xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision 31e67366)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/stop_machine.h>
7 
8 #include <asm/set_memory.h>
9 #include <asm/smp.h>
10 
11 #include <drm/i915_drm.h>
12 
13 #include "intel_gt.h"
14 #include "i915_drv.h"
15 #include "i915_scatterlist.h"
16 #include "i915_vgpu.h"
17 
18 #include "intel_gtt.h"
19 
20 static int
21 i915_get_ggtt_vma_pages(struct i915_vma *vma);
22 
23 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
24 				   unsigned long color,
25 				   u64 *start,
26 				   u64 *end)
27 {
28 	if (i915_node_color_differs(node, color))
29 		*start += I915_GTT_PAGE_SIZE;
30 
31 	/*
32 	 * Also leave a space between the unallocated reserved node after the
33 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
34 	 * to insert a guard page to prevent prefetches crossing over the
35 	 * GTT boundary.
36 	 */
37 	node = list_next_entry(node, node_list);
38 	if (node->color != color)
39 		*end -= I915_GTT_PAGE_SIZE;
40 }
41 
42 static int ggtt_init_hw(struct i915_ggtt *ggtt)
43 {
44 	struct drm_i915_private *i915 = ggtt->vm.i915;
45 
46 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
47 
48 	ggtt->vm.is_ggtt = true;
49 
50 	/* Only VLV supports read-only GGTT mappings */
51 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
52 
53 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
54 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
55 
56 	if (ggtt->mappable_end) {
57 		if (!io_mapping_init_wc(&ggtt->iomap,
58 					ggtt->gmadr.start,
59 					ggtt->mappable_end)) {
60 			ggtt->vm.cleanup(&ggtt->vm);
61 			return -EIO;
62 		}
63 
64 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
65 					      ggtt->mappable_end);
66 	}
67 
68 	intel_ggtt_init_fences(ggtt);
69 
70 	return 0;
71 }
72 
73 /**
74  * i915_ggtt_init_hw - Initialize GGTT hardware
75  * @i915: i915 device
76  */
77 int i915_ggtt_init_hw(struct drm_i915_private *i915)
78 {
79 	int ret;
80 
81 	/*
82 	 * Note that we use page colouring to enforce a guard page at the
83 	 * end of the address space. This is required as the CS may prefetch
84 	 * beyond the end of the batch buffer, across the page boundary,
85 	 * and beyond the end of the GTT if we do not provide a guard.
86 	 */
87 	ret = ggtt_init_hw(&i915->ggtt);
88 	if (ret)
89 		return ret;
90 
91 	return 0;
92 }
93 
94 /*
95  * Certain Gen5 chipsets require require idling the GPU before
96  * unmapping anything from the GTT when VT-d is enabled.
97  */
98 static bool needs_idle_maps(struct drm_i915_private *i915)
99 {
100 	/*
101 	 * Query intel_iommu to see if we need the workaround. Presumably that
102 	 * was loaded first.
103 	 */
104 	if (!intel_vtd_active())
105 		return false;
106 
107 	if (IS_GEN(i915, 5) && IS_MOBILE(i915))
108 		return true;
109 
110 	if (IS_GEN(i915, 12))
111 		return true; /* XXX DMAR fault reason 7 */
112 
113 	return false;
114 }
115 
116 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
117 {
118 	struct i915_vma *vma, *vn;
119 	int open;
120 
121 	mutex_lock(&ggtt->vm.mutex);
122 
123 	/* Skip rewriting PTE on VMA unbind. */
124 	open = atomic_xchg(&ggtt->vm.open, 0);
125 
126 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
127 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
128 		i915_vma_wait_for_bind(vma);
129 
130 		if (i915_vma_is_pinned(vma))
131 			continue;
132 
133 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
134 			__i915_vma_evict(vma);
135 			drm_mm_remove_node(&vma->node);
136 		}
137 	}
138 
139 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
140 	ggtt->invalidate(ggtt);
141 	atomic_set(&ggtt->vm.open, open);
142 
143 	mutex_unlock(&ggtt->vm.mutex);
144 
145 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
146 }
147 
148 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
149 {
150 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
151 
152 	spin_lock_irq(&uncore->lock);
153 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
154 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
155 	spin_unlock_irq(&uncore->lock);
156 }
157 
158 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
159 {
160 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
161 
162 	/*
163 	 * Note that as an uncached mmio write, this will flush the
164 	 * WCB of the writes into the GGTT before it triggers the invalidate.
165 	 */
166 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
167 }
168 
169 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
170 {
171 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
172 	struct drm_i915_private *i915 = ggtt->vm.i915;
173 
174 	gen8_ggtt_invalidate(ggtt);
175 
176 	if (INTEL_GEN(i915) >= 12)
177 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
178 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
179 	else
180 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
181 }
182 
183 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
184 {
185 	intel_gtt_chipset_flush();
186 }
187 
188 static u64 gen8_ggtt_pte_encode(dma_addr_t addr,
189 				enum i915_cache_level level,
190 				u32 flags)
191 {
192 	return addr | _PAGE_PRESENT;
193 }
194 
195 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
196 {
197 	writeq(pte, addr);
198 }
199 
200 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
201 				  dma_addr_t addr,
202 				  u64 offset,
203 				  enum i915_cache_level level,
204 				  u32 unused)
205 {
206 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
207 	gen8_pte_t __iomem *pte =
208 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
209 
210 	gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, 0));
211 
212 	ggtt->invalidate(ggtt);
213 }
214 
215 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
216 				     struct i915_vma *vma,
217 				     enum i915_cache_level level,
218 				     u32 flags)
219 {
220 	const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, 0);
221 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
222 	gen8_pte_t __iomem *gte;
223 	gen8_pte_t __iomem *end;
224 	struct sgt_iter iter;
225 	dma_addr_t addr;
226 
227 	/*
228 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
229 	 * not to allow the user to override access to a read only page.
230 	 */
231 
232 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
233 	gte += vma->node.start / I915_GTT_PAGE_SIZE;
234 	end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
235 
236 	for_each_sgt_daddr(addr, iter, vma->pages)
237 		gen8_set_pte(gte++, pte_encode | addr);
238 	GEM_BUG_ON(gte > end);
239 
240 	/* Fill the allocated but "unused" space beyond the end of the buffer */
241 	while (gte < end)
242 		gen8_set_pte(gte++, vm->scratch[0]->encode);
243 
244 	/*
245 	 * We want to flush the TLBs only after we're certain all the PTE
246 	 * updates have finished.
247 	 */
248 	ggtt->invalidate(ggtt);
249 }
250 
251 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
252 				  dma_addr_t addr,
253 				  u64 offset,
254 				  enum i915_cache_level level,
255 				  u32 flags)
256 {
257 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
258 	gen6_pte_t __iomem *pte =
259 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
260 
261 	iowrite32(vm->pte_encode(addr, level, flags), pte);
262 
263 	ggtt->invalidate(ggtt);
264 }
265 
266 /*
267  * Binds an object into the global gtt with the specified cache level.
268  * The object will be accessible to the GPU via commands whose operands
269  * reference offsets within the global GTT as well as accessible by the GPU
270  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
271  */
272 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
273 				     struct i915_vma *vma,
274 				     enum i915_cache_level level,
275 				     u32 flags)
276 {
277 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
278 	gen6_pte_t __iomem *gte;
279 	gen6_pte_t __iomem *end;
280 	struct sgt_iter iter;
281 	dma_addr_t addr;
282 
283 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
284 	gte += vma->node.start / I915_GTT_PAGE_SIZE;
285 	end = gte + vma->node.size / I915_GTT_PAGE_SIZE;
286 
287 	for_each_sgt_daddr(addr, iter, vma->pages)
288 		iowrite32(vm->pte_encode(addr, level, flags), gte++);
289 	GEM_BUG_ON(gte > end);
290 
291 	/* Fill the allocated but "unused" space beyond the end of the buffer */
292 	while (gte < end)
293 		iowrite32(vm->scratch[0]->encode, gte++);
294 
295 	/*
296 	 * We want to flush the TLBs only after we're certain all the PTE
297 	 * updates have finished.
298 	 */
299 	ggtt->invalidate(ggtt);
300 }
301 
302 static void nop_clear_range(struct i915_address_space *vm,
303 			    u64 start, u64 length)
304 {
305 }
306 
307 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
308 				  u64 start, u64 length)
309 {
310 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
311 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
312 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
313 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
314 	gen8_pte_t __iomem *gtt_base =
315 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
316 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
317 	int i;
318 
319 	if (WARN(num_entries > max_entries,
320 		 "First entry = %d; Num entries = %d (max=%d)\n",
321 		 first_entry, num_entries, max_entries))
322 		num_entries = max_entries;
323 
324 	for (i = 0; i < num_entries; i++)
325 		gen8_set_pte(&gtt_base[i], scratch_pte);
326 }
327 
328 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
329 {
330 	/*
331 	 * Make sure the internal GAM fifo has been cleared of all GTT
332 	 * writes before exiting stop_machine(). This guarantees that
333 	 * any aperture accesses waiting to start in another process
334 	 * cannot back up behind the GTT writes causing a hang.
335 	 * The register can be any arbitrary GAM register.
336 	 */
337 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
338 }
339 
340 struct insert_page {
341 	struct i915_address_space *vm;
342 	dma_addr_t addr;
343 	u64 offset;
344 	enum i915_cache_level level;
345 };
346 
347 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
348 {
349 	struct insert_page *arg = _arg;
350 
351 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
352 	bxt_vtd_ggtt_wa(arg->vm);
353 
354 	return 0;
355 }
356 
357 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
358 					  dma_addr_t addr,
359 					  u64 offset,
360 					  enum i915_cache_level level,
361 					  u32 unused)
362 {
363 	struct insert_page arg = { vm, addr, offset, level };
364 
365 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
366 }
367 
368 struct insert_entries {
369 	struct i915_address_space *vm;
370 	struct i915_vma *vma;
371 	enum i915_cache_level level;
372 	u32 flags;
373 };
374 
375 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
376 {
377 	struct insert_entries *arg = _arg;
378 
379 	gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
380 	bxt_vtd_ggtt_wa(arg->vm);
381 
382 	return 0;
383 }
384 
385 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
386 					     struct i915_vma *vma,
387 					     enum i915_cache_level level,
388 					     u32 flags)
389 {
390 	struct insert_entries arg = { vm, vma, level, flags };
391 
392 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
393 }
394 
395 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
396 				  u64 start, u64 length)
397 {
398 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
399 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
400 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
401 	gen6_pte_t scratch_pte, __iomem *gtt_base =
402 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
403 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
404 	int i;
405 
406 	if (WARN(num_entries > max_entries,
407 		 "First entry = %d; Num entries = %d (max=%d)\n",
408 		 first_entry, num_entries, max_entries))
409 		num_entries = max_entries;
410 
411 	scratch_pte = vm->scratch[0]->encode;
412 	for (i = 0; i < num_entries; i++)
413 		iowrite32(scratch_pte, &gtt_base[i]);
414 }
415 
416 static void i915_ggtt_insert_page(struct i915_address_space *vm,
417 				  dma_addr_t addr,
418 				  u64 offset,
419 				  enum i915_cache_level cache_level,
420 				  u32 unused)
421 {
422 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
423 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
424 
425 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
426 }
427 
428 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
429 				     struct i915_vma *vma,
430 				     enum i915_cache_level cache_level,
431 				     u32 unused)
432 {
433 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
434 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
435 
436 	intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
437 				    flags);
438 }
439 
440 static void i915_ggtt_clear_range(struct i915_address_space *vm,
441 				  u64 start, u64 length)
442 {
443 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
444 }
445 
446 static void ggtt_bind_vma(struct i915_address_space *vm,
447 			  struct i915_vm_pt_stash *stash,
448 			  struct i915_vma *vma,
449 			  enum i915_cache_level cache_level,
450 			  u32 flags)
451 {
452 	struct drm_i915_gem_object *obj = vma->obj;
453 	u32 pte_flags;
454 
455 	if (i915_vma_is_bound(vma, ~flags & I915_VMA_BIND_MASK))
456 		return;
457 
458 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
459 	pte_flags = 0;
460 	if (i915_gem_object_is_readonly(obj))
461 		pte_flags |= PTE_READ_ONLY;
462 
463 	vm->insert_entries(vm, vma, cache_level, pte_flags);
464 	vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
465 }
466 
467 static void ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma)
468 {
469 	vm->clear_range(vm, vma->node.start, vma->size);
470 }
471 
472 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
473 {
474 	u64 size;
475 	int ret;
476 
477 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
478 		return 0;
479 
480 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
481 	size = ggtt->vm.total - GUC_GGTT_TOP;
482 
483 	ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size,
484 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
485 				   PIN_NOEVICT);
486 	if (ret)
487 		drm_dbg(&ggtt->vm.i915->drm,
488 			"Failed to reserve top of GGTT for GuC\n");
489 
490 	return ret;
491 }
492 
493 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
494 {
495 	if (drm_mm_node_allocated(&ggtt->uc_fw))
496 		drm_mm_remove_node(&ggtt->uc_fw);
497 }
498 
499 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
500 {
501 	ggtt_release_guc_top(ggtt);
502 	if (drm_mm_node_allocated(&ggtt->error_capture))
503 		drm_mm_remove_node(&ggtt->error_capture);
504 	mutex_destroy(&ggtt->error_mutex);
505 }
506 
507 static int init_ggtt(struct i915_ggtt *ggtt)
508 {
509 	/*
510 	 * Let GEM Manage all of the aperture.
511 	 *
512 	 * However, leave one page at the end still bound to the scratch page.
513 	 * There are a number of places where the hardware apparently prefetches
514 	 * past the end of the object, and we've seen multiple hangs with the
515 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
516 	 * aperture.  One page should be enough to keep any prefetching inside
517 	 * of the aperture.
518 	 */
519 	unsigned long hole_start, hole_end;
520 	struct drm_mm_node *entry;
521 	int ret;
522 
523 	/*
524 	 * GuC requires all resources that we're sharing with it to be placed in
525 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
526 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
527 	 * why.
528 	 */
529 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
530 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
531 
532 	ret = intel_vgt_balloon(ggtt);
533 	if (ret)
534 		return ret;
535 
536 	mutex_init(&ggtt->error_mutex);
537 	if (ggtt->mappable_end) {
538 		/*
539 		 * Reserve a mappable slot for our lockless error capture.
540 		 *
541 		 * We strongly prefer taking address 0x0 in order to protect
542 		 * other critical buffers against accidental overwrites,
543 		 * as writing to address 0 is a very common mistake.
544 		 *
545 		 * Since 0 may already be in use by the system (e.g. the BIOS
546 		 * framebuffer), we let the reservation fail quietly and hope
547 		 * 0 remains reserved always.
548 		 *
549 		 * If we fail to reserve 0, and then fail to find any space
550 		 * for an error-capture, remain silent. We can afford not
551 		 * to reserve an error_capture node as we have fallback
552 		 * paths, and we trust that 0 will remain reserved. However,
553 		 * the only likely reason for failure to insert is a driver
554 		 * bug, which we expect to cause other failures...
555 		 */
556 		ggtt->error_capture.size = I915_GTT_PAGE_SIZE;
557 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
558 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
559 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
560 						    &ggtt->error_capture,
561 						    ggtt->error_capture.size, 0,
562 						    ggtt->error_capture.color,
563 						    0, ggtt->mappable_end,
564 						    DRM_MM_INSERT_LOW);
565 	}
566 	if (drm_mm_node_allocated(&ggtt->error_capture))
567 		drm_dbg(&ggtt->vm.i915->drm,
568 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
569 			ggtt->error_capture.start,
570 			ggtt->error_capture.start + ggtt->error_capture.size);
571 
572 	/*
573 	 * The upper portion of the GuC address space has a sizeable hole
574 	 * (several MB) that is inaccessible by GuC. Reserve this range within
575 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
576 	 */
577 	ret = ggtt_reserve_guc_top(ggtt);
578 	if (ret)
579 		goto err;
580 
581 	/* Clear any non-preallocated blocks */
582 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
583 		drm_dbg(&ggtt->vm.i915->drm,
584 			"clearing unused GTT space: [%lx, %lx]\n",
585 			hole_start, hole_end);
586 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
587 				     hole_end - hole_start);
588 	}
589 
590 	/* And finally clear the reserved guard page */
591 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
592 
593 	return 0;
594 
595 err:
596 	cleanup_init_ggtt(ggtt);
597 	return ret;
598 }
599 
600 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
601 				  struct i915_vm_pt_stash *stash,
602 				  struct i915_vma *vma,
603 				  enum i915_cache_level cache_level,
604 				  u32 flags)
605 {
606 	u32 pte_flags;
607 
608 	/* Currently applicable only to VLV */
609 	pte_flags = 0;
610 	if (i915_gem_object_is_readonly(vma->obj))
611 		pte_flags |= PTE_READ_ONLY;
612 
613 	if (flags & I915_VMA_LOCAL_BIND)
614 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
615 			       stash, vma, cache_level, flags);
616 
617 	if (flags & I915_VMA_GLOBAL_BIND)
618 		vm->insert_entries(vm, vma, cache_level, pte_flags);
619 }
620 
621 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
622 				    struct i915_vma *vma)
623 {
624 	if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
625 		vm->clear_range(vm, vma->node.start, vma->size);
626 
627 	if (i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND))
628 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma);
629 }
630 
631 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
632 {
633 	struct i915_vm_pt_stash stash = {};
634 	struct i915_ppgtt *ppgtt;
635 	int err;
636 
637 	ppgtt = i915_ppgtt_create(ggtt->vm.gt);
638 	if (IS_ERR(ppgtt))
639 		return PTR_ERR(ppgtt);
640 
641 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
642 		err = -ENODEV;
643 		goto err_ppgtt;
644 	}
645 
646 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
647 	if (err)
648 		goto err_ppgtt;
649 
650 	err = i915_vm_pin_pt_stash(&ppgtt->vm, &stash);
651 	if (err)
652 		goto err_stash;
653 
654 	/*
655 	 * Note we only pre-allocate as far as the end of the global
656 	 * GTT. On 48b / 4-level page-tables, the difference is very,
657 	 * very significant! We have to preallocate as GVT/vgpu does
658 	 * not like the page directory disappearing.
659 	 */
660 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
661 
662 	ggtt->alias = ppgtt;
663 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
664 
665 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
666 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
667 
668 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
669 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
670 
671 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
672 	return 0;
673 
674 err_stash:
675 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
676 err_ppgtt:
677 	i915_vm_put(&ppgtt->vm);
678 	return err;
679 }
680 
681 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
682 {
683 	struct i915_ppgtt *ppgtt;
684 
685 	ppgtt = fetch_and_zero(&ggtt->alias);
686 	if (!ppgtt)
687 		return;
688 
689 	i915_vm_put(&ppgtt->vm);
690 
691 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
692 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
693 }
694 
695 int i915_init_ggtt(struct drm_i915_private *i915)
696 {
697 	int ret;
698 
699 	ret = init_ggtt(&i915->ggtt);
700 	if (ret)
701 		return ret;
702 
703 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
704 		ret = init_aliasing_ppgtt(&i915->ggtt);
705 		if (ret)
706 			cleanup_init_ggtt(&i915->ggtt);
707 	}
708 
709 	return 0;
710 }
711 
712 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
713 {
714 	struct i915_vma *vma, *vn;
715 
716 	atomic_set(&ggtt->vm.open, 0);
717 
718 	rcu_barrier(); /* flush the RCU'ed__i915_vm_release */
719 	flush_workqueue(ggtt->vm.i915->wq);
720 
721 	mutex_lock(&ggtt->vm.mutex);
722 
723 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
724 		WARN_ON(__i915_vma_unbind(vma));
725 
726 	if (drm_mm_node_allocated(&ggtt->error_capture))
727 		drm_mm_remove_node(&ggtt->error_capture);
728 	mutex_destroy(&ggtt->error_mutex);
729 
730 	ggtt_release_guc_top(ggtt);
731 	intel_vgt_deballoon(ggtt);
732 
733 	ggtt->vm.cleanup(&ggtt->vm);
734 
735 	mutex_unlock(&ggtt->vm.mutex);
736 	i915_address_space_fini(&ggtt->vm);
737 
738 	arch_phys_wc_del(ggtt->mtrr);
739 
740 	if (ggtt->iomap.size)
741 		io_mapping_fini(&ggtt->iomap);
742 }
743 
744 /**
745  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
746  * @i915: i915 device
747  */
748 void i915_ggtt_driver_release(struct drm_i915_private *i915)
749 {
750 	struct i915_ggtt *ggtt = &i915->ggtt;
751 
752 	fini_aliasing_ppgtt(ggtt);
753 
754 	intel_ggtt_fini_fences(ggtt);
755 	ggtt_cleanup_hw(ggtt);
756 }
757 
758 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
759 {
760 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
761 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
762 	return snb_gmch_ctl << 20;
763 }
764 
765 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
766 {
767 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
768 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
769 	if (bdw_gmch_ctl)
770 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
771 
772 #ifdef CONFIG_X86_32
773 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
774 	if (bdw_gmch_ctl > 4)
775 		bdw_gmch_ctl = 4;
776 #endif
777 
778 	return bdw_gmch_ctl << 20;
779 }
780 
781 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
782 {
783 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
784 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
785 
786 	if (gmch_ctrl)
787 		return 1 << (20 + gmch_ctrl);
788 
789 	return 0;
790 }
791 
792 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
793 {
794 	struct drm_i915_private *i915 = ggtt->vm.i915;
795 	struct pci_dev *pdev = i915->drm.pdev;
796 	phys_addr_t phys_addr;
797 	int ret;
798 
799 	/* For Modern GENs the PTEs and register space are split in the BAR */
800 	phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
801 
802 	/*
803 	 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
804 	 * will be dropped. For WC mappings in general we have 64 byte burst
805 	 * writes when the WC buffer is flushed, so we can't use it, but have to
806 	 * resort to an uncached mapping. The WC issue is easily caught by the
807 	 * readback check when writing GTT PTE entries.
808 	 */
809 	if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10)
810 		ggtt->gsm = ioremap(phys_addr, size);
811 	else
812 		ggtt->gsm = ioremap_wc(phys_addr, size);
813 	if (!ggtt->gsm) {
814 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
815 		return -ENOMEM;
816 	}
817 
818 	ret = setup_scratch_page(&ggtt->vm);
819 	if (ret) {
820 		drm_err(&i915->drm, "Scratch setup failed\n");
821 		/* iounmap will also get called at remove, but meh */
822 		iounmap(ggtt->gsm);
823 		return ret;
824 	}
825 
826 	ggtt->vm.scratch[0]->encode =
827 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
828 				    I915_CACHE_NONE, 0);
829 
830 	return 0;
831 }
832 
833 int ggtt_set_pages(struct i915_vma *vma)
834 {
835 	int ret;
836 
837 	GEM_BUG_ON(vma->pages);
838 
839 	ret = i915_get_ggtt_vma_pages(vma);
840 	if (ret)
841 		return ret;
842 
843 	vma->page_sizes = vma->obj->mm.page_sizes;
844 
845 	return 0;
846 }
847 
848 static void gen6_gmch_remove(struct i915_address_space *vm)
849 {
850 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
851 
852 	iounmap(ggtt->gsm);
853 	free_scratch(vm);
854 }
855 
856 static struct resource pci_resource(struct pci_dev *pdev, int bar)
857 {
858 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
859 					       pci_resource_len(pdev, bar));
860 }
861 
862 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
863 {
864 	struct drm_i915_private *i915 = ggtt->vm.i915;
865 	struct pci_dev *pdev = i915->drm.pdev;
866 	unsigned int size;
867 	u16 snb_gmch_ctl;
868 
869 	/* TODO: We're not aware of mappable constraints on gen8 yet */
870 	if (!HAS_LMEM(i915)) {
871 		ggtt->gmadr = pci_resource(pdev, 2);
872 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
873 	}
874 
875 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
876 	if (IS_CHERRYVIEW(i915))
877 		size = chv_get_total_gtt_size(snb_gmch_ctl);
878 	else
879 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
880 
881 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
882 
883 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
884 	ggtt->vm.cleanup = gen6_gmch_remove;
885 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
886 	ggtt->vm.clear_range = nop_clear_range;
887 	if (intel_scanout_needs_vtd_wa(i915))
888 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
889 
890 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
891 
892 	/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
893 	if (intel_ggtt_update_needs_vtd_wa(i915) ||
894 	    IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) {
895 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
896 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
897 		ggtt->vm.bind_async_flags =
898 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
899 	}
900 
901 	ggtt->invalidate = gen8_ggtt_invalidate;
902 
903 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
904 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
905 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
906 	ggtt->vm.vma_ops.clear_pages = clear_pages;
907 
908 	ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
909 
910 	setup_private_pat(ggtt->vm.gt->uncore);
911 
912 	return ggtt_probe_common(ggtt, size);
913 }
914 
915 static u64 snb_pte_encode(dma_addr_t addr,
916 			  enum i915_cache_level level,
917 			  u32 flags)
918 {
919 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
920 
921 	switch (level) {
922 	case I915_CACHE_L3_LLC:
923 	case I915_CACHE_LLC:
924 		pte |= GEN6_PTE_CACHE_LLC;
925 		break;
926 	case I915_CACHE_NONE:
927 		pte |= GEN6_PTE_UNCACHED;
928 		break;
929 	default:
930 		MISSING_CASE(level);
931 	}
932 
933 	return pte;
934 }
935 
936 static u64 ivb_pte_encode(dma_addr_t addr,
937 			  enum i915_cache_level level,
938 			  u32 flags)
939 {
940 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
941 
942 	switch (level) {
943 	case I915_CACHE_L3_LLC:
944 		pte |= GEN7_PTE_CACHE_L3_LLC;
945 		break;
946 	case I915_CACHE_LLC:
947 		pte |= GEN6_PTE_CACHE_LLC;
948 		break;
949 	case I915_CACHE_NONE:
950 		pte |= GEN6_PTE_UNCACHED;
951 		break;
952 	default:
953 		MISSING_CASE(level);
954 	}
955 
956 	return pte;
957 }
958 
959 static u64 byt_pte_encode(dma_addr_t addr,
960 			  enum i915_cache_level level,
961 			  u32 flags)
962 {
963 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
964 
965 	if (!(flags & PTE_READ_ONLY))
966 		pte |= BYT_PTE_WRITEABLE;
967 
968 	if (level != I915_CACHE_NONE)
969 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
970 
971 	return pte;
972 }
973 
974 static u64 hsw_pte_encode(dma_addr_t addr,
975 			  enum i915_cache_level level,
976 			  u32 flags)
977 {
978 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
979 
980 	if (level != I915_CACHE_NONE)
981 		pte |= HSW_WB_LLC_AGE3;
982 
983 	return pte;
984 }
985 
986 static u64 iris_pte_encode(dma_addr_t addr,
987 			   enum i915_cache_level level,
988 			   u32 flags)
989 {
990 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
991 
992 	switch (level) {
993 	case I915_CACHE_NONE:
994 		break;
995 	case I915_CACHE_WT:
996 		pte |= HSW_WT_ELLC_LLC_AGE3;
997 		break;
998 	default:
999 		pte |= HSW_WB_ELLC_LLC_AGE3;
1000 		break;
1001 	}
1002 
1003 	return pte;
1004 }
1005 
1006 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1007 {
1008 	struct drm_i915_private *i915 = ggtt->vm.i915;
1009 	struct pci_dev *pdev = i915->drm.pdev;
1010 	unsigned int size;
1011 	u16 snb_gmch_ctl;
1012 
1013 	ggtt->gmadr = pci_resource(pdev, 2);
1014 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1015 
1016 	/*
1017 	 * 64/512MB is the current min/max we actually know of, but this is
1018 	 * just a coarse sanity check.
1019 	 */
1020 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1021 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1022 			&ggtt->mappable_end);
1023 		return -ENXIO;
1024 	}
1025 
1026 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1027 
1028 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1029 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1030 
1031 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1032 
1033 	ggtt->vm.clear_range = nop_clear_range;
1034 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1035 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1036 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1037 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1038 	ggtt->vm.cleanup = gen6_gmch_remove;
1039 
1040 	ggtt->invalidate = gen6_ggtt_invalidate;
1041 
1042 	if (HAS_EDRAM(i915))
1043 		ggtt->vm.pte_encode = iris_pte_encode;
1044 	else if (IS_HASWELL(i915))
1045 		ggtt->vm.pte_encode = hsw_pte_encode;
1046 	else if (IS_VALLEYVIEW(i915))
1047 		ggtt->vm.pte_encode = byt_pte_encode;
1048 	else if (INTEL_GEN(i915) >= 7)
1049 		ggtt->vm.pte_encode = ivb_pte_encode;
1050 	else
1051 		ggtt->vm.pte_encode = snb_pte_encode;
1052 
1053 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1054 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1055 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1056 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1057 
1058 	return ggtt_probe_common(ggtt, size);
1059 }
1060 
1061 static void i915_gmch_remove(struct i915_address_space *vm)
1062 {
1063 	intel_gmch_remove();
1064 }
1065 
1066 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1067 {
1068 	struct drm_i915_private *i915 = ggtt->vm.i915;
1069 	phys_addr_t gmadr_base;
1070 	int ret;
1071 
1072 	ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL);
1073 	if (!ret) {
1074 		drm_err(&i915->drm, "failed to set up gmch\n");
1075 		return -EIO;
1076 	}
1077 
1078 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1079 
1080 	ggtt->gmadr =
1081 		(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1082 
1083 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1084 
1085 	if (needs_idle_maps(i915)) {
1086 		drm_notice(&i915->drm,
1087 			   "Flushing DMA requests before IOMMU unmaps; performance may be degraded\n");
1088 		ggtt->do_idle_maps = true;
1089 	}
1090 
1091 	ggtt->vm.insert_page = i915_ggtt_insert_page;
1092 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1093 	ggtt->vm.clear_range = i915_ggtt_clear_range;
1094 	ggtt->vm.cleanup = i915_gmch_remove;
1095 
1096 	ggtt->invalidate = gmch_ggtt_invalidate;
1097 
1098 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1099 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1100 	ggtt->vm.vma_ops.set_pages   = ggtt_set_pages;
1101 	ggtt->vm.vma_ops.clear_pages = clear_pages;
1102 
1103 	if (unlikely(ggtt->do_idle_maps))
1104 		drm_notice(&i915->drm,
1105 			   "Applying Ironlake quirks for intel_iommu\n");
1106 
1107 	return 0;
1108 }
1109 
1110 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1111 {
1112 	struct drm_i915_private *i915 = gt->i915;
1113 	int ret;
1114 
1115 	ggtt->vm.gt = gt;
1116 	ggtt->vm.i915 = i915;
1117 	ggtt->vm.dma = &i915->drm.pdev->dev;
1118 
1119 	if (INTEL_GEN(i915) <= 5)
1120 		ret = i915_gmch_probe(ggtt);
1121 	else if (INTEL_GEN(i915) < 8)
1122 		ret = gen6_gmch_probe(ggtt);
1123 	else
1124 		ret = gen8_gmch_probe(ggtt);
1125 	if (ret)
1126 		return ret;
1127 
1128 	if ((ggtt->vm.total - 1) >> 32) {
1129 		drm_err(&i915->drm,
1130 			"We never expected a Global GTT with more than 32bits"
1131 			" of address space! Found %lldM!\n",
1132 			ggtt->vm.total >> 20);
1133 		ggtt->vm.total = 1ULL << 32;
1134 		ggtt->mappable_end =
1135 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1136 	}
1137 
1138 	if (ggtt->mappable_end > ggtt->vm.total) {
1139 		drm_err(&i915->drm,
1140 			"mappable aperture extends past end of GGTT,"
1141 			" aperture=%pa, total=%llx\n",
1142 			&ggtt->mappable_end, ggtt->vm.total);
1143 		ggtt->mappable_end = ggtt->vm.total;
1144 	}
1145 
1146 	/* GMADR is the PCI mmio aperture into the global GTT. */
1147 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1148 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1149 		(u64)ggtt->mappable_end >> 20);
1150 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1151 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1152 
1153 	return 0;
1154 }
1155 
1156 /**
1157  * i915_ggtt_probe_hw - Probe GGTT hardware location
1158  * @i915: i915 device
1159  */
1160 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1161 {
1162 	int ret;
1163 
1164 	ret = ggtt_probe_hw(&i915->ggtt, &i915->gt);
1165 	if (ret)
1166 		return ret;
1167 
1168 	if (intel_vtd_active())
1169 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1170 
1171 	return 0;
1172 }
1173 
1174 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1175 {
1176 	if (INTEL_GEN(i915) < 6 && !intel_enable_gtt())
1177 		return -EIO;
1178 
1179 	return 0;
1180 }
1181 
1182 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1183 {
1184 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1185 
1186 	ggtt->invalidate = guc_ggtt_invalidate;
1187 
1188 	ggtt->invalidate(ggtt);
1189 }
1190 
1191 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1192 {
1193 	/* XXX Temporary pardon for error unload */
1194 	if (ggtt->invalidate == gen8_ggtt_invalidate)
1195 		return;
1196 
1197 	/* We should only be called after i915_ggtt_enable_guc() */
1198 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1199 
1200 	ggtt->invalidate = gen8_ggtt_invalidate;
1201 
1202 	ggtt->invalidate(ggtt);
1203 }
1204 
1205 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1206 {
1207 	struct i915_vma *vma;
1208 	bool flush = false;
1209 	int open;
1210 
1211 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
1212 
1213 	/* First fill our portion of the GTT with scratch pages */
1214 	ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
1215 
1216 	/* Skip rewriting PTE on VMA unbind. */
1217 	open = atomic_xchg(&ggtt->vm.open, 0);
1218 
1219 	/* clflush objects bound into the GGTT and rebind them. */
1220 	list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) {
1221 		struct drm_i915_gem_object *obj = vma->obj;
1222 		unsigned int was_bound =
1223 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1224 
1225 		GEM_BUG_ON(!was_bound);
1226 		vma->ops->bind_vma(&ggtt->vm, NULL, vma,
1227 				   obj ? obj->cache_level : 0,
1228 				   was_bound);
1229 		if (obj) { /* only used during resume => exclusive access */
1230 			flush |= fetch_and_zero(&obj->write_domain);
1231 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1232 		}
1233 	}
1234 
1235 	atomic_set(&ggtt->vm.open, open);
1236 	ggtt->invalidate(ggtt);
1237 
1238 	if (flush)
1239 		wbinvd_on_all_cpus();
1240 
1241 	if (INTEL_GEN(ggtt->vm.i915) >= 8)
1242 		setup_private_pat(ggtt->vm.gt->uncore);
1243 
1244 	intel_ggtt_restore_fences(ggtt);
1245 }
1246 
1247 static struct scatterlist *
1248 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1249 	     unsigned int width, unsigned int height,
1250 	     unsigned int stride,
1251 	     struct sg_table *st, struct scatterlist *sg)
1252 {
1253 	unsigned int column, row;
1254 	unsigned int src_idx;
1255 
1256 	for (column = 0; column < width; column++) {
1257 		src_idx = stride * (height - 1) + column + offset;
1258 		for (row = 0; row < height; row++) {
1259 			st->nents++;
1260 			/*
1261 			 * We don't need the pages, but need to initialize
1262 			 * the entries so the sg list can be happily traversed.
1263 			 * The only thing we need are DMA addresses.
1264 			 */
1265 			sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
1266 			sg_dma_address(sg) =
1267 				i915_gem_object_get_dma_address(obj, src_idx);
1268 			sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
1269 			sg = sg_next(sg);
1270 			src_idx -= stride;
1271 		}
1272 	}
1273 
1274 	return sg;
1275 }
1276 
1277 static noinline struct sg_table *
1278 intel_rotate_pages(struct intel_rotation_info *rot_info,
1279 		   struct drm_i915_gem_object *obj)
1280 {
1281 	unsigned int size = intel_rotation_info_size(rot_info);
1282 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1283 	struct sg_table *st;
1284 	struct scatterlist *sg;
1285 	int ret = -ENOMEM;
1286 	int i;
1287 
1288 	/* Allocate target SG list. */
1289 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1290 	if (!st)
1291 		goto err_st_alloc;
1292 
1293 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1294 	if (ret)
1295 		goto err_sg_alloc;
1296 
1297 	st->nents = 0;
1298 	sg = st->sgl;
1299 
1300 	for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
1301 		sg = rotate_pages(obj, rot_info->plane[i].offset,
1302 				  rot_info->plane[i].width, rot_info->plane[i].height,
1303 				  rot_info->plane[i].stride, st, sg);
1304 	}
1305 
1306 	return st;
1307 
1308 err_sg_alloc:
1309 	kfree(st);
1310 err_st_alloc:
1311 
1312 	drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1313 		obj->base.size, rot_info->plane[0].width,
1314 		rot_info->plane[0].height, size);
1315 
1316 	return ERR_PTR(ret);
1317 }
1318 
1319 static struct scatterlist *
1320 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
1321 	    unsigned int width, unsigned int height,
1322 	    unsigned int stride,
1323 	    struct sg_table *st, struct scatterlist *sg)
1324 {
1325 	unsigned int row;
1326 
1327 	for (row = 0; row < height; row++) {
1328 		unsigned int left = width * I915_GTT_PAGE_SIZE;
1329 
1330 		while (left) {
1331 			dma_addr_t addr;
1332 			unsigned int length;
1333 
1334 			/*
1335 			 * We don't need the pages, but need to initialize
1336 			 * the entries so the sg list can be happily traversed.
1337 			 * The only thing we need are DMA addresses.
1338 			 */
1339 
1340 			addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
1341 
1342 			length = min(left, length);
1343 
1344 			st->nents++;
1345 
1346 			sg_set_page(sg, NULL, length, 0);
1347 			sg_dma_address(sg) = addr;
1348 			sg_dma_len(sg) = length;
1349 			sg = sg_next(sg);
1350 
1351 			offset += length / I915_GTT_PAGE_SIZE;
1352 			left -= length;
1353 		}
1354 
1355 		offset += stride - width;
1356 	}
1357 
1358 	return sg;
1359 }
1360 
1361 static noinline struct sg_table *
1362 intel_remap_pages(struct intel_remapped_info *rem_info,
1363 		  struct drm_i915_gem_object *obj)
1364 {
1365 	unsigned int size = intel_remapped_info_size(rem_info);
1366 	struct drm_i915_private *i915 = to_i915(obj->base.dev);
1367 	struct sg_table *st;
1368 	struct scatterlist *sg;
1369 	int ret = -ENOMEM;
1370 	int i;
1371 
1372 	/* Allocate target SG list. */
1373 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1374 	if (!st)
1375 		goto err_st_alloc;
1376 
1377 	ret = sg_alloc_table(st, size, GFP_KERNEL);
1378 	if (ret)
1379 		goto err_sg_alloc;
1380 
1381 	st->nents = 0;
1382 	sg = st->sgl;
1383 
1384 	for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
1385 		sg = remap_pages(obj, rem_info->plane[i].offset,
1386 				 rem_info->plane[i].width, rem_info->plane[i].height,
1387 				 rem_info->plane[i].stride, st, sg);
1388 	}
1389 
1390 	i915_sg_trim(st);
1391 
1392 	return st;
1393 
1394 err_sg_alloc:
1395 	kfree(st);
1396 err_st_alloc:
1397 
1398 	drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
1399 		obj->base.size, rem_info->plane[0].width,
1400 		rem_info->plane[0].height, size);
1401 
1402 	return ERR_PTR(ret);
1403 }
1404 
1405 static noinline struct sg_table *
1406 intel_partial_pages(const struct i915_ggtt_view *view,
1407 		    struct drm_i915_gem_object *obj)
1408 {
1409 	struct sg_table *st;
1410 	struct scatterlist *sg, *iter;
1411 	unsigned int count = view->partial.size;
1412 	unsigned int offset;
1413 	int ret = -ENOMEM;
1414 
1415 	st = kmalloc(sizeof(*st), GFP_KERNEL);
1416 	if (!st)
1417 		goto err_st_alloc;
1418 
1419 	ret = sg_alloc_table(st, count, GFP_KERNEL);
1420 	if (ret)
1421 		goto err_sg_alloc;
1422 
1423 	iter = i915_gem_object_get_sg_dma(obj, view->partial.offset, &offset);
1424 	GEM_BUG_ON(!iter);
1425 
1426 	sg = st->sgl;
1427 	st->nents = 0;
1428 	do {
1429 		unsigned int len;
1430 
1431 		len = min(sg_dma_len(iter) - (offset << PAGE_SHIFT),
1432 			  count << PAGE_SHIFT);
1433 		sg_set_page(sg, NULL, len, 0);
1434 		sg_dma_address(sg) =
1435 			sg_dma_address(iter) + (offset << PAGE_SHIFT);
1436 		sg_dma_len(sg) = len;
1437 
1438 		st->nents++;
1439 		count -= len >> PAGE_SHIFT;
1440 		if (count == 0) {
1441 			sg_mark_end(sg);
1442 			i915_sg_trim(st); /* Drop any unused tail entries. */
1443 
1444 			return st;
1445 		}
1446 
1447 		sg = __sg_next(sg);
1448 		iter = __sg_next(iter);
1449 		offset = 0;
1450 	} while (1);
1451 
1452 err_sg_alloc:
1453 	kfree(st);
1454 err_st_alloc:
1455 	return ERR_PTR(ret);
1456 }
1457 
1458 static int
1459 i915_get_ggtt_vma_pages(struct i915_vma *vma)
1460 {
1461 	int ret;
1462 
1463 	/*
1464 	 * The vma->pages are only valid within the lifespan of the borrowed
1465 	 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
1466 	 * must be the vma->pages. A simple rule is that vma->pages must only
1467 	 * be accessed when the obj->mm.pages are pinned.
1468 	 */
1469 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
1470 
1471 	switch (vma->ggtt_view.type) {
1472 	default:
1473 		GEM_BUG_ON(vma->ggtt_view.type);
1474 		fallthrough;
1475 	case I915_GGTT_VIEW_NORMAL:
1476 		vma->pages = vma->obj->mm.pages;
1477 		return 0;
1478 
1479 	case I915_GGTT_VIEW_ROTATED:
1480 		vma->pages =
1481 			intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
1482 		break;
1483 
1484 	case I915_GGTT_VIEW_REMAPPED:
1485 		vma->pages =
1486 			intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
1487 		break;
1488 
1489 	case I915_GGTT_VIEW_PARTIAL:
1490 		vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
1491 		break;
1492 	}
1493 
1494 	ret = 0;
1495 	if (IS_ERR(vma->pages)) {
1496 		ret = PTR_ERR(vma->pages);
1497 		vma->pages = NULL;
1498 		drm_err(&vma->vm->i915->drm,
1499 			"Failed to get pages for VMA view type %u (%d)!\n",
1500 			vma->ggtt_view.type, ret);
1501 	}
1502 	return ret;
1503 }
1504