * However, leave one page at the end still bound to the scratch page.
504 	 * There are a number of places where the hardware apparently prefetches
505 	 * past the end of the object, and we've seen multiple hangs with the
506 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
507 	 * aperture.  One page should be enough to keep any prefetching inside
508 	 * of the aperture.
509 	 */
510 	unsigned long hole_start, hole_end;
511 	struct drm_mm_node *entry;
512 	int ret;
513 
514 	/*
515 	 * GuC requires all resources that we're sharing with it to be placed in
516 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
517 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
518 	 * why.
519 	 */
520 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
521 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
522 
523 	ret = intel_vgt_balloon(ggtt);
524 	if (ret)
525 		return ret;
526 
527 	mutex_init(&ggtt->error_mutex);
528 	if (ggtt->mappable_end) {
529 		/*
530 		 * Reserve a mappable slot for our lockless error capture.
531 		 *
532 		 * We strongly prefer taking address 0x0 in order to protect
533 		 * other critical buffers against accidental overwrites,
534 		 * as writing to address 0 is a very common mistake.
535 		 *
536 		 * Since 0 may already be in use by the system (e.g. the BIOS
537 		 * framebuffer), we let the reservation fail quietly and hope
538 		 * 0 remains reserved always.
539 		 *
540 		 * If we fail to reserve 0, and then fail to find any space
541 		 * for an error-capture, remain silent. We can afford not
542 		 * to reserve an error_capture node as we have fallback
543 		 * paths, and we trust that 0 will remain reserved. However,
544 		 * the only likely reason for failure to insert is a driver
545 		 * bug, which we expect to cause other failures...
546 		 */
547 		ggtt->error_capture.size = I915_GTT_PAGE_SIZE;
548 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
549 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
550 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
551 						    &ggtt->error_capture,
552 						    ggtt->error_capture.size, 0,
553 						    ggtt->error_capture.color,
554 						    0, ggtt->mappable_end,
555 						    DRM_MM_INSERT_LOW);
556 	}
557 	if (drm_mm_node_allocated(&ggtt->error_capture))
558 		drm_dbg(&ggtt->vm.i915->drm,
559 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
560 			ggtt->error_capture.start,
561 			ggtt->error_capture.start + ggtt->error_capture.size);
562 
563 	/*
564 	 * The upper portion of the GuC address space has a sizeable hole
565 	 * (several MB) that is inaccessible by GuC. Reserve this range within
566 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
567 	 */
568 	ret = ggtt_reserve_guc_top(ggtt);
569 	if (ret)
570 		goto err;
571 
572 	/* Clear any non-preallocated blocks */
573 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
574 		drm_dbg(&ggtt->vm.i915->drm,
575 			"clearing unused GTT space: [%lx, %lx]\n",
576 			hole_start, hole_end);
577 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
578 				     hole_end - hole_start);
579 	}
580 
581 	/* And finally clear the reserved guard page */
582 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
583 
584 	return 0;
585 
586 err:
587 	cleanup_init_ggtt(ggtt);
588 	return ret;
589 }
590 
591 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
592 				  struct i915_vm_pt_stash *stash,
593 				  struct i915_vma *vma,
594 				  enum i915_cache_level cache_level,
595 				  u32 flags)
596 {
597 	u32 pte_flags;
598 
599 	/* Currently applicable only to VLV */
600 	pte_flags = 0;
601 	if (i915_gem_object_is_readonly(vma->obj))
602 		pte_flags |= PTE_READ_ONLY;
603 
604 	if (flags & I915_VMA_LOCAL_BIND)
605 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
606 			       stash, vma, cache_level, flags);
607 
608 	if (flags & I915_VMA_GLOBAL_BIND)
609 		vm->insert_entries(vm, vma, cache_level, pte_flags);
610 }
611 
612 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
613 				    struct i915_vma *vma)
614 {
615 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
616 		vm->clear_range(vm, vma->node.start, vma->size);
617 
618 	if (i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND))
619 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma);
620 }
621 
622 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
623 {
624 	struct i915_vm_pt_stash stash = {};
625 	struct i915_ppgtt *ppgtt;
626 	int err;
627 
628 	ppgtt = i915_ppgtt_create(ggtt->vm.gt);
629 	if (IS_ERR(ppgtt))
630 		return PTR_ERR(ppgtt);
631 
632 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
633 		err = -ENODEV;
634 		goto err_ppgtt;
635 	}
636 
637 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
638 	if (err)
639 		goto err_ppgtt;
640 
641 	err = i915_vm_pin_pt_stash(&ppgtt->vm, &stash);
642 	if (err)
643 		goto err_stash;
644 
645 	/*
646 	 * Note we only pre-allocate as far as the end of the global
647 	 * GTT. On 48b / 4-level page-tables, the difference is very,
648 	 * very significant! We have to preallocate as GVT/vgpu does
649 	 * not like the page directory disappearing.
650 	 */
651 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
652 
653 	ggtt->alias = ppgtt;
654 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
655 
656 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
657 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
658 
659 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
660 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
661 
662 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
663 	return 0;
664 
665 err_stash:
666 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
667 err_ppgtt:
668 	i915_vm_put(&ppgtt->vm);
669 	return err;
670 }
671 
672 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
673 {
674 	struct i915_ppgtt *ppgtt;
675 
676 	ppgtt = fetch_and_zero(&ggtt->alias);
677 	if (!ppgtt)
678 		return;
679 
680 	i915_vm_put(&ppgtt->vm);
681 
682 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
683 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
684 }
685 
686 int i915_init_ggtt(struct drm_i915_private *i915)
687 {
688 	int ret;
689 
690 	ret = init_ggtt(&i915->ggtt);
691 	if (ret)
692 		return ret;
693 
694 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
695 		ret = init_aliasing_ppgtt(&i915->ggtt);
696 		if (ret)
697 			cleanup_init_ggtt(&i915->ggtt);
698 	}
699 
700 	return 0;
701 }
702 
703 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
704 {
705 	struct i915_vma *vma, *vn;
706 
707 	atomic_set(&ggtt->vm.open, 0);
708 
709 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
710 	flush_workqueue(ggtt->vm.i915->wq);
711 
712 	mutex_lock(&ggtt->vm.mutex);
713 
714 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
715 		WARN_ON(__i915_vma_unbind(vma));
716 
717 	if (drm_mm_node_allocated(&ggtt->error_capture))
718 		drm_mm_remove_node(&ggtt->error_capture);
719 	mutex_destroy(&ggtt->error_mutex);
720 
721 	ggtt_release_guc_top(ggtt);
722 	intel_vgt_deballoon(ggtt);
723 
724 	ggtt->vm.cleanup(&ggtt->vm);
725 
726 	mutex_unlock(&ggtt->vm.mutex);
727 	i915_address_space_fini(&ggtt->vm);
728 
729 	arch_phys_wc_del(ggtt->mtrr);
730 
731 	if (ggtt->iomap.size)
732 		io_mapping_fini(&ggtt->iomap);
733 }
734 
735 /**
736  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
737  * @i915: i915 device
738  */
739 void i915_ggtt_driver_release(struct drm_i915_private *i915)
740 {
741 	struct i915_ggtt *ggtt = &i915->ggtt;
742 
743 	fini_aliasing_ppgtt(ggtt);
744 
745 	intel_ggtt_fini_fences(ggtt);
746 	ggtt_cleanup_hw(ggtt);
747 }
748 
749 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
750 {
751 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
752 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
753 	return snb_gmch_ctl << 20;
754 }
755 
756 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
757 {
758 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
759 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
760 	if (bdw_gmch_ctl)
761 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
762 
763 #ifdef CONFIG_X86_32
764 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
765 	if (bdw_gmch_ctl > 4)
766 		bdw_gmch_ctl = 4;
767 #endif
768 
769 	return bdw_gmch_ctl << 20;
770 }
771 
772 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
773 {
774 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
775 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
776 
777 	if (gmch_ctrl)
778 		return 1 << (20 + gmch_ctrl);
779 
780 	return 0;
781 }
782 
783 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
784 {
785 	struct drm_i915_private *i915 = ggtt->vm.i915;
786 	struct pci_dev *pdev = i915->drm.pdev;
787 	phys_addr_t phys_addr;
788 	int ret;
789 
790 	/* For Modern GENs the PTEs and register space are split in the BAR */
791 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
792 
793 	/*
794 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
795 	 * will be dropped. For WC mappings in general we have 64 byte burst
796 	 * writes when the WC buffer is flushed, so we can't use it, but have to
797 	 * resort to an uncached mapping. The WC issue is easily caught by the
798 	 * readback check when writing GTT PTE entries.
799 	 */
800 	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
801 		ggtt->gsm = ioremap(phys_addr, size);
802 	else
803 		ggtt->gsm = ioremap_wc(phys_addr, size);
804 	if (!ggtt->gsm) {
805 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
806 		return -ENOMEM;
807 	}
808 
809 	ret = setup_scratch_page(&ggtt->vm);
810 	if (ret) {
811 		drm_err(&i915->drm, "Scratch setup failed\n");
812 		/* iounmap will also get called at remove, but meh */
813 		iounmap(ggtt->gsm);
814 		return ret;
815 	}
816 
817 	ggtt->vm.scratch[0]->encode =
818 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
819 				    I915_CACHE_NONE, 0);
820 
821 	return 0;
822 }
823 
824 int ggtt_set_pages(struct i915_vma *vma)
825 {
826 	int ret;
827 
828 	GEM_BUG_ON(vma->pages);
829 
830 	ret = i915_get_ggtt_vma_pages(vma);
831 	if (ret)
832 		return ret;
833 
834 	vma->page_sizes = vma->obj->mm.page_sizes;
835 
836 	return 0;
837 }
838 
839 static void gen6_gmch_remove(struct i915_address_space *vm)
840 {
841 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
842 
843 	iounmap(ggtt->gsm);
844 	free_scratch(vm);
845 }
846 
847 static struct resource pci_resource(struct pci_dev *pdev, int bar)
848 {
849 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
850 					       pci_resource_len(pdev, bar));
851 }
852 
853 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
854 {
855 	struct drm_i915_private *i915 = ggtt->vm.i915;
856 	struct pci_dev *pdev = i915->drm.pdev;
857 	unsigned int size;
858 	u16 snb_gmch_ctl;
859 
860 	/* TODO: We're not aware of mappable constraints on gen8 yet */
861 	if (!HAS_LMEM(i915)) {
862 		ggtt->gmadr = pci_resource(pdev, 2);
863 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
864 	}
865 
866 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
867 	if (IS_CHERRYVIEW(i915))
868 		size = chv_get_total_gtt_size(snb_gmch_ctl);
869 	else
870 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
871 
872 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
873 
874 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
875 	ggtt->vm.cleanup = gen6_gmch_remove;
876 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
877 	ggtt->vm.clear_range = nop_clear_range;
878 	if (intel_scanout_needs_vtd_wa(i915))
879 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
880 
881 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
882 
883 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
884 	if (intel_ggtt_update_needs_vtd_wa(i915) ||
885 	    IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
886 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
887 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
888 		ggtt->vm.bind_async_flags =
889 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
890 	}
891 
892 	ggtt->invalidate = gen8_ggtt_invalidate;
893 
894 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
895 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
896 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
897 	ggtt->vm.vma_ops.clear_pages = clear_pages;
898 
899 	ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
900 
901 	setup_private_pat(ggtt->vm.gt->uncore);
902 
903 	return ggtt_probe_common(ggtt, size);
904 }
905 
906 static u64 snb_pte_encode(dma_addr_t addr,
907 			  enum i915_cache_level level,
908 			  u32 flags)
909 {
910 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
911 
912 	switch (level) {
913 	case I915_CACHE_L3_LLC:
914 	case I915_CACHE_LLC:
915 		pte |= GEN6_PTE_CACHE_LLC;
916 		break;
917 	case I915_CACHE_NONE:
918 		pte |= GEN6_PTE_UNCACHED;
919 		break;
920 	default:
921 		MISSING_CASE(level);
922 	}
923 
924 	return pte;
925 }
926 
927 static u64 ivb_pte_encode(dma_addr_t addr,
928 			  enum i915_cache_level level,
929 			  u32 flags)
930 {
931 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
932 
933 	switch (level) {
934 	case I915_CACHE_L3_LLC:
935 		pte |= GEN7_PTE_CACHE_L3_LLC;
936 		break;
937 	case I915_CACHE_LLC:
938 		pte |= GEN6_PTE_CACHE_LLC;
939 		break;
940 	case I915_CACHE_NONE:
941 		pte |= GEN6_PTE_UNCACHED;
942 		break;
943 	default:
944 		MISSING_CASE(level);
945 	}
946 
947 	return pte;
948 }
949 
950 static u64 byt_pte_encode(dma_addr_t addr,
951 			  enum i915_cache_level level,
952 			  u32 flags)
953 {
954 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
955 
956 	if (!(flags & PTE_READ_ONLY))
957 		pte |= BYT_PTE_WRITEABLE;
958 
959 	if (level != I915_CACHE_NONE)
960 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
961 
962 	return pte;
963 }
964 
965 static u64 hsw_pte_encode(dma_addr_t addr,
966 			  enum i915_cache_level level,
967 			  u32 flags)
968 {
969 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
970 
971 	if (level != I915_CACHE_NONE)
972 		pte |= HSW_WB_LLC_AGE3;
973 
974 	return pte;
975 }
976 
977 static u64 iris_pte_encode(dma_addr_t addr,
978 			   enum i915_cache_level level,
979 			   u32 flags)
980 {
981 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
982 
983 	switch (level) {
984 	case I915_CACHE_NONE:
985 		break;
986 	case I915_CACHE_WT:
987 		pte |= HSW_WT_ELLC_LLC_AGE3;
988 		break;
989 	default:
990 		pte |= HSW_WB_ELLC_LLC_AGE3;
991 		break;
992 	}
993 
994 	return pte;
995 }
996 
997 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
998 {
999 	struct drm_i915_private *i915 = ggtt->vm.i915;
1000 	struct pci_dev *pdev = i915->drm.pdev;
1001 	unsigned int size;
1002 	u16 snb_gmch_ctl;
1003 
1004 	ggtt->gmadr = pci_resource(pdev, 2);
1005 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1006 
1007 	/*
1008 	 * 64/512MB is the current min/max we actually know of, but this is
1009 	 * just a coarse sanity check.
1010 	 */
1011 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1012 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1013 			&ggtt->mappable_end);
1014 		return -ENXIO;
1015 	}
1016 
1017 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1018 
1019 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1020 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1021 
1022 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1023 
1024 	ggtt->vm.clear_range = nop_clear_range;
1025 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1026 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1027 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1028 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1029 	ggtt->vm.cleanup = gen6_gmch_remove;
1030 
1031 	ggtt->invalidate = gen6_ggtt_invalidate;
1032 
1033 	if (HAS_EDRAM(i915))
1034 		ggtt->vm.pte_encode = iris_pte_encode;
1035 	else if (IS_HASWELL(i915))
1036 		ggtt->vm.pte_encode = hsw_pte_encode;
1037 	else if (IS_VALLEYVIEW(i915))
1038 		ggtt->vm.pte_encode = byt_pte_encode;
1039 	else if (INTEL_GEN(i915) >= 7)
1040 		ggtt->vm.pte_encode = ivb_pte_encode;
1041 	else
1042 		ggtt->vm.pte_encode = snb_pte_encode;
1043 
1044 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1045 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1046 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1047 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1048 
1049 	return ggtt_probe_common(ggtt, size);
1050 }
1051 
1052 static void i915_gmch_remove(struct i915_address_space *vm)
1053 {
1054 	intel_gmch_remove();
1055 }
1056 
1057 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1058 {
1059 	struct drm_i915_private *i915 = ggtt->vm.i915;
1060 	phys_addr_t gmadr_base;
1061 	int ret;
1062 
1063 	ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
1064 	if (!ret) {
1065 		drm_err(&i915->drm, "failed to set up gmch\n");
1066 		return -EIO;
1067 	}
1068 
1069 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1070 
1071 	ggtt->gmadr =
1072 		(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1073 
1074 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1075 
1076 	ggtt->do_idle_maps = needs_idle_maps(i915);
1077 	ggtt->vm.insert_page = i915_ggtt_insert_page;
1078 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1079 	ggtt->vm.clear_range = i915_ggtt_clear_range;
1080 	ggtt->vm.cleanup = i915_gmch_remove;
1081 
1082 	ggtt->invalidate = gmch_ggtt_invalidate;
1083 
1084 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1085 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1086 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1087 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1088 
1089 	if (unlikely(ggtt->do_idle_maps))
1090 		drm_notice(&i915->drm,
1091 			   "Applying Ironlake quirks for intel_iommu\n");
1092 
1093 	return 0;
1094 }
1095 
1096 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1097 {
1098 	struct drm_i915_private *i915 = gt->i915;
1099 	int ret;
1100 
1101 	ggtt->vm.gt = gt;
1102 	ggtt->vm.i915 = i915;
1103 	ggtt->vm.dma = &i915->drm.pdev->dev;
1104 
1105 	if (INTEL_GEN(i915) <= 5)
1106 		ret = i915_gmch_probe(ggtt);
1107 	else if (INTEL_GEN(i915) < 8)
1108 		ret = gen6_gmch_probe(ggtt);
1109 	else
1110 		ret = gen8_gmch_probe(ggtt);
1111 	if (ret)
1112 		return ret;
1113 
1114 	if ((ggtt->vm.total - 1) >> 32) {
1115 		drm_err(&i915->drm,
1116 			"We never expected a Global GTT with more than 32bits"
1117 			" of address space! Found %lldM!\n",
1118 			ggtt->vm.total >> 20);
1119 		ggtt->vm.total = 1ULL << 32;
1120 		ggtt->mappable_end =
1121 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1122 	}
1123 
1124 	if (ggtt->mappable_end > ggtt->vm.total) {
1125 		drm_err(&i915->drm,
1126 			"mappable aperture extends past end of GGTT,"
1127 			" aperture=%pa, total=%llx\n",
1128 			&ggtt->mappable_end, ggtt->vm.total);
1129 		ggtt->mappable_end = ggtt->vm.total;
1130 	}
1131 
1132 	/* GMADR is the PCI mmio aperture into the global GTT. */
1133 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1134 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1135 		(u64)ggtt->mappable_end >> 20);
1136 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1137 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1138 
1139 	return 0;
1140 }
1141 
1142 /**
1143  * i915_ggtt_probe_hw - Probe GGTT hardware location
1144  * @i915: i915 device
1145  */
1146 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1147 {
1148 	int ret;
1149 
1150 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1151 	if (ret)
1152 		return ret;
1153 
1154 	if (intel_vtd_active())
1155 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1156 
1157 	return 0;
1158 }
1159 
1160 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1161 {
1162 	if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
1163 		return -EIO;
1164 
1165 	return 0;
1166 }
1167 
1168 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1169 {
1170 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1171 
1172 	ggtt->invalidate = guc_ggtt_invalidate;
1173 
1174 	ggtt->invalidate(ggtt);
1175 }
1176 
1177 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1178 {
1179 	/* XXX Temporary pardon for error unload */
1180 	if (ggtt->invalidate == gen8_ggtt_invalidate)
1181 		return;
1182 
1183 	/* We should only be called after i915_ggtt_enable_guc() */
1184 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1185 
1186 	ggtt->invalidate = gen8_ggtt_invalidate;
1187 
1188 	ggtt->invalidate(ggtt);
1189 }
1190 
1191 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1192 {
1193 	struct i915_vma *vma;
1194 	bool flush = false;
1195 	int open;
1196 
1197 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
1198 
1199 	/* First fill our portion of the GTT with scratch pages */
1200 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1201 
1202 	/* Skip rewriting PTE on VMA unbind. */
1203 	open = atomic_xchg(&ggtt->vm.open, 0);
1204 
1205 	/* clflush objects bound into the GGTT and rebind them. */
1206 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1207 		struct drm_i915_gem_object *obj = vma->obj;
1208 		unsigned int was_bound =
1209 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1210 
1211 		GEM_BUG_ON(!was_bound);
1212 		vma->ops->bind_vma(&ggtt->vm, NULL, vma,
1213 				   obj ? obj->cache_level : 0,
1214 				   was_bound);
1215 		if (obj) { /* only used during resume => exclusive access */
1216 			flush |= fetch_and_zero(&obj->write_domain);
1217 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1218 		}
1219 	}
1220 
1221 	atomic_set(&ggtt->vm.open, open);
1222 	ggtt->invalidate(ggtt);
1223 
1224 	if (flush)
1225 		wbinvd_on_all_cpus();
1226 
1227 	if (INTEL_GEN(ggtt->vm.i915) >= 8)
1228 		setup_private_pat(ggtt->vm.gt->uncore);
1229 
1230 	intel_ggtt_restore_fences(ggtt);
1231 }
1232 
1233 static struct scatterlist *
1234 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1235 	     unsigned int width, unsigned int height,
1236 	     unsigned int stride,
1237 	     struct sg_table *st, struct scatterlist *sg)
1238 {
1239 	unsigned int column, row;
1240 	unsigned int src_idx;
1241 
1242 	for (column = 0; column < width; column++) {
1243 		src_idx = stride * (height - 1) + column + offset;
1244 		for (row = 0; row < height; row++) {
1245 			st->nents++;
1246 			/*
1247 			 * We don't need the pages, but need to initialize
1248 			 * the entries so the sg list can be happily traversed.
1249 			 * The only thing we need are DMA addresses.
1250 			 */
1251 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1252 			sg_dma_address(sg) =
1253 				i915_gem_object_get_dma_address(obj, src_idx);
1254 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1255 			sg = sg_next(sg);
1256 			src_idx -= stride;
1257 		}
1258 	}
1259 
1260 	return sg;
1261 }
1262 
1263 static noinline struct sg_table *
1264 intel_rotate_pages(struct intel_rotation_info *rot_info,
1265 		   struct drm_i915_gem_object *obj)
1266 {
1267 	unsigned int size = intel_rotation_info_size(rot_info);
1268 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1269 	struct sg_table *st;
1270 	struct scatterlist *sg;
1271 	int ret = -ENOMEM;
1272 	int i;
1273 
1274 	/* Allocate target SG list. */
1275 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1276 	if (!st)
1277 		goto err_st_alloc;
1278 
1279 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1280 	if (ret)
1281 		goto err_sg_alloc;
1282 
1283 	st->nents = 0;
1284 	sg = st->sgl;
1285 
1286 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
1287 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1288 				  rot_info->plane[i].width, rot_info->plane[i].height,
1289 				  rot_info->plane[i].stride, st, sg);
1290 	}
1291 
1292 	return st;
1293 
1294 err_sg_alloc:
1295 	kfree(st);
1296 err_st_alloc:
1297 
1298 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1299 		obj->base.size, rot_info->plane[0].width,
1300 		rot_info->plane[0].height, size);
1301 
1302 	return ERR_PTR(ret);
1303 }
1304 
1305 static struct scatterlist *
1306 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1307 	    unsigned int width, unsigned int height,
1308 	    unsigned int stride,
1309 	    struct sg_table *st, struct scatterlist *sg)
1310 {
1311 	unsigned int row;
1312 
1313 	for (row = 0; row < height; row++) {
1314 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1315 
1316 		while (left) {
1317 			dma_addr_t addr;
1318 			unsigned int length;
1319 
1320 			/*
1321 			 * We don't need the pages, but need to initialize
1322 			 * the entries so the sg list can be happily traversed.
1323 			 * The only thing we need are DMA addresses.
1324 			 */
1325 
1326 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1327 
1328 			length = min(left, length);
1329 
1330 			st->nents++;
1331 
1332 			sg_set_page(sg, NULL, length, 0);
1333 			sg_dma_address(sg) = addr;
1334 			sg_dma_len(sg) = length;
1335 			sg = sg_next(sg);
1336 
1337 			offset += length / I915_GTT_PAGE_SIZE;
1338 			left -= length;
1339 		}
1340 
1341 		offset += stride - width;
1342 	}
1343 
1344 	return sg;
1345 }
1346 
1347 static noinline struct sg_table *
1348 intel_remap_pages(struct intel_remapped_info *rem_info,
1349 		  struct drm_i915_gem_object *obj)
1350 {
1351 	unsigned int size = intel_remapped_info_size(rem_info);
1352 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1353 	struct sg_table *st;
1354 	struct scatterlist *sg;
1355 	int ret = -ENOMEM;
1356 	int i;
1357 
1358 	/* Allocate target SG list. */
1359 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1360 	if (!st)
1361 		goto err_st_alloc;
1362 
1363 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1364 	if (ret)
1365 		goto err_sg_alloc;
1366 
1367 	st->nents = 0;
1368 	sg = st->sgl;
1369 
1370 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1371 		sg = remap_pages(obj, rem_info->plane[i].offset,
1372 				 rem_info->plane[i].width, rem_info->plane[i].height,
1373 				 rem_info->plane[i].stride, st, sg);
1374 	}
1375 
1376 	i915_sg_trim(st);
1377 
1378 	return st;
1379 
1380 err_sg_alloc:
1381 	kfree(st);
1382 err_st_alloc:
1383 
1384 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1385 		obj->base.size, rem_info->plane[0].width,
1386 		rem_info->plane[0].height, size);
1387 
1388 	return ERR_PTR(ret);
1389 }
1390 
1391 static noinline struct sg_table *
1392 intel_partial_pages(const struct i915_ggtt_view *view,
1393 		    struct drm_i915_gem_object *obj)
1394 {
1395 	struct sg_table *st;
1396 	struct scatterlist *sg, *iter;
1397 	unsigned int count = view->partial.size;
1398 	unsigned int offset;
1399 	int ret = -ENOMEM;
1400 
1401 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1402 	if (!st)
1403 		goto err_st_alloc;
1404 
1405 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1406 	if (ret)
1407 		goto err_sg_alloc;
1408 
1409 	iter = i915_gem_object_get_sg_dma(obj, view->partial.offset, &offset);
1410 	GEM_BUG_ON(!iter);
1411 
1412 	sg = st->sgl;
1413 	st->nents = 0;
1414 	do {
1415 		unsigned int len;
1416 
1417 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1418 			  count << PAGE_SHIFT);
1419 		sg_set_page(sg, NULL, len, 0);
1420 		sg_dma_address(sg) =
1421 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1422 		sg_dma_len(sg) = len;
1423 
1424 		st->nents++;
1425 		count -= len >> PAGE_SHIFT;
1426 		if (count == 0) {
1427 			sg_mark_end(sg);
1428 			i915_sg_trim(st); /* Drop any unused tail entries. */
1429 
1430 			return st;
1431 		}
1432 
1433 		sg = __sg_next(sg);
1434 		iter = __sg_next(iter);
1435 		offset = 0;
1436 	} while (1);
1437 
1438 err_sg_alloc:
1439 	kfree(st);
1440 err_st_alloc:
1441 	return ERR_PTR(ret);
1442 }
1443 
1444 static int
1445 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1446 {
1447 	int ret;
1448 
1449 	/*
1450 	 * The vma->pages are only valid within the lifespan of the borrowed
1451 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1452 	 * must be the vma->pages. A simple rule is that vma->pages must only
1453 	 * be accessed when the obj->mm.pages are pinned.
1454 	 */
1455 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1456 
1457 	switch (vma->ggtt_view.type) {
1458 	default:
1459 		GEM_BUG_ON(vma->ggtt_view.type);
1460 		fallthrough;
1461 	case I915_GGTT_VIEW_NORMAL:
1462 		vma->pages = vma->obj->mm.pages;
1463 		return 0;
1464 
1465 	case I915_GGTT_VIEW_ROTATED:
1466 		vma->pages =
1467 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1468 		break;
1469 
1470 	case I915_GGTT_VIEW_REMAPPED:
1471 		vma->pages =
1472 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1473 		break;
1474 
1475 	case I915_GGTT_VIEW_PARTIAL:
1476 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1477 		break;
1478 	}
1479 
1480 	ret = 0;
1481 	if (IS_ERR(vma->pages)) {
1482 		ret = PTR_ERR(vma->pages);
1483 		vma->pages = NULL;
1484 		drm_err(&vma->vm->i915->drm,
1485 			"Failed to get pages for VMA view type %u (%d)!\n",
1486 			vma->ggtt_view.type, ret);
1487 	}
1488 	return ret;
1489 }
1490