1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/agp_backend.h> 7 #include <linux/stop_machine.h> 8 9 #include <asm/set_memory.h> 10 #include <asm/smp.h> 11 12 #include <drm/i915_drm.h> 13 #include <drm/intel-gtt.h> 14 15 #include "gem/i915_gem_lmem.h" 16 17 #include "intel_gt.h" 18 #include "intel_gt_regs.h" 19 #include "i915_drv.h" 20 #include "i915_scatterlist.h" 21 #include "i915_utils.h" 22 #include "i915_vgpu.h" 23 24 #include "intel_gtt.h" 25 #include "gen8_ppgtt.h" 26 27 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 28 unsigned long color, 29 u64 *start, 30 u64 *end) 31 { 32 if (i915_node_color_differs(node, color)) 33 *start += I915_GTT_PAGE_SIZE; 34 35 /* 36 * Also leave a space between the unallocated reserved node after the 37 * GTT and any objects within the GTT, i.e. we use the color adjustment 38 * to insert a guard page to prevent prefetches crossing over the 39 * GTT boundary. 40 */ 41 node = list_next_entry(node, node_list); 42 if (node->color != color) 43 *end -= I915_GTT_PAGE_SIZE; 44 } 45 46 static int ggtt_init_hw(struct i915_ggtt *ggtt) 47 { 48 struct drm_i915_private *i915 = ggtt->vm.i915; 49 50 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 51 52 ggtt->vm.is_ggtt = true; 53 54 /* Only VLV supports read-only GGTT mappings */ 55 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 56 57 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 58 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 59 60 if (ggtt->mappable_end) { 61 if (!io_mapping_init_wc(&ggtt->iomap, 62 ggtt->gmadr.start, 63 ggtt->mappable_end)) { 64 ggtt->vm.cleanup(&ggtt->vm); 65 return -EIO; 66 } 67 68 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 69 ggtt->mappable_end); 70 } 71 72 intel_ggtt_init_fences(ggtt); 73 74 return 0; 75 } 76 77 /** 78 * i915_ggtt_init_hw - Initialize GGTT hardware 79 * @i915: i915 device 80 */ 81 int i915_ggtt_init_hw(struct drm_i915_private *i915) 82 { 83 int ret; 84 85 /* 86 * Note that we use page colouring to enforce a guard page at the 87 * end of the address space. This is required as the CS may prefetch 88 * beyond the end of the batch buffer, across the page boundary, 89 * and beyond the end of the GTT if we do not provide a guard. 90 */ 91 ret = ggtt_init_hw(to_gt(i915)->ggtt); 92 if (ret) 93 return ret; 94 95 return 0; 96 } 97 98 /* 99 * Certain Gen5 chipsets require idling the GPU before 100 * unmapping anything from the GTT when VT-d is enabled. 101 */ 102 static bool needs_idle_maps(struct drm_i915_private *i915) 103 { 104 /* 105 * Query intel_iommu to see if we need the workaround. Presumably that 106 * was loaded first. 107 */ 108 if (!i915_vtd_active(i915)) 109 return false; 110 111 if (GRAPHICS_VER(i915) == 5 && IS_MOBILE(i915)) 112 return true; 113 114 if (GRAPHICS_VER(i915) == 12) 115 return true; /* XXX DMAR fault reason 7 */ 116 117 return false; 118 } 119 120 /** 121 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 122 * @vm: The VM to suspend the mappings for 123 * 124 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 125 * DPT page table. 126 */ 127 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 128 { 129 struct i915_vma *vma, *vn; 130 int open; 131 132 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 133 134 retry: 135 i915_gem_drain_freed_objects(vm->i915); 136 137 mutex_lock(&vm->mutex); 138 139 /* Skip rewriting PTE on VMA unbind. */ 140 open = atomic_xchg(&vm->open, 0); 141 142 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 143 struct drm_i915_gem_object *obj = vma->obj; 144 145 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 146 147 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 148 continue; 149 150 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 151 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 152 /* 153 * No dead objects should appear here, GPU should be 154 * completely idle, and userspace suspended 155 */ 156 i915_gem_object_get(obj); 157 158 atomic_set(&vm->open, open); 159 mutex_unlock(&vm->mutex); 160 161 i915_gem_object_lock(obj, NULL); 162 open = i915_vma_unbind(vma); 163 i915_gem_object_unlock(obj); 164 165 GEM_WARN_ON(open); 166 167 i915_gem_object_put(obj); 168 goto retry; 169 } 170 171 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 172 i915_vma_wait_for_bind(vma); 173 174 __i915_vma_evict(vma, false); 175 drm_mm_remove_node(&vma->node); 176 } 177 178 i915_gem_object_unlock(obj); 179 } 180 181 vm->clear_range(vm, 0, vm->total); 182 183 atomic_set(&vm->open, open); 184 185 mutex_unlock(&vm->mutex); 186 } 187 188 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 189 { 190 i915_ggtt_suspend_vm(&ggtt->vm); 191 ggtt->invalidate(ggtt); 192 193 intel_gt_check_and_clear_faults(ggtt->vm.gt); 194 } 195 196 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 197 { 198 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 199 200 spin_lock_irq(&uncore->lock); 201 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 202 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 203 spin_unlock_irq(&uncore->lock); 204 } 205 206 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 207 { 208 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 209 210 /* 211 * Note that as an uncached mmio write, this will flush the 212 * WCB of the writes into the GGTT before it triggers the invalidate. 213 */ 214 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 215 } 216 217 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 218 { 219 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 220 struct drm_i915_private *i915 = ggtt->vm.i915; 221 222 gen8_ggtt_invalidate(ggtt); 223 224 if (GRAPHICS_VER(i915) >= 12) 225 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR, 226 GEN12_GUC_TLB_INV_CR_INVALIDATE); 227 else 228 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); 229 } 230 231 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt) 232 { 233 intel_gtt_chipset_flush(); 234 } 235 236 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 237 enum i915_cache_level level, 238 u32 flags) 239 { 240 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 241 242 if (flags & PTE_LM) 243 pte |= GEN12_GGTT_PTE_LM; 244 245 return pte; 246 } 247 248 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 249 { 250 writeq(pte, addr); 251 } 252 253 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 254 dma_addr_t addr, 255 u64 offset, 256 enum i915_cache_level level, 257 u32 flags) 258 { 259 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 260 gen8_pte_t __iomem *pte = 261 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 262 263 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags)); 264 265 ggtt->invalidate(ggtt); 266 } 267 268 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 269 struct i915_vma_resource *vma_res, 270 enum i915_cache_level level, 271 u32 flags) 272 { 273 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags); 274 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 275 gen8_pte_t __iomem *gte; 276 gen8_pte_t __iomem *end; 277 struct sgt_iter iter; 278 dma_addr_t addr; 279 280 /* 281 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 282 * not to allow the user to override access to a read only page. 283 */ 284 285 gte = (gen8_pte_t __iomem *)ggtt->gsm; 286 gte += vma_res->start / I915_GTT_PAGE_SIZE; 287 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE; 288 289 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 290 gen8_set_pte(gte++, pte_encode | addr); 291 GEM_BUG_ON(gte > end); 292 293 /* Fill the allocated but "unused" space beyond the end of the buffer */ 294 while (gte < end) 295 gen8_set_pte(gte++, vm->scratch[0]->encode); 296 297 /* 298 * We want to flush the TLBs only after we're certain all the PTE 299 * updates have finished. 300 */ 301 ggtt->invalidate(ggtt); 302 } 303 304 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 305 dma_addr_t addr, 306 u64 offset, 307 enum i915_cache_level level, 308 u32 flags) 309 { 310 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 311 gen6_pte_t __iomem *pte = 312 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 313 314 iowrite32(vm->pte_encode(addr, level, flags), pte); 315 316 ggtt->invalidate(ggtt); 317 } 318 319 /* 320 * Binds an object into the global gtt with the specified cache level. 321 * The object will be accessible to the GPU via commands whose operands 322 * reference offsets within the global GTT as well as accessible by the GPU 323 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 324 */ 325 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 326 struct i915_vma_resource *vma_res, 327 enum i915_cache_level level, 328 u32 flags) 329 { 330 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 331 gen6_pte_t __iomem *gte; 332 gen6_pte_t __iomem *end; 333 struct sgt_iter iter; 334 dma_addr_t addr; 335 336 gte = (gen6_pte_t __iomem *)ggtt->gsm; 337 gte += vma_res->start / I915_GTT_PAGE_SIZE; 338 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE; 339 340 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 341 iowrite32(vm->pte_encode(addr, level, flags), gte++); 342 GEM_BUG_ON(gte > end); 343 344 /* Fill the allocated but "unused" space beyond the end of the buffer */ 345 while (gte < end) 346 iowrite32(vm->scratch[0]->encode, gte++); 347 348 /* 349 * We want to flush the TLBs only after we're certain all the PTE 350 * updates have finished. 351 */ 352 ggtt->invalidate(ggtt); 353 } 354 355 static void nop_clear_range(struct i915_address_space *vm, 356 u64 start, u64 length) 357 { 358 } 359 360 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 361 u64 start, u64 length) 362 { 363 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 364 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 365 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 366 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 367 gen8_pte_t __iomem *gtt_base = 368 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 369 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 370 int i; 371 372 if (WARN(num_entries > max_entries, 373 "First entry = %d; Num entries = %d (max=%d)\n", 374 first_entry, num_entries, max_entries)) 375 num_entries = max_entries; 376 377 for (i = 0; i < num_entries; i++) 378 gen8_set_pte(>t_base[i], scratch_pte); 379 } 380 381 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 382 { 383 /* 384 * Make sure the internal GAM fifo has been cleared of all GTT 385 * writes before exiting stop_machine(). This guarantees that 386 * any aperture accesses waiting to start in another process 387 * cannot back up behind the GTT writes causing a hang. 388 * The register can be any arbitrary GAM register. 389 */ 390 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 391 } 392 393 struct insert_page { 394 struct i915_address_space *vm; 395 dma_addr_t addr; 396 u64 offset; 397 enum i915_cache_level level; 398 }; 399 400 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 401 { 402 struct insert_page *arg = _arg; 403 404 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 405 bxt_vtd_ggtt_wa(arg->vm); 406 407 return 0; 408 } 409 410 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 411 dma_addr_t addr, 412 u64 offset, 413 enum i915_cache_level level, 414 u32 unused) 415 { 416 struct insert_page arg = { vm, addr, offset, level }; 417 418 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 419 } 420 421 struct insert_entries { 422 struct i915_address_space *vm; 423 struct i915_vma_resource *vma_res; 424 enum i915_cache_level level; 425 u32 flags; 426 }; 427 428 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 429 { 430 struct insert_entries *arg = _arg; 431 432 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags); 433 bxt_vtd_ggtt_wa(arg->vm); 434 435 return 0; 436 } 437 438 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 439 struct i915_vma_resource *vma_res, 440 enum i915_cache_level level, 441 u32 flags) 442 { 443 struct insert_entries arg = { vm, vma_res, level, flags }; 444 445 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 446 } 447 448 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 449 u64 start, u64 length) 450 { 451 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 452 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 453 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 454 gen6_pte_t scratch_pte, __iomem *gtt_base = 455 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 456 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 457 int i; 458 459 if (WARN(num_entries > max_entries, 460 "First entry = %d; Num entries = %d (max=%d)\n", 461 first_entry, num_entries, max_entries)) 462 num_entries = max_entries; 463 464 scratch_pte = vm->scratch[0]->encode; 465 for (i = 0; i < num_entries; i++) 466 iowrite32(scratch_pte, >t_base[i]); 467 } 468 469 static void i915_ggtt_insert_page(struct i915_address_space *vm, 470 dma_addr_t addr, 471 u64 offset, 472 enum i915_cache_level cache_level, 473 u32 unused) 474 { 475 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 476 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 477 478 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 479 } 480 481 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 482 struct i915_vma_resource *vma_res, 483 enum i915_cache_level cache_level, 484 u32 unused) 485 { 486 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 487 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 488 489 intel_gtt_insert_sg_entries(vma_res->bi.pages, vma_res->start >> PAGE_SHIFT, 490 flags); 491 } 492 493 static void i915_ggtt_clear_range(struct i915_address_space *vm, 494 u64 start, u64 length) 495 { 496 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 497 } 498 499 static void ggtt_bind_vma(struct i915_address_space *vm, 500 struct i915_vm_pt_stash *stash, 501 struct i915_vma_resource *vma_res, 502 enum i915_cache_level cache_level, 503 u32 flags) 504 { 505 u32 pte_flags; 506 507 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 508 return; 509 510 vma_res->bound_flags |= flags; 511 512 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 513 pte_flags = 0; 514 if (vma_res->bi.readonly) 515 pte_flags |= PTE_READ_ONLY; 516 if (vma_res->bi.lmem) 517 pte_flags |= PTE_LM; 518 519 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 520 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 521 } 522 523 static void ggtt_unbind_vma(struct i915_address_space *vm, 524 struct i915_vma_resource *vma_res) 525 { 526 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 527 } 528 529 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 530 { 531 u64 size; 532 int ret; 533 534 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 535 return 0; 536 537 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 538 size = ggtt->vm.total - GUC_GGTT_TOP; 539 540 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size, 541 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 542 PIN_NOEVICT); 543 if (ret) 544 drm_dbg(&ggtt->vm.i915->drm, 545 "Failed to reserve top of GGTT for GuC\n"); 546 547 return ret; 548 } 549 550 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 551 { 552 if (drm_mm_node_allocated(&ggtt->uc_fw)) 553 drm_mm_remove_node(&ggtt->uc_fw); 554 } 555 556 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 557 { 558 ggtt_release_guc_top(ggtt); 559 if (drm_mm_node_allocated(&ggtt->error_capture)) 560 drm_mm_remove_node(&ggtt->error_capture); 561 mutex_destroy(&ggtt->error_mutex); 562 } 563 564 static int init_ggtt(struct i915_ggtt *ggtt) 565 { 566 /* 567 * Let GEM Manage all of the aperture. 568 * 569 * However, leave one page at the end still bound to the scratch page. 570 * There are a number of places where the hardware apparently prefetches 571 * past the end of the object, and we've seen multiple hangs with the 572 * GPU head pointer stuck in a batchbuffer bound at the last page of the 573 * aperture. One page should be enough to keep any prefetching inside 574 * of the aperture. 575 */ 576 unsigned long hole_start, hole_end; 577 struct drm_mm_node *entry; 578 int ret; 579 580 /* 581 * GuC requires all resources that we're sharing with it to be placed in 582 * non-WOPCM memory. If GuC is not present or not in use we still need a 583 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 584 * why. 585 */ 586 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 587 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm)); 588 589 ret = intel_vgt_balloon(ggtt); 590 if (ret) 591 return ret; 592 593 mutex_init(&ggtt->error_mutex); 594 if (ggtt->mappable_end) { 595 /* 596 * Reserve a mappable slot for our lockless error capture. 597 * 598 * We strongly prefer taking address 0x0 in order to protect 599 * other critical buffers against accidental overwrites, 600 * as writing to address 0 is a very common mistake. 601 * 602 * Since 0 may already be in use by the system (e.g. the BIOS 603 * framebuffer), we let the reservation fail quietly and hope 604 * 0 remains reserved always. 605 * 606 * If we fail to reserve 0, and then fail to find any space 607 * for an error-capture, remain silent. We can afford not 608 * to reserve an error_capture node as we have fallback 609 * paths, and we trust that 0 will remain reserved. However, 610 * the only likely reason for failure to insert is a driver 611 * bug, which we expect to cause other failures... 612 */ 613 ggtt->error_capture.size = I915_GTT_PAGE_SIZE; 614 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 615 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 616 drm_mm_insert_node_in_range(&ggtt->vm.mm, 617 &ggtt->error_capture, 618 ggtt->error_capture.size, 0, 619 ggtt->error_capture.color, 620 0, ggtt->mappable_end, 621 DRM_MM_INSERT_LOW); 622 } 623 if (drm_mm_node_allocated(&ggtt->error_capture)) 624 drm_dbg(&ggtt->vm.i915->drm, 625 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 626 ggtt->error_capture.start, 627 ggtt->error_capture.start + ggtt->error_capture.size); 628 629 /* 630 * The upper portion of the GuC address space has a sizeable hole 631 * (several MB) that is inaccessible by GuC. Reserve this range within 632 * GGTT as it can comfortably hold GuC/HuC firmware images. 633 */ 634 ret = ggtt_reserve_guc_top(ggtt); 635 if (ret) 636 goto err; 637 638 /* Clear any non-preallocated blocks */ 639 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 640 drm_dbg(&ggtt->vm.i915->drm, 641 "clearing unused GTT space: [%lx, %lx]\n", 642 hole_start, hole_end); 643 ggtt->vm.clear_range(&ggtt->vm, hole_start, 644 hole_end - hole_start); 645 } 646 647 /* And finally clear the reserved guard page */ 648 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 649 650 return 0; 651 652 err: 653 cleanup_init_ggtt(ggtt); 654 return ret; 655 } 656 657 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 658 struct i915_vm_pt_stash *stash, 659 struct i915_vma_resource *vma_res, 660 enum i915_cache_level cache_level, 661 u32 flags) 662 { 663 u32 pte_flags; 664 665 /* Currently applicable only to VLV */ 666 pte_flags = 0; 667 if (vma_res->bi.readonly) 668 pte_flags |= PTE_READ_ONLY; 669 670 if (flags & I915_VMA_LOCAL_BIND) 671 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 672 stash, vma_res, cache_level, flags); 673 674 if (flags & I915_VMA_GLOBAL_BIND) 675 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 676 677 vma_res->bound_flags |= flags; 678 } 679 680 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 681 struct i915_vma_resource *vma_res) 682 { 683 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 684 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 685 686 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 687 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 688 } 689 690 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 691 { 692 struct i915_vm_pt_stash stash = {}; 693 struct i915_ppgtt *ppgtt; 694 int err; 695 696 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 697 if (IS_ERR(ppgtt)) 698 return PTR_ERR(ppgtt); 699 700 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 701 err = -ENODEV; 702 goto err_ppgtt; 703 } 704 705 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 706 if (err) 707 goto err_ppgtt; 708 709 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 710 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 711 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 712 if (err) 713 goto err_stash; 714 715 /* 716 * Note we only pre-allocate as far as the end of the global 717 * GTT. On 48b / 4-level page-tables, the difference is very, 718 * very significant! We have to preallocate as GVT/vgpu does 719 * not like the page directory disappearing. 720 */ 721 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 722 723 ggtt->alias = ppgtt; 724 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 725 726 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); 727 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 728 729 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); 730 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 731 732 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 733 return 0; 734 735 err_stash: 736 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 737 err_ppgtt: 738 i915_vm_put(&ppgtt->vm); 739 return err; 740 } 741 742 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 743 { 744 struct i915_ppgtt *ppgtt; 745 746 ppgtt = fetch_and_zero(&ggtt->alias); 747 if (!ppgtt) 748 return; 749 750 i915_vm_put(&ppgtt->vm); 751 752 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 753 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 754 } 755 756 int i915_init_ggtt(struct drm_i915_private *i915) 757 { 758 int ret; 759 760 ret = init_ggtt(to_gt(i915)->ggtt); 761 if (ret) 762 return ret; 763 764 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 765 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 766 if (ret) 767 cleanup_init_ggtt(to_gt(i915)->ggtt); 768 } 769 770 return 0; 771 } 772 773 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 774 { 775 struct i915_vma *vma, *vn; 776 777 atomic_set(&ggtt->vm.open, 0); 778 779 flush_workqueue(ggtt->vm.i915->wq); 780 i915_gem_drain_freed_objects(ggtt->vm.i915); 781 782 mutex_lock(&ggtt->vm.mutex); 783 784 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 785 struct drm_i915_gem_object *obj = vma->obj; 786 bool trylock; 787 788 trylock = i915_gem_object_trylock(obj, NULL); 789 WARN_ON(!trylock); 790 791 WARN_ON(__i915_vma_unbind(vma)); 792 if (trylock) 793 i915_gem_object_unlock(obj); 794 } 795 796 if (drm_mm_node_allocated(&ggtt->error_capture)) 797 drm_mm_remove_node(&ggtt->error_capture); 798 mutex_destroy(&ggtt->error_mutex); 799 800 ggtt_release_guc_top(ggtt); 801 intel_vgt_deballoon(ggtt); 802 803 ggtt->vm.cleanup(&ggtt->vm); 804 805 mutex_unlock(&ggtt->vm.mutex); 806 i915_address_space_fini(&ggtt->vm); 807 808 arch_phys_wc_del(ggtt->mtrr); 809 810 if (ggtt->iomap.size) 811 io_mapping_fini(&ggtt->iomap); 812 } 813 814 /** 815 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 816 * @i915: i915 device 817 */ 818 void i915_ggtt_driver_release(struct drm_i915_private *i915) 819 { 820 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 821 822 fini_aliasing_ppgtt(ggtt); 823 824 intel_ggtt_fini_fences(ggtt); 825 ggtt_cleanup_hw(ggtt); 826 } 827 828 /** 829 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 830 * all free objects have been drained. 831 * @i915: i915 device 832 */ 833 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 834 { 835 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 836 837 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 838 dma_resv_fini(&ggtt->vm._resv); 839 } 840 841 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 842 { 843 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 844 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 845 return snb_gmch_ctl << 20; 846 } 847 848 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 849 { 850 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 851 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 852 if (bdw_gmch_ctl) 853 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 854 855 #ifdef CONFIG_X86_32 856 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 857 if (bdw_gmch_ctl > 4) 858 bdw_gmch_ctl = 4; 859 #endif 860 861 return bdw_gmch_ctl << 20; 862 } 863 864 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 865 { 866 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 867 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 868 869 if (gmch_ctrl) 870 return 1 << (20 + gmch_ctrl); 871 872 return 0; 873 } 874 875 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 876 { 877 /* 878 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 879 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 880 */ 881 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 882 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 883 } 884 885 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 886 { 887 return gen6_gttmmadr_size(i915) / 2; 888 } 889 890 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 891 { 892 struct drm_i915_private *i915 = ggtt->vm.i915; 893 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 894 phys_addr_t phys_addr; 895 u32 pte_flags; 896 int ret; 897 898 GEM_WARN_ON(pci_resource_len(pdev, 0) != gen6_gttmmadr_size(i915)); 899 phys_addr = pci_resource_start(pdev, 0) + gen6_gttadr_offset(i915); 900 901 /* 902 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 903 * will be dropped. For WC mappings in general we have 64 byte burst 904 * writes when the WC buffer is flushed, so we can't use it, but have to 905 * resort to an uncached mapping. The WC issue is easily caught by the 906 * readback check when writing GTT PTE entries. 907 */ 908 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 909 ggtt->gsm = ioremap(phys_addr, size); 910 else 911 ggtt->gsm = ioremap_wc(phys_addr, size); 912 if (!ggtt->gsm) { 913 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 914 return -ENOMEM; 915 } 916 917 kref_init(&ggtt->vm.resv_ref); 918 ret = setup_scratch_page(&ggtt->vm); 919 if (ret) { 920 drm_err(&i915->drm, "Scratch setup failed\n"); 921 /* iounmap will also get called at remove, but meh */ 922 iounmap(ggtt->gsm); 923 return ret; 924 } 925 926 pte_flags = 0; 927 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 928 pte_flags |= PTE_LM; 929 930 ggtt->vm.scratch[0]->encode = 931 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 932 I915_CACHE_NONE, pte_flags); 933 934 return 0; 935 } 936 937 static void gen6_gmch_remove(struct i915_address_space *vm) 938 { 939 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 940 941 iounmap(ggtt->gsm); 942 free_scratch(vm); 943 } 944 945 static struct resource pci_resource(struct pci_dev *pdev, int bar) 946 { 947 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar), 948 pci_resource_len(pdev, bar)); 949 } 950 951 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 952 { 953 struct drm_i915_private *i915 = ggtt->vm.i915; 954 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 955 unsigned int size; 956 u16 snb_gmch_ctl; 957 958 /* TODO: We're not aware of mappable constraints on gen8 yet */ 959 if (!HAS_LMEM(i915)) { 960 ggtt->gmadr = pci_resource(pdev, 2); 961 ggtt->mappable_end = resource_size(&ggtt->gmadr); 962 } 963 964 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 965 if (IS_CHERRYVIEW(i915)) 966 size = chv_get_total_gtt_size(snb_gmch_ctl); 967 else 968 size = gen8_get_total_gtt_size(snb_gmch_ctl); 969 970 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 971 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 972 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 973 974 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 975 ggtt->vm.cleanup = gen6_gmch_remove; 976 ggtt->vm.insert_page = gen8_ggtt_insert_page; 977 ggtt->vm.clear_range = nop_clear_range; 978 if (intel_scanout_needs_vtd_wa(i915)) 979 ggtt->vm.clear_range = gen8_ggtt_clear_range; 980 981 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 982 983 /* 984 * Serialize GTT updates with aperture access on BXT if VT-d is on, 985 * and always on CHV. 986 */ 987 if (intel_vm_no_concurrent_access_wa(i915)) { 988 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 989 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 990 ggtt->vm.bind_async_flags = 991 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 992 } 993 994 ggtt->invalidate = gen8_ggtt_invalidate; 995 996 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 997 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 998 999 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 1000 1001 setup_private_pat(ggtt->vm.gt->uncore); 1002 1003 return ggtt_probe_common(ggtt, size); 1004 } 1005 1006 static u64 snb_pte_encode(dma_addr_t addr, 1007 enum i915_cache_level level, 1008 u32 flags) 1009 { 1010 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1011 1012 switch (level) { 1013 case I915_CACHE_L3_LLC: 1014 case I915_CACHE_LLC: 1015 pte |= GEN6_PTE_CACHE_LLC; 1016 break; 1017 case I915_CACHE_NONE: 1018 pte |= GEN6_PTE_UNCACHED; 1019 break; 1020 default: 1021 MISSING_CASE(level); 1022 } 1023 1024 return pte; 1025 } 1026 1027 static u64 ivb_pte_encode(dma_addr_t addr, 1028 enum i915_cache_level level, 1029 u32 flags) 1030 { 1031 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1032 1033 switch (level) { 1034 case I915_CACHE_L3_LLC: 1035 pte |= GEN7_PTE_CACHE_L3_LLC; 1036 break; 1037 case I915_CACHE_LLC: 1038 pte |= GEN6_PTE_CACHE_LLC; 1039 break; 1040 case I915_CACHE_NONE: 1041 pte |= GEN6_PTE_UNCACHED; 1042 break; 1043 default: 1044 MISSING_CASE(level); 1045 } 1046 1047 return pte; 1048 } 1049 1050 static u64 byt_pte_encode(dma_addr_t addr, 1051 enum i915_cache_level level, 1052 u32 flags) 1053 { 1054 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1055 1056 if (!(flags & PTE_READ_ONLY)) 1057 pte |= BYT_PTE_WRITEABLE; 1058 1059 if (level != I915_CACHE_NONE) 1060 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1061 1062 return pte; 1063 } 1064 1065 static u64 hsw_pte_encode(dma_addr_t addr, 1066 enum i915_cache_level level, 1067 u32 flags) 1068 { 1069 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1070 1071 if (level != I915_CACHE_NONE) 1072 pte |= HSW_WB_LLC_AGE3; 1073 1074 return pte; 1075 } 1076 1077 static u64 iris_pte_encode(dma_addr_t addr, 1078 enum i915_cache_level level, 1079 u32 flags) 1080 { 1081 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1082 1083 switch (level) { 1084 case I915_CACHE_NONE: 1085 break; 1086 case I915_CACHE_WT: 1087 pte |= HSW_WT_ELLC_LLC_AGE3; 1088 break; 1089 default: 1090 pte |= HSW_WB_ELLC_LLC_AGE3; 1091 break; 1092 } 1093 1094 return pte; 1095 } 1096 1097 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1098 { 1099 struct drm_i915_private *i915 = ggtt->vm.i915; 1100 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1101 unsigned int size; 1102 u16 snb_gmch_ctl; 1103 1104 ggtt->gmadr = pci_resource(pdev, 2); 1105 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1106 1107 /* 1108 * 64/512MB is the current min/max we actually know of, but this is 1109 * just a coarse sanity check. 1110 */ 1111 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 1112 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1113 &ggtt->mappable_end); 1114 return -ENXIO; 1115 } 1116 1117 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1118 1119 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1120 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1121 1122 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1123 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1124 1125 ggtt->vm.clear_range = nop_clear_range; 1126 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915)) 1127 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1128 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1129 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1130 ggtt->vm.cleanup = gen6_gmch_remove; 1131 1132 ggtt->invalidate = gen6_ggtt_invalidate; 1133 1134 if (HAS_EDRAM(i915)) 1135 ggtt->vm.pte_encode = iris_pte_encode; 1136 else if (IS_HASWELL(i915)) 1137 ggtt->vm.pte_encode = hsw_pte_encode; 1138 else if (IS_VALLEYVIEW(i915)) 1139 ggtt->vm.pte_encode = byt_pte_encode; 1140 else if (GRAPHICS_VER(i915) >= 7) 1141 ggtt->vm.pte_encode = ivb_pte_encode; 1142 else 1143 ggtt->vm.pte_encode = snb_pte_encode; 1144 1145 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 1146 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 1147 1148 return ggtt_probe_common(ggtt, size); 1149 } 1150 1151 static void i915_gmch_remove(struct i915_address_space *vm) 1152 { 1153 intel_gmch_remove(); 1154 } 1155 1156 static int i915_gmch_probe(struct i915_ggtt *ggtt) 1157 { 1158 struct drm_i915_private *i915 = ggtt->vm.i915; 1159 phys_addr_t gmadr_base; 1160 int ret; 1161 1162 ret = intel_gmch_probe(i915->bridge_dev, to_pci_dev(i915->drm.dev), NULL); 1163 if (!ret) { 1164 drm_err(&i915->drm, "failed to set up gmch\n"); 1165 return -EIO; 1166 } 1167 1168 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); 1169 1170 ggtt->gmadr = 1171 (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end); 1172 1173 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1174 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1175 1176 if (needs_idle_maps(i915)) { 1177 drm_notice(&i915->drm, 1178 "Flushing DMA requests before IOMMU unmaps; performance may be degraded\n"); 1179 ggtt->do_idle_maps = true; 1180 } 1181 1182 ggtt->vm.insert_page = i915_ggtt_insert_page; 1183 ggtt->vm.insert_entries = i915_ggtt_insert_entries; 1184 ggtt->vm.clear_range = i915_ggtt_clear_range; 1185 ggtt->vm.cleanup = i915_gmch_remove; 1186 1187 ggtt->invalidate = gmch_ggtt_invalidate; 1188 1189 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 1190 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 1191 1192 if (unlikely(ggtt->do_idle_maps)) 1193 drm_notice(&i915->drm, 1194 "Applying Ironlake quirks for intel_iommu\n"); 1195 1196 return 0; 1197 } 1198 1199 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1200 { 1201 struct drm_i915_private *i915 = gt->i915; 1202 int ret; 1203 1204 ggtt->vm.gt = gt; 1205 ggtt->vm.i915 = i915; 1206 ggtt->vm.dma = i915->drm.dev; 1207 dma_resv_init(&ggtt->vm._resv); 1208 1209 if (GRAPHICS_VER(i915) <= 5) 1210 ret = i915_gmch_probe(ggtt); 1211 else if (GRAPHICS_VER(i915) < 8) 1212 ret = gen6_gmch_probe(ggtt); 1213 else 1214 ret = gen8_gmch_probe(ggtt); 1215 if (ret) { 1216 dma_resv_fini(&ggtt->vm._resv); 1217 return ret; 1218 } 1219 1220 if ((ggtt->vm.total - 1) >> 32) { 1221 drm_err(&i915->drm, 1222 "We never expected a Global GTT with more than 32bits" 1223 " of address space! Found %lldM!\n", 1224 ggtt->vm.total >> 20); 1225 ggtt->vm.total = 1ULL << 32; 1226 ggtt->mappable_end = 1227 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1228 } 1229 1230 if (ggtt->mappable_end > ggtt->vm.total) { 1231 drm_err(&i915->drm, 1232 "mappable aperture extends past end of GGTT," 1233 " aperture=%pa, total=%llx\n", 1234 &ggtt->mappable_end, ggtt->vm.total); 1235 ggtt->mappable_end = ggtt->vm.total; 1236 } 1237 1238 /* GMADR is the PCI mmio aperture into the global GTT. */ 1239 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1240 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1241 (u64)ggtt->mappable_end >> 20); 1242 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1243 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1244 1245 return 0; 1246 } 1247 1248 /** 1249 * i915_ggtt_probe_hw - Probe GGTT hardware location 1250 * @i915: i915 device 1251 */ 1252 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1253 { 1254 int ret; 1255 1256 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1257 if (ret) 1258 return ret; 1259 1260 if (i915_vtd_active(i915)) 1261 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1262 1263 return 0; 1264 } 1265 1266 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1267 { 1268 if (GRAPHICS_VER(i915) < 6 && !intel_enable_gtt()) 1269 return -EIO; 1270 1271 return 0; 1272 } 1273 1274 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt) 1275 { 1276 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate); 1277 1278 ggtt->invalidate = guc_ggtt_invalidate; 1279 1280 ggtt->invalidate(ggtt); 1281 } 1282 1283 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt) 1284 { 1285 /* XXX Temporary pardon for error unload */ 1286 if (ggtt->invalidate == gen8_ggtt_invalidate) 1287 return; 1288 1289 /* We should only be called after i915_ggtt_enable_guc() */ 1290 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate); 1291 1292 ggtt->invalidate = gen8_ggtt_invalidate; 1293 1294 ggtt->invalidate(ggtt); 1295 } 1296 1297 /** 1298 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1299 * @vm: The VM to restore the mappings for 1300 * 1301 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1302 * DPT page table. 1303 * 1304 * Returns %true if restoring the mapping for any object that was in a write 1305 * domain before suspend. 1306 */ 1307 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1308 { 1309 struct i915_vma *vma; 1310 bool write_domain_objs = false; 1311 int open; 1312 1313 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1314 1315 /* First fill our portion of the GTT with scratch pages */ 1316 vm->clear_range(vm, 0, vm->total); 1317 1318 /* Skip rewriting PTE on VMA unbind. */ 1319 open = atomic_xchg(&vm->open, 0); 1320 1321 /* clflush objects bound into the GGTT and rebind them. */ 1322 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1323 struct drm_i915_gem_object *obj = vma->obj; 1324 unsigned int was_bound = 1325 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1326 1327 GEM_BUG_ON(!was_bound); 1328 vma->ops->bind_vma(vm, NULL, vma->resource, 1329 obj ? obj->cache_level : 0, 1330 was_bound); 1331 if (obj) { /* only used during resume => exclusive access */ 1332 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1333 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1334 } 1335 } 1336 1337 atomic_set(&vm->open, open); 1338 1339 return write_domain_objs; 1340 } 1341 1342 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1343 { 1344 bool flush; 1345 1346 intel_gt_check_and_clear_faults(ggtt->vm.gt); 1347 1348 flush = i915_ggtt_resume_vm(&ggtt->vm); 1349 1350 ggtt->invalidate(ggtt); 1351 1352 if (flush) 1353 wbinvd_on_all_cpus(); 1354 1355 if (GRAPHICS_VER(ggtt->vm.i915) >= 8) 1356 setup_private_pat(ggtt->vm.gt->uncore); 1357 1358 intel_ggtt_restore_fences(ggtt); 1359 } 1360