1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <asm/set_memory.h> 7 #include <asm/smp.h> 8 #include <linux/types.h> 9 #include <linux/stop_machine.h> 10 11 #include <drm/i915_drm.h> 12 #include <drm/intel-gtt.h> 13 14 #include "gem/i915_gem_lmem.h" 15 16 #include "intel_ggtt_gmch.h" 17 #include "intel_gt.h" 18 #include "intel_gt_regs.h" 19 #include "intel_pci_config.h" 20 #include "i915_drv.h" 21 #include "i915_pci.h" 22 #include "i915_scatterlist.h" 23 #include "i915_utils.h" 24 #include "i915_vgpu.h" 25 26 #include "intel_gtt.h" 27 #include "gen8_ppgtt.h" 28 29 static inline bool suspend_retains_ptes(struct i915_address_space *vm) 30 { 31 return GRAPHICS_VER(vm->i915) >= 8 && 32 !HAS_LMEM(vm->i915) && 33 vm->is_ggtt; 34 } 35 36 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 37 unsigned long color, 38 u64 *start, 39 u64 *end) 40 { 41 if (i915_node_color_differs(node, color)) 42 *start += I915_GTT_PAGE_SIZE; 43 44 /* 45 * Also leave a space between the unallocated reserved node after the 46 * GTT and any objects within the GTT, i.e. we use the color adjustment 47 * to insert a guard page to prevent prefetches crossing over the 48 * GTT boundary. 49 */ 50 node = list_next_entry(node, node_list); 51 if (node->color != color) 52 *end -= I915_GTT_PAGE_SIZE; 53 } 54 55 static int ggtt_init_hw(struct i915_ggtt *ggtt) 56 { 57 struct drm_i915_private *i915 = ggtt->vm.i915; 58 59 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 60 61 ggtt->vm.is_ggtt = true; 62 63 /* Only VLV supports read-only GGTT mappings */ 64 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 65 66 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 67 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 68 69 if (ggtt->mappable_end) { 70 if (!io_mapping_init_wc(&ggtt->iomap, 71 ggtt->gmadr.start, 72 ggtt->mappable_end)) { 73 ggtt->vm.cleanup(&ggtt->vm); 74 return -EIO; 75 } 76 77 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 78 ggtt->mappable_end); 79 } 80 81 intel_ggtt_init_fences(ggtt); 82 83 return 0; 84 } 85 86 /** 87 * i915_ggtt_init_hw - Initialize GGTT hardware 88 * @i915: i915 device 89 */ 90 int i915_ggtt_init_hw(struct drm_i915_private *i915) 91 { 92 int ret; 93 94 /* 95 * Note that we use page colouring to enforce a guard page at the 96 * end of the address space. This is required as the CS may prefetch 97 * beyond the end of the batch buffer, across the page boundary, 98 * and beyond the end of the GTT if we do not provide a guard. 99 */ 100 ret = ggtt_init_hw(to_gt(i915)->ggtt); 101 if (ret) 102 return ret; 103 104 return 0; 105 } 106 107 /* 108 * Return the value of the last GGTT pte cast to an u64, if 109 * the system is supposed to retain ptes across resume. 0 otherwise. 110 */ 111 static u64 read_last_pte(struct i915_address_space *vm) 112 { 113 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 114 gen8_pte_t __iomem *ptep; 115 116 if (!suspend_retains_ptes(vm)) 117 return 0; 118 119 GEM_BUG_ON(GRAPHICS_VER(vm->i915) < 8); 120 ptep = (typeof(ptep))ggtt->gsm + (ggtt_total_entries(ggtt) - 1); 121 return readq(ptep); 122 } 123 124 /** 125 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 126 * @vm: The VM to suspend the mappings for 127 * 128 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 129 * DPT page table. 130 */ 131 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 132 { 133 struct i915_vma *vma, *vn; 134 int save_skip_rewrite; 135 136 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 137 138 retry: 139 i915_gem_drain_freed_objects(vm->i915); 140 141 mutex_lock(&vm->mutex); 142 143 /* 144 * Skip rewriting PTE on VMA unbind. 145 * FIXME: Use an argument to i915_vma_unbind() instead? 146 */ 147 save_skip_rewrite = vm->skip_pte_rewrite; 148 vm->skip_pte_rewrite = true; 149 150 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 151 struct drm_i915_gem_object *obj = vma->obj; 152 153 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 154 155 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 156 continue; 157 158 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 159 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 160 /* 161 * No dead objects should appear here, GPU should be 162 * completely idle, and userspace suspended 163 */ 164 i915_gem_object_get(obj); 165 166 mutex_unlock(&vm->mutex); 167 168 i915_gem_object_lock(obj, NULL); 169 GEM_WARN_ON(i915_vma_unbind(vma)); 170 i915_gem_object_unlock(obj); 171 i915_gem_object_put(obj); 172 173 vm->skip_pte_rewrite = save_skip_rewrite; 174 goto retry; 175 } 176 177 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 178 i915_vma_wait_for_bind(vma); 179 180 __i915_vma_evict(vma, false); 181 drm_mm_remove_node(&vma->node); 182 } 183 184 i915_gem_object_unlock(obj); 185 } 186 187 if (!suspend_retains_ptes(vm)) 188 vm->clear_range(vm, 0, vm->total); 189 else 190 i915_vm_to_ggtt(vm)->probed_pte = read_last_pte(vm); 191 192 vm->skip_pte_rewrite = save_skip_rewrite; 193 194 mutex_unlock(&vm->mutex); 195 } 196 197 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 198 { 199 i915_ggtt_suspend_vm(&ggtt->vm); 200 ggtt->invalidate(ggtt); 201 202 intel_gt_check_and_clear_faults(ggtt->vm.gt); 203 } 204 205 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 206 { 207 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 208 209 spin_lock_irq(&uncore->lock); 210 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 211 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 212 spin_unlock_irq(&uncore->lock); 213 } 214 215 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 216 { 217 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 218 219 /* 220 * Note that as an uncached mmio write, this will flush the 221 * WCB of the writes into the GGTT before it triggers the invalidate. 222 */ 223 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 224 } 225 226 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 227 { 228 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 229 struct drm_i915_private *i915 = ggtt->vm.i915; 230 231 gen8_ggtt_invalidate(ggtt); 232 233 if (GRAPHICS_VER(i915) >= 12) 234 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR, 235 GEN12_GUC_TLB_INV_CR_INVALIDATE); 236 else 237 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); 238 } 239 240 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 241 enum i915_cache_level level, 242 u32 flags) 243 { 244 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 245 246 if (flags & PTE_LM) 247 pte |= GEN12_GGTT_PTE_LM; 248 249 return pte; 250 } 251 252 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 253 { 254 writeq(pte, addr); 255 } 256 257 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 258 dma_addr_t addr, 259 u64 offset, 260 enum i915_cache_level level, 261 u32 flags) 262 { 263 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 264 gen8_pte_t __iomem *pte = 265 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 266 267 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags)); 268 269 ggtt->invalidate(ggtt); 270 } 271 272 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 273 struct i915_vma_resource *vma_res, 274 enum i915_cache_level level, 275 u32 flags) 276 { 277 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags); 278 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 279 gen8_pte_t __iomem *gte; 280 gen8_pte_t __iomem *end; 281 struct sgt_iter iter; 282 dma_addr_t addr; 283 284 /* 285 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 286 * not to allow the user to override access to a read only page. 287 */ 288 289 gte = (gen8_pte_t __iomem *)ggtt->gsm; 290 gte += vma_res->start / I915_GTT_PAGE_SIZE; 291 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE; 292 293 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 294 gen8_set_pte(gte++, pte_encode | addr); 295 GEM_BUG_ON(gte > end); 296 297 /* Fill the allocated but "unused" space beyond the end of the buffer */ 298 while (gte < end) 299 gen8_set_pte(gte++, vm->scratch[0]->encode); 300 301 /* 302 * We want to flush the TLBs only after we're certain all the PTE 303 * updates have finished. 304 */ 305 ggtt->invalidate(ggtt); 306 } 307 308 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 309 dma_addr_t addr, 310 u64 offset, 311 enum i915_cache_level level, 312 u32 flags) 313 { 314 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 315 gen6_pte_t __iomem *pte = 316 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 317 318 iowrite32(vm->pte_encode(addr, level, flags), pte); 319 320 ggtt->invalidate(ggtt); 321 } 322 323 /* 324 * Binds an object into the global gtt with the specified cache level. 325 * The object will be accessible to the GPU via commands whose operands 326 * reference offsets within the global GTT as well as accessible by the GPU 327 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 328 */ 329 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 330 struct i915_vma_resource *vma_res, 331 enum i915_cache_level level, 332 u32 flags) 333 { 334 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 335 gen6_pte_t __iomem *gte; 336 gen6_pte_t __iomem *end; 337 struct sgt_iter iter; 338 dma_addr_t addr; 339 340 gte = (gen6_pte_t __iomem *)ggtt->gsm; 341 gte += vma_res->start / I915_GTT_PAGE_SIZE; 342 end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE; 343 344 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 345 iowrite32(vm->pte_encode(addr, level, flags), gte++); 346 GEM_BUG_ON(gte > end); 347 348 /* Fill the allocated but "unused" space beyond the end of the buffer */ 349 while (gte < end) 350 iowrite32(vm->scratch[0]->encode, gte++); 351 352 /* 353 * We want to flush the TLBs only after we're certain all the PTE 354 * updates have finished. 355 */ 356 ggtt->invalidate(ggtt); 357 } 358 359 static void nop_clear_range(struct i915_address_space *vm, 360 u64 start, u64 length) 361 { 362 } 363 364 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 365 u64 start, u64 length) 366 { 367 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 368 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 369 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 370 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 371 gen8_pte_t __iomem *gtt_base = 372 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 373 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 374 int i; 375 376 if (WARN(num_entries > max_entries, 377 "First entry = %d; Num entries = %d (max=%d)\n", 378 first_entry, num_entries, max_entries)) 379 num_entries = max_entries; 380 381 for (i = 0; i < num_entries; i++) 382 gen8_set_pte(>t_base[i], scratch_pte); 383 } 384 385 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 386 { 387 /* 388 * Make sure the internal GAM fifo has been cleared of all GTT 389 * writes before exiting stop_machine(). This guarantees that 390 * any aperture accesses waiting to start in another process 391 * cannot back up behind the GTT writes causing a hang. 392 * The register can be any arbitrary GAM register. 393 */ 394 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 395 } 396 397 struct insert_page { 398 struct i915_address_space *vm; 399 dma_addr_t addr; 400 u64 offset; 401 enum i915_cache_level level; 402 }; 403 404 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 405 { 406 struct insert_page *arg = _arg; 407 408 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 409 bxt_vtd_ggtt_wa(arg->vm); 410 411 return 0; 412 } 413 414 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 415 dma_addr_t addr, 416 u64 offset, 417 enum i915_cache_level level, 418 u32 unused) 419 { 420 struct insert_page arg = { vm, addr, offset, level }; 421 422 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 423 } 424 425 struct insert_entries { 426 struct i915_address_space *vm; 427 struct i915_vma_resource *vma_res; 428 enum i915_cache_level level; 429 u32 flags; 430 }; 431 432 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 433 { 434 struct insert_entries *arg = _arg; 435 436 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags); 437 bxt_vtd_ggtt_wa(arg->vm); 438 439 return 0; 440 } 441 442 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 443 struct i915_vma_resource *vma_res, 444 enum i915_cache_level level, 445 u32 flags) 446 { 447 struct insert_entries arg = { vm, vma_res, level, flags }; 448 449 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 450 } 451 452 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 453 u64 start, u64 length) 454 { 455 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 456 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 457 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 458 gen6_pte_t scratch_pte, __iomem *gtt_base = 459 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 460 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 461 int i; 462 463 if (WARN(num_entries > max_entries, 464 "First entry = %d; Num entries = %d (max=%d)\n", 465 first_entry, num_entries, max_entries)) 466 num_entries = max_entries; 467 468 scratch_pte = vm->scratch[0]->encode; 469 for (i = 0; i < num_entries; i++) 470 iowrite32(scratch_pte, >t_base[i]); 471 } 472 473 void intel_ggtt_bind_vma(struct i915_address_space *vm, 474 struct i915_vm_pt_stash *stash, 475 struct i915_vma_resource *vma_res, 476 enum i915_cache_level cache_level, 477 u32 flags) 478 { 479 u32 pte_flags; 480 481 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 482 return; 483 484 vma_res->bound_flags |= flags; 485 486 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 487 pte_flags = 0; 488 if (vma_res->bi.readonly) 489 pte_flags |= PTE_READ_ONLY; 490 if (vma_res->bi.lmem) 491 pte_flags |= PTE_LM; 492 493 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 494 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 495 } 496 497 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 498 struct i915_vma_resource *vma_res) 499 { 500 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 501 } 502 503 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 504 { 505 u64 size; 506 int ret; 507 508 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 509 return 0; 510 511 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 512 size = ggtt->vm.total - GUC_GGTT_TOP; 513 514 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size, 515 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 516 PIN_NOEVICT); 517 if (ret) 518 drm_dbg(&ggtt->vm.i915->drm, 519 "Failed to reserve top of GGTT for GuC\n"); 520 521 return ret; 522 } 523 524 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 525 { 526 if (drm_mm_node_allocated(&ggtt->uc_fw)) 527 drm_mm_remove_node(&ggtt->uc_fw); 528 } 529 530 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 531 { 532 ggtt_release_guc_top(ggtt); 533 if (drm_mm_node_allocated(&ggtt->error_capture)) 534 drm_mm_remove_node(&ggtt->error_capture); 535 mutex_destroy(&ggtt->error_mutex); 536 } 537 538 static int init_ggtt(struct i915_ggtt *ggtt) 539 { 540 /* 541 * Let GEM Manage all of the aperture. 542 * 543 * However, leave one page at the end still bound to the scratch page. 544 * There are a number of places where the hardware apparently prefetches 545 * past the end of the object, and we've seen multiple hangs with the 546 * GPU head pointer stuck in a batchbuffer bound at the last page of the 547 * aperture. One page should be enough to keep any prefetching inside 548 * of the aperture. 549 */ 550 unsigned long hole_start, hole_end; 551 struct drm_mm_node *entry; 552 int ret; 553 554 ggtt->pte_lost = true; 555 556 /* 557 * GuC requires all resources that we're sharing with it to be placed in 558 * non-WOPCM memory. If GuC is not present or not in use we still need a 559 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 560 * why. 561 */ 562 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 563 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm)); 564 565 ret = intel_vgt_balloon(ggtt); 566 if (ret) 567 return ret; 568 569 mutex_init(&ggtt->error_mutex); 570 if (ggtt->mappable_end) { 571 /* 572 * Reserve a mappable slot for our lockless error capture. 573 * 574 * We strongly prefer taking address 0x0 in order to protect 575 * other critical buffers against accidental overwrites, 576 * as writing to address 0 is a very common mistake. 577 * 578 * Since 0 may already be in use by the system (e.g. the BIOS 579 * framebuffer), we let the reservation fail quietly and hope 580 * 0 remains reserved always. 581 * 582 * If we fail to reserve 0, and then fail to find any space 583 * for an error-capture, remain silent. We can afford not 584 * to reserve an error_capture node as we have fallback 585 * paths, and we trust that 0 will remain reserved. However, 586 * the only likely reason for failure to insert is a driver 587 * bug, which we expect to cause other failures... 588 */ 589 ggtt->error_capture.size = I915_GTT_PAGE_SIZE; 590 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 591 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 592 drm_mm_insert_node_in_range(&ggtt->vm.mm, 593 &ggtt->error_capture, 594 ggtt->error_capture.size, 0, 595 ggtt->error_capture.color, 596 0, ggtt->mappable_end, 597 DRM_MM_INSERT_LOW); 598 } 599 if (drm_mm_node_allocated(&ggtt->error_capture)) 600 drm_dbg(&ggtt->vm.i915->drm, 601 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 602 ggtt->error_capture.start, 603 ggtt->error_capture.start + ggtt->error_capture.size); 604 605 /* 606 * The upper portion of the GuC address space has a sizeable hole 607 * (several MB) that is inaccessible by GuC. Reserve this range within 608 * GGTT as it can comfortably hold GuC/HuC firmware images. 609 */ 610 ret = ggtt_reserve_guc_top(ggtt); 611 if (ret) 612 goto err; 613 614 /* Clear any non-preallocated blocks */ 615 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 616 drm_dbg(&ggtt->vm.i915->drm, 617 "clearing unused GTT space: [%lx, %lx]\n", 618 hole_start, hole_end); 619 ggtt->vm.clear_range(&ggtt->vm, hole_start, 620 hole_end - hole_start); 621 } 622 623 /* And finally clear the reserved guard page */ 624 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 625 626 return 0; 627 628 err: 629 cleanup_init_ggtt(ggtt); 630 return ret; 631 } 632 633 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 634 struct i915_vm_pt_stash *stash, 635 struct i915_vma_resource *vma_res, 636 enum i915_cache_level cache_level, 637 u32 flags) 638 { 639 u32 pte_flags; 640 641 /* Currently applicable only to VLV */ 642 pte_flags = 0; 643 if (vma_res->bi.readonly) 644 pte_flags |= PTE_READ_ONLY; 645 646 if (flags & I915_VMA_LOCAL_BIND) 647 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 648 stash, vma_res, cache_level, flags); 649 650 if (flags & I915_VMA_GLOBAL_BIND) 651 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 652 653 vma_res->bound_flags |= flags; 654 } 655 656 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 657 struct i915_vma_resource *vma_res) 658 { 659 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 660 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 661 662 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 663 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 664 } 665 666 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 667 { 668 struct i915_vm_pt_stash stash = {}; 669 struct i915_ppgtt *ppgtt; 670 int err; 671 672 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 673 if (IS_ERR(ppgtt)) 674 return PTR_ERR(ppgtt); 675 676 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 677 err = -ENODEV; 678 goto err_ppgtt; 679 } 680 681 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 682 if (err) 683 goto err_ppgtt; 684 685 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 686 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 687 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 688 if (err) 689 goto err_stash; 690 691 /* 692 * Note we only pre-allocate as far as the end of the global 693 * GTT. On 48b / 4-level page-tables, the difference is very, 694 * very significant! We have to preallocate as GVT/vgpu does 695 * not like the page directory disappearing. 696 */ 697 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 698 699 ggtt->alias = ppgtt; 700 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 701 702 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); 703 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 704 705 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); 706 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 707 708 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 709 return 0; 710 711 err_stash: 712 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 713 err_ppgtt: 714 i915_vm_put(&ppgtt->vm); 715 return err; 716 } 717 718 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 719 { 720 struct i915_ppgtt *ppgtt; 721 722 ppgtt = fetch_and_zero(&ggtt->alias); 723 if (!ppgtt) 724 return; 725 726 i915_vm_put(&ppgtt->vm); 727 728 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 729 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 730 } 731 732 int i915_init_ggtt(struct drm_i915_private *i915) 733 { 734 int ret; 735 736 ret = init_ggtt(to_gt(i915)->ggtt); 737 if (ret) 738 return ret; 739 740 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 741 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 742 if (ret) 743 cleanup_init_ggtt(to_gt(i915)->ggtt); 744 } 745 746 return 0; 747 } 748 749 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 750 { 751 struct i915_vma *vma, *vn; 752 753 flush_workqueue(ggtt->vm.i915->wq); 754 i915_gem_drain_freed_objects(ggtt->vm.i915); 755 756 mutex_lock(&ggtt->vm.mutex); 757 758 ggtt->vm.skip_pte_rewrite = true; 759 760 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 761 struct drm_i915_gem_object *obj = vma->obj; 762 bool trylock; 763 764 trylock = i915_gem_object_trylock(obj, NULL); 765 WARN_ON(!trylock); 766 767 WARN_ON(__i915_vma_unbind(vma)); 768 if (trylock) 769 i915_gem_object_unlock(obj); 770 } 771 772 if (drm_mm_node_allocated(&ggtt->error_capture)) 773 drm_mm_remove_node(&ggtt->error_capture); 774 mutex_destroy(&ggtt->error_mutex); 775 776 ggtt_release_guc_top(ggtt); 777 intel_vgt_deballoon(ggtt); 778 779 ggtt->vm.cleanup(&ggtt->vm); 780 781 mutex_unlock(&ggtt->vm.mutex); 782 i915_address_space_fini(&ggtt->vm); 783 784 arch_phys_wc_del(ggtt->mtrr); 785 786 if (ggtt->iomap.size) 787 io_mapping_fini(&ggtt->iomap); 788 } 789 790 /** 791 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 792 * @i915: i915 device 793 */ 794 void i915_ggtt_driver_release(struct drm_i915_private *i915) 795 { 796 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 797 798 fini_aliasing_ppgtt(ggtt); 799 800 intel_ggtt_fini_fences(ggtt); 801 ggtt_cleanup_hw(ggtt); 802 } 803 804 /** 805 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 806 * all free objects have been drained. 807 * @i915: i915 device 808 */ 809 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 810 { 811 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 812 813 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 814 dma_resv_fini(&ggtt->vm._resv); 815 } 816 817 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 818 { 819 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 820 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 821 return snb_gmch_ctl << 20; 822 } 823 824 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 825 { 826 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 827 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 828 if (bdw_gmch_ctl) 829 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 830 831 #ifdef CONFIG_X86_32 832 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 833 if (bdw_gmch_ctl > 4) 834 bdw_gmch_ctl = 4; 835 #endif 836 837 return bdw_gmch_ctl << 20; 838 } 839 840 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 841 { 842 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 843 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 844 845 if (gmch_ctrl) 846 return 1 << (20 + gmch_ctrl); 847 848 return 0; 849 } 850 851 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 852 { 853 /* 854 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 855 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 856 */ 857 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 858 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 859 } 860 861 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 862 { 863 return gen6_gttmmadr_size(i915) / 2; 864 } 865 866 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 867 { 868 struct drm_i915_private *i915 = ggtt->vm.i915; 869 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 870 phys_addr_t phys_addr; 871 u32 pte_flags; 872 int ret; 873 874 GEM_WARN_ON(pci_resource_len(pdev, GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); 875 phys_addr = pci_resource_start(pdev, GTTMMADR_BAR) + gen6_gttadr_offset(i915); 876 877 /* 878 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 879 * will be dropped. For WC mappings in general we have 64 byte burst 880 * writes when the WC buffer is flushed, so we can't use it, but have to 881 * resort to an uncached mapping. The WC issue is easily caught by the 882 * readback check when writing GTT PTE entries. 883 */ 884 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 885 ggtt->gsm = ioremap(phys_addr, size); 886 else 887 ggtt->gsm = ioremap_wc(phys_addr, size); 888 if (!ggtt->gsm) { 889 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 890 return -ENOMEM; 891 } 892 893 kref_init(&ggtt->vm.resv_ref); 894 ret = setup_scratch_page(&ggtt->vm); 895 if (ret) { 896 drm_err(&i915->drm, "Scratch setup failed\n"); 897 /* iounmap will also get called at remove, but meh */ 898 iounmap(ggtt->gsm); 899 return ret; 900 } 901 902 pte_flags = 0; 903 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 904 pte_flags |= PTE_LM; 905 906 ggtt->vm.scratch[0]->encode = 907 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 908 I915_CACHE_NONE, pte_flags); 909 910 return 0; 911 } 912 913 static void gen6_gmch_remove(struct i915_address_space *vm) 914 { 915 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 916 917 iounmap(ggtt->gsm); 918 free_scratch(vm); 919 } 920 921 static struct resource pci_resource(struct pci_dev *pdev, int bar) 922 { 923 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar), 924 pci_resource_len(pdev, bar)); 925 } 926 927 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 928 { 929 struct drm_i915_private *i915 = ggtt->vm.i915; 930 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 931 unsigned int size; 932 u16 snb_gmch_ctl; 933 934 if (!HAS_LMEM(i915)) { 935 if (!i915_pci_resource_valid(pdev, GTT_APERTURE_BAR)) 936 return -ENXIO; 937 938 ggtt->gmadr = pci_resource(pdev, GTT_APERTURE_BAR); 939 ggtt->mappable_end = resource_size(&ggtt->gmadr); 940 } 941 942 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 943 if (IS_CHERRYVIEW(i915)) 944 size = chv_get_total_gtt_size(snb_gmch_ctl); 945 else 946 size = gen8_get_total_gtt_size(snb_gmch_ctl); 947 948 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 949 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 950 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 951 952 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 953 ggtt->vm.cleanup = gen6_gmch_remove; 954 ggtt->vm.insert_page = gen8_ggtt_insert_page; 955 ggtt->vm.clear_range = nop_clear_range; 956 if (intel_scanout_needs_vtd_wa(i915)) 957 ggtt->vm.clear_range = gen8_ggtt_clear_range; 958 959 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 960 961 /* 962 * Serialize GTT updates with aperture access on BXT if VT-d is on, 963 * and always on CHV. 964 */ 965 if (intel_vm_no_concurrent_access_wa(i915)) { 966 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 967 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 968 969 /* 970 * Calling stop_machine() version of GGTT update function 971 * at error capture/reset path will raise lockdep warning. 972 * Allow calling gen8_ggtt_insert_* directly at reset path 973 * which is safe from parallel GGTT updates. 974 */ 975 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 976 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; 977 978 ggtt->vm.bind_async_flags = 979 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 980 } 981 982 ggtt->invalidate = gen8_ggtt_invalidate; 983 984 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 985 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 986 987 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 988 989 setup_private_pat(ggtt->vm.gt->uncore); 990 991 return ggtt_probe_common(ggtt, size); 992 } 993 994 static u64 snb_pte_encode(dma_addr_t addr, 995 enum i915_cache_level level, 996 u32 flags) 997 { 998 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 999 1000 switch (level) { 1001 case I915_CACHE_L3_LLC: 1002 case I915_CACHE_LLC: 1003 pte |= GEN6_PTE_CACHE_LLC; 1004 break; 1005 case I915_CACHE_NONE: 1006 pte |= GEN6_PTE_UNCACHED; 1007 break; 1008 default: 1009 MISSING_CASE(level); 1010 } 1011 1012 return pte; 1013 } 1014 1015 static u64 ivb_pte_encode(dma_addr_t addr, 1016 enum i915_cache_level level, 1017 u32 flags) 1018 { 1019 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1020 1021 switch (level) { 1022 case I915_CACHE_L3_LLC: 1023 pte |= GEN7_PTE_CACHE_L3_LLC; 1024 break; 1025 case I915_CACHE_LLC: 1026 pte |= GEN6_PTE_CACHE_LLC; 1027 break; 1028 case I915_CACHE_NONE: 1029 pte |= GEN6_PTE_UNCACHED; 1030 break; 1031 default: 1032 MISSING_CASE(level); 1033 } 1034 1035 return pte; 1036 } 1037 1038 static u64 byt_pte_encode(dma_addr_t addr, 1039 enum i915_cache_level level, 1040 u32 flags) 1041 { 1042 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1043 1044 if (!(flags & PTE_READ_ONLY)) 1045 pte |= BYT_PTE_WRITEABLE; 1046 1047 if (level != I915_CACHE_NONE) 1048 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1049 1050 return pte; 1051 } 1052 1053 static u64 hsw_pte_encode(dma_addr_t addr, 1054 enum i915_cache_level level, 1055 u32 flags) 1056 { 1057 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1058 1059 if (level != I915_CACHE_NONE) 1060 pte |= HSW_WB_LLC_AGE3; 1061 1062 return pte; 1063 } 1064 1065 static u64 iris_pte_encode(dma_addr_t addr, 1066 enum i915_cache_level level, 1067 u32 flags) 1068 { 1069 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1070 1071 switch (level) { 1072 case I915_CACHE_NONE: 1073 break; 1074 case I915_CACHE_WT: 1075 pte |= HSW_WT_ELLC_LLC_AGE3; 1076 break; 1077 default: 1078 pte |= HSW_WB_ELLC_LLC_AGE3; 1079 break; 1080 } 1081 1082 return pte; 1083 } 1084 1085 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1086 { 1087 struct drm_i915_private *i915 = ggtt->vm.i915; 1088 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1089 unsigned int size; 1090 u16 snb_gmch_ctl; 1091 1092 if (!i915_pci_resource_valid(pdev, GTT_APERTURE_BAR)) 1093 return -ENXIO; 1094 1095 ggtt->gmadr = pci_resource(pdev, GTT_APERTURE_BAR); 1096 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1097 1098 /* 1099 * 64/512MB is the current min/max we actually know of, but this is 1100 * just a coarse sanity check. 1101 */ 1102 if (ggtt->mappable_end < (64 << 20) || 1103 ggtt->mappable_end > (512 << 20)) { 1104 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1105 &ggtt->mappable_end); 1106 return -ENXIO; 1107 } 1108 1109 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1110 1111 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1112 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1113 1114 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1115 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1116 1117 ggtt->vm.clear_range = nop_clear_range; 1118 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915)) 1119 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1120 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1121 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1122 ggtt->vm.cleanup = gen6_gmch_remove; 1123 1124 ggtt->invalidate = gen6_ggtt_invalidate; 1125 1126 if (HAS_EDRAM(i915)) 1127 ggtt->vm.pte_encode = iris_pte_encode; 1128 else if (IS_HASWELL(i915)) 1129 ggtt->vm.pte_encode = hsw_pte_encode; 1130 else if (IS_VALLEYVIEW(i915)) 1131 ggtt->vm.pte_encode = byt_pte_encode; 1132 else if (GRAPHICS_VER(i915) >= 7) 1133 ggtt->vm.pte_encode = ivb_pte_encode; 1134 else 1135 ggtt->vm.pte_encode = snb_pte_encode; 1136 1137 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1138 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1139 1140 return ggtt_probe_common(ggtt, size); 1141 } 1142 1143 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1144 { 1145 struct drm_i915_private *i915 = gt->i915; 1146 int ret; 1147 1148 ggtt->vm.gt = gt; 1149 ggtt->vm.i915 = i915; 1150 ggtt->vm.dma = i915->drm.dev; 1151 dma_resv_init(&ggtt->vm._resv); 1152 1153 if (GRAPHICS_VER(i915) >= 8) 1154 ret = gen8_gmch_probe(ggtt); 1155 else if (GRAPHICS_VER(i915) >= 6) 1156 ret = gen6_gmch_probe(ggtt); 1157 else 1158 ret = intel_ggtt_gmch_probe(ggtt); 1159 1160 if (ret) { 1161 dma_resv_fini(&ggtt->vm._resv); 1162 return ret; 1163 } 1164 1165 if ((ggtt->vm.total - 1) >> 32) { 1166 drm_err(&i915->drm, 1167 "We never expected a Global GTT with more than 32bits" 1168 " of address space! Found %lldM!\n", 1169 ggtt->vm.total >> 20); 1170 ggtt->vm.total = 1ULL << 32; 1171 ggtt->mappable_end = 1172 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1173 } 1174 1175 if (ggtt->mappable_end > ggtt->vm.total) { 1176 drm_err(&i915->drm, 1177 "mappable aperture extends past end of GGTT," 1178 " aperture=%pa, total=%llx\n", 1179 &ggtt->mappable_end, ggtt->vm.total); 1180 ggtt->mappable_end = ggtt->vm.total; 1181 } 1182 1183 /* GMADR is the PCI mmio aperture into the global GTT. */ 1184 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1185 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1186 (u64)ggtt->mappable_end >> 20); 1187 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1188 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1189 1190 return 0; 1191 } 1192 1193 /** 1194 * i915_ggtt_probe_hw - Probe GGTT hardware location 1195 * @i915: i915 device 1196 */ 1197 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1198 { 1199 int ret; 1200 1201 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1202 if (ret) 1203 return ret; 1204 1205 if (i915_vtd_active(i915)) 1206 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1207 1208 return 0; 1209 } 1210 1211 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1212 { 1213 if (GRAPHICS_VER(i915) < 6) 1214 return intel_ggtt_gmch_enable_hw(i915); 1215 1216 return 0; 1217 } 1218 1219 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt) 1220 { 1221 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate); 1222 1223 ggtt->invalidate = guc_ggtt_invalidate; 1224 1225 ggtt->invalidate(ggtt); 1226 } 1227 1228 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt) 1229 { 1230 /* XXX Temporary pardon for error unload */ 1231 if (ggtt->invalidate == gen8_ggtt_invalidate) 1232 return; 1233 1234 /* We should only be called after i915_ggtt_enable_guc() */ 1235 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate); 1236 1237 ggtt->invalidate = gen8_ggtt_invalidate; 1238 1239 ggtt->invalidate(ggtt); 1240 } 1241 1242 /** 1243 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1244 * @vm: The VM to restore the mappings for 1245 * 1246 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1247 * DPT page table. 1248 * 1249 * Returns %true if restoring the mapping for any object that was in a write 1250 * domain before suspend. 1251 */ 1252 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1253 { 1254 struct i915_vma *vma; 1255 bool write_domain_objs = false; 1256 bool retained_ptes; 1257 1258 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1259 1260 /* 1261 * First fill our portion of the GTT with scratch pages if 1262 * they were not retained across suspend. 1263 */ 1264 retained_ptes = suspend_retains_ptes(vm) && 1265 !i915_vm_to_ggtt(vm)->pte_lost && 1266 !GEM_WARN_ON(i915_vm_to_ggtt(vm)->probed_pte != read_last_pte(vm)); 1267 1268 if (!retained_ptes) 1269 vm->clear_range(vm, 0, vm->total); 1270 1271 /* clflush objects bound into the GGTT and rebind them. */ 1272 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1273 struct drm_i915_gem_object *obj = vma->obj; 1274 unsigned int was_bound = 1275 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1276 1277 GEM_BUG_ON(!was_bound); 1278 if (!retained_ptes) { 1279 /* 1280 * Clear the bound flags of the vma resource to allow 1281 * ptes to be repopulated. 1282 */ 1283 vma->resource->bound_flags = 0; 1284 vma->ops->bind_vma(vm, NULL, vma->resource, 1285 obj ? obj->cache_level : 0, 1286 was_bound); 1287 } 1288 if (obj) { /* only used during resume => exclusive access */ 1289 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1290 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1291 } 1292 } 1293 1294 return write_domain_objs; 1295 } 1296 1297 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1298 { 1299 bool flush; 1300 1301 intel_gt_check_and_clear_faults(ggtt->vm.gt); 1302 1303 flush = i915_ggtt_resume_vm(&ggtt->vm); 1304 1305 ggtt->invalidate(ggtt); 1306 1307 if (flush) 1308 wbinvd_on_all_cpus(); 1309 1310 if (GRAPHICS_VER(ggtt->vm.i915) >= 8) 1311 setup_private_pat(ggtt->vm.gt->uncore); 1312 1313 intel_ggtt_restore_fences(ggtt); 1314 } 1315 1316 void i915_ggtt_mark_pte_lost(struct drm_i915_private *i915, bool val) 1317 { 1318 to_gt(i915)->ggtt->pte_lost = val; 1319 } 1320