1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <linux/stop_machine.h> 7 8 #include <asm/set_memory.h> 9 #include <asm/smp.h> 10 11 #include <drm/i915_drm.h> 12 13 #include "intel_gt.h" 14 #include "i915_drv.h" 15 #include "i915_scatterlist.h" 16 #include "i915_vgpu.h" 17 18 #include "intel_gtt.h" 19 20 static int 21 i915_get_ggtt_vma_pages(struct i915_vma *vma); 22 23 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 24 unsigned long color, 25 u64 *start, 26 u64 *end) 27 { 28 if (i915_node_color_differs(node, color)) 29 *start += I915_GTT_PAGE_SIZE; 30 31 /* 32 * Also leave a space between the unallocated reserved node after the 33 * GTT and any objects within the GTT, i.e. we use the color adjustment 34 * to insert a guard page to prevent prefetches crossing over the 35 * GTT boundary. 36 */ 37 node = list_next_entry(node, node_list); 38 if (node->color != color) 39 *end -= I915_GTT_PAGE_SIZE; 40 } 41 42 static int ggtt_init_hw(struct i915_ggtt *ggtt) 43 { 44 struct drm_i915_private *i915 = ggtt->vm.i915; 45 46 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 47 48 ggtt->vm.is_ggtt = true; 49 50 /* Only VLV supports read-only GGTT mappings */ 51 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 52 53 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 54 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 55 56 if (ggtt->mappable_end) { 57 if (!io_mapping_init_wc(&ggtt->iomap, 58 ggtt->gmadr.start, 59 ggtt->mappable_end)) { 60 ggtt->vm.cleanup(&ggtt->vm); 61 return -EIO; 62 } 63 64 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 65 ggtt->mappable_end); 66 } 67 68 intel_ggtt_init_fences(ggtt); 69 70 return 0; 71 } 72 73 /** 74 * i915_ggtt_init_hw - Initialize GGTT hardware 75 * @i915: i915 device 76 */ 77 int i915_ggtt_init_hw(struct drm_i915_private *i915) 78 { 79 int ret; 80 81 stash_init(&i915->mm.wc_stash); 82 83 /* 84 * Note that we use page colouring to enforce a guard page at the 85 * end of the address space. This is required as the CS may prefetch 86 * beyond the end of the batch buffer, across the page boundary, 87 * and beyond the end of the GTT if we do not provide a guard. 88 */ 89 ret = ggtt_init_hw(&i915->ggtt); 90 if (ret) 91 return ret; 92 93 return 0; 94 } 95 96 /* 97 * Certain Gen5 chipsets require require idling the GPU before 98 * unmapping anything from the GTT when VT-d is enabled. 99 */ 100 static bool needs_idle_maps(struct drm_i915_private *i915) 101 { 102 /* 103 * Query intel_iommu to see if we need the workaround. Presumably that 104 * was loaded first. 105 */ 106 return IS_GEN(i915, 5) && IS_MOBILE(i915) && intel_vtd_active(); 107 } 108 109 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 110 { 111 struct i915_vma *vma, *vn; 112 int open; 113 114 mutex_lock(&ggtt->vm.mutex); 115 116 /* Skip rewriting PTE on VMA unbind. */ 117 open = atomic_xchg(&ggtt->vm.open, 0); 118 119 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 120 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 121 i915_vma_wait_for_bind(vma); 122 123 if (i915_vma_is_pinned(vma)) 124 continue; 125 126 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 127 __i915_vma_evict(vma); 128 drm_mm_remove_node(&vma->node); 129 } 130 } 131 132 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); 133 ggtt->invalidate(ggtt); 134 atomic_set(&ggtt->vm.open, open); 135 136 mutex_unlock(&ggtt->vm.mutex); 137 138 intel_gt_check_and_clear_faults(ggtt->vm.gt); 139 } 140 141 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 142 { 143 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 144 145 spin_lock_irq(&uncore->lock); 146 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 147 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 148 spin_unlock_irq(&uncore->lock); 149 } 150 151 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 152 { 153 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 154 155 /* 156 * Note that as an uncached mmio write, this will flush the 157 * WCB of the writes into the GGTT before it triggers the invalidate. 158 */ 159 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 160 } 161 162 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 163 { 164 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 165 struct drm_i915_private *i915 = ggtt->vm.i915; 166 167 gen8_ggtt_invalidate(ggtt); 168 169 if (INTEL_GEN(i915) >= 12) 170 intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR, 171 GEN12_GUC_TLB_INV_CR_INVALIDATE); 172 else 173 intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE); 174 } 175 176 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt) 177 { 178 intel_gtt_chipset_flush(); 179 } 180 181 static u64 gen8_ggtt_pte_encode(dma_addr_t addr, 182 enum i915_cache_level level, 183 u32 flags) 184 { 185 return addr | _PAGE_PRESENT; 186 } 187 188 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 189 { 190 writeq(pte, addr); 191 } 192 193 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 194 dma_addr_t addr, 195 u64 offset, 196 enum i915_cache_level level, 197 u32 unused) 198 { 199 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 200 gen8_pte_t __iomem *pte = 201 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 202 203 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, 0)); 204 205 ggtt->invalidate(ggtt); 206 } 207 208 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 209 struct i915_vma *vma, 210 enum i915_cache_level level, 211 u32 flags) 212 { 213 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, 0); 214 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 215 gen8_pte_t __iomem *gte; 216 gen8_pte_t __iomem *end; 217 struct sgt_iter iter; 218 dma_addr_t addr; 219 220 /* 221 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 222 * not to allow the user to override access to a read only page. 223 */ 224 225 gte = (gen8_pte_t __iomem *)ggtt->gsm; 226 gte += vma->node.start / I915_GTT_PAGE_SIZE; 227 end = gte + vma->node.size / I915_GTT_PAGE_SIZE; 228 229 for_each_sgt_daddr(addr, iter, vma->pages) 230 gen8_set_pte(gte++, pte_encode | addr); 231 GEM_BUG_ON(gte > end); 232 233 /* Fill the allocated but "unused" space beyond the end of the buffer */ 234 while (gte < end) 235 gen8_set_pte(gte++, vm->scratch[0].encode); 236 237 /* 238 * We want to flush the TLBs only after we're certain all the PTE 239 * updates have finished. 240 */ 241 ggtt->invalidate(ggtt); 242 } 243 244 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 245 dma_addr_t addr, 246 u64 offset, 247 enum i915_cache_level level, 248 u32 flags) 249 { 250 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 251 gen6_pte_t __iomem *pte = 252 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 253 254 iowrite32(vm->pte_encode(addr, level, flags), pte); 255 256 ggtt->invalidate(ggtt); 257 } 258 259 /* 260 * Binds an object into the global gtt with the specified cache level. 261 * The object will be accessible to the GPU via commands whose operands 262 * reference offsets within the global GTT as well as accessible by the GPU 263 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 264 */ 265 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 266 struct i915_vma *vma, 267 enum i915_cache_level level, 268 u32 flags) 269 { 270 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 271 gen6_pte_t __iomem *gte; 272 gen6_pte_t __iomem *end; 273 struct sgt_iter iter; 274 dma_addr_t addr; 275 276 gte = (gen6_pte_t __iomem *)ggtt->gsm; 277 gte += vma->node.start / I915_GTT_PAGE_SIZE; 278 end = gte + vma->node.size / I915_GTT_PAGE_SIZE; 279 280 for_each_sgt_daddr(addr, iter, vma->pages) 281 iowrite32(vm->pte_encode(addr, level, flags), gte++); 282 GEM_BUG_ON(gte > end); 283 284 /* Fill the allocated but "unused" space beyond the end of the buffer */ 285 while (gte < end) 286 iowrite32(vm->scratch[0].encode, gte++); 287 288 /* 289 * We want to flush the TLBs only after we're certain all the PTE 290 * updates have finished. 291 */ 292 ggtt->invalidate(ggtt); 293 } 294 295 static void nop_clear_range(struct i915_address_space *vm, 296 u64 start, u64 length) 297 { 298 } 299 300 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 301 u64 start, u64 length) 302 { 303 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 304 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 305 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 306 const gen8_pte_t scratch_pte = vm->scratch[0].encode; 307 gen8_pte_t __iomem *gtt_base = 308 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 309 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 310 int i; 311 312 if (WARN(num_entries > max_entries, 313 "First entry = %d; Num entries = %d (max=%d)\n", 314 first_entry, num_entries, max_entries)) 315 num_entries = max_entries; 316 317 for (i = 0; i < num_entries; i++) 318 gen8_set_pte(>t_base[i], scratch_pte); 319 } 320 321 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 322 { 323 /* 324 * Make sure the internal GAM fifo has been cleared of all GTT 325 * writes before exiting stop_machine(). This guarantees that 326 * any aperture accesses waiting to start in another process 327 * cannot back up behind the GTT writes causing a hang. 328 * The register can be any arbitrary GAM register. 329 */ 330 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 331 } 332 333 struct insert_page { 334 struct i915_address_space *vm; 335 dma_addr_t addr; 336 u64 offset; 337 enum i915_cache_level level; 338 }; 339 340 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 341 { 342 struct insert_page *arg = _arg; 343 344 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 345 bxt_vtd_ggtt_wa(arg->vm); 346 347 return 0; 348 } 349 350 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 351 dma_addr_t addr, 352 u64 offset, 353 enum i915_cache_level level, 354 u32 unused) 355 { 356 struct insert_page arg = { vm, addr, offset, level }; 357 358 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 359 } 360 361 struct insert_entries { 362 struct i915_address_space *vm; 363 struct i915_vma *vma; 364 enum i915_cache_level level; 365 u32 flags; 366 }; 367 368 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 369 { 370 struct insert_entries *arg = _arg; 371 372 gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags); 373 bxt_vtd_ggtt_wa(arg->vm); 374 375 return 0; 376 } 377 378 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 379 struct i915_vma *vma, 380 enum i915_cache_level level, 381 u32 flags) 382 { 383 struct insert_entries arg = { vm, vma, level, flags }; 384 385 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 386 } 387 388 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 389 u64 start, u64 length) 390 { 391 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 392 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 393 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 394 gen6_pte_t scratch_pte, __iomem *gtt_base = 395 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 396 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 397 int i; 398 399 if (WARN(num_entries > max_entries, 400 "First entry = %d; Num entries = %d (max=%d)\n", 401 first_entry, num_entries, max_entries)) 402 num_entries = max_entries; 403 404 scratch_pte = vm->scratch[0].encode; 405 for (i = 0; i < num_entries; i++) 406 iowrite32(scratch_pte, >t_base[i]); 407 } 408 409 static void i915_ggtt_insert_page(struct i915_address_space *vm, 410 dma_addr_t addr, 411 u64 offset, 412 enum i915_cache_level cache_level, 413 u32 unused) 414 { 415 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 416 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 417 418 intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); 419 } 420 421 static void i915_ggtt_insert_entries(struct i915_address_space *vm, 422 struct i915_vma *vma, 423 enum i915_cache_level cache_level, 424 u32 unused) 425 { 426 unsigned int flags = (cache_level == I915_CACHE_NONE) ? 427 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; 428 429 intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, 430 flags); 431 } 432 433 static void i915_ggtt_clear_range(struct i915_address_space *vm, 434 u64 start, u64 length) 435 { 436 intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); 437 } 438 439 static int ggtt_bind_vma(struct i915_address_space *vm, 440 struct i915_vma *vma, 441 enum i915_cache_level cache_level, 442 u32 flags) 443 { 444 struct drm_i915_gem_object *obj = vma->obj; 445 u32 pte_flags; 446 447 if (i915_vma_is_bound(vma, ~flags & I915_VMA_BIND_MASK)) 448 return 0; 449 450 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 451 pte_flags = 0; 452 if (i915_gem_object_is_readonly(obj)) 453 pte_flags |= PTE_READ_ONLY; 454 455 vm->insert_entries(vm, vma, cache_level, pte_flags); 456 vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; 457 458 return 0; 459 } 460 461 static void ggtt_unbind_vma(struct i915_address_space *vm, struct i915_vma *vma) 462 { 463 vm->clear_range(vm, vma->node.start, vma->size); 464 } 465 466 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 467 { 468 u64 size; 469 int ret; 470 471 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 472 return 0; 473 474 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 475 size = ggtt->vm.total - GUC_GGTT_TOP; 476 477 ret = i915_gem_gtt_reserve(&ggtt->vm, &ggtt->uc_fw, size, 478 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 479 PIN_NOEVICT); 480 if (ret) 481 drm_dbg(&ggtt->vm.i915->drm, 482 "Failed to reserve top of GGTT for GuC\n"); 483 484 return ret; 485 } 486 487 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 488 { 489 if (drm_mm_node_allocated(&ggtt->uc_fw)) 490 drm_mm_remove_node(&ggtt->uc_fw); 491 } 492 493 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 494 { 495 ggtt_release_guc_top(ggtt); 496 if (drm_mm_node_allocated(&ggtt->error_capture)) 497 drm_mm_remove_node(&ggtt->error_capture); 498 mutex_destroy(&ggtt->error_mutex); 499 } 500 501 static int init_ggtt(struct i915_ggtt *ggtt) 502 { 503 /* 504 * Let GEM Manage all of the aperture. 505 * 506 * However, leave one page at the end still bound to the scratch page. 507 * There are a number of places where the hardware apparently prefetches 508 * past the end of the object, and we've seen multiple hangs with the 509 * GPU head pointer stuck in a batchbuffer bound at the last page of the 510 * aperture. One page should be enough to keep any prefetching inside 511 * of the aperture. 512 */ 513 unsigned long hole_start, hole_end; 514 struct drm_mm_node *entry; 515 int ret; 516 517 /* 518 * GuC requires all resources that we're sharing with it to be placed in 519 * non-WOPCM memory. If GuC is not present or not in use we still need a 520 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 521 * why. 522 */ 523 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 524 intel_wopcm_guc_size(&ggtt->vm.i915->wopcm)); 525 526 ret = intel_vgt_balloon(ggtt); 527 if (ret) 528 return ret; 529 530 mutex_init(&ggtt->error_mutex); 531 if (ggtt->mappable_end) { 532 /* Reserve a mappable slot for our lockless error capture */ 533 ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, 534 &ggtt->error_capture, 535 PAGE_SIZE, 0, 536 I915_COLOR_UNEVICTABLE, 537 0, ggtt->mappable_end, 538 DRM_MM_INSERT_LOW); 539 if (ret) 540 return ret; 541 } 542 543 /* 544 * The upper portion of the GuC address space has a sizeable hole 545 * (several MB) that is inaccessible by GuC. Reserve this range within 546 * GGTT as it can comfortably hold GuC/HuC firmware images. 547 */ 548 ret = ggtt_reserve_guc_top(ggtt); 549 if (ret) 550 goto err; 551 552 /* Clear any non-preallocated blocks */ 553 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 554 drm_dbg_kms(&ggtt->vm.i915->drm, 555 "clearing unused GTT space: [%lx, %lx]\n", 556 hole_start, hole_end); 557 ggtt->vm.clear_range(&ggtt->vm, hole_start, 558 hole_end - hole_start); 559 } 560 561 /* And finally clear the reserved guard page */ 562 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 563 564 return 0; 565 566 err: 567 cleanup_init_ggtt(ggtt); 568 return ret; 569 } 570 571 static int aliasing_gtt_bind_vma(struct i915_address_space *vm, 572 struct i915_vma *vma, 573 enum i915_cache_level cache_level, 574 u32 flags) 575 { 576 u32 pte_flags; 577 int ret; 578 579 /* Currently applicable only to VLV */ 580 pte_flags = 0; 581 if (i915_gem_object_is_readonly(vma->obj)) 582 pte_flags |= PTE_READ_ONLY; 583 584 if (flags & I915_VMA_LOCAL_BIND) { 585 struct i915_ppgtt *alias = i915_vm_to_ggtt(vm)->alias; 586 587 ret = ppgtt_bind_vma(&alias->vm, vma, cache_level, flags); 588 if (ret) 589 return ret; 590 } 591 592 if (flags & I915_VMA_GLOBAL_BIND) 593 vm->insert_entries(vm, vma, cache_level, pte_flags); 594 595 return 0; 596 } 597 598 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 599 struct i915_vma *vma) 600 { 601 if (i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 602 vm->clear_range(vm, vma->node.start, vma->size); 603 604 if (i915_vma_is_bound(vma, I915_VMA_LOCAL_BIND)) 605 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma); 606 } 607 608 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 609 { 610 struct i915_ppgtt *ppgtt; 611 int err; 612 613 ppgtt = i915_ppgtt_create(ggtt->vm.gt); 614 if (IS_ERR(ppgtt)) 615 return PTR_ERR(ppgtt); 616 617 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 618 err = -ENODEV; 619 goto err_ppgtt; 620 } 621 622 /* 623 * Note we only pre-allocate as far as the end of the global 624 * GTT. On 48b / 4-level page-tables, the difference is very, 625 * very significant! We have to preallocate as GVT/vgpu does 626 * not like the page directory disappearing. 627 */ 628 err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total); 629 if (err) 630 goto err_ppgtt; 631 632 ggtt->alias = ppgtt; 633 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 634 635 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); 636 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 637 638 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); 639 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 640 641 return 0; 642 643 err_ppgtt: 644 i915_vm_put(&ppgtt->vm); 645 return err; 646 } 647 648 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 649 { 650 struct i915_ppgtt *ppgtt; 651 652 ppgtt = fetch_and_zero(&ggtt->alias); 653 if (!ppgtt) 654 return; 655 656 i915_vm_put(&ppgtt->vm); 657 658 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 659 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 660 } 661 662 int i915_init_ggtt(struct drm_i915_private *i915) 663 { 664 int ret; 665 666 ret = init_ggtt(&i915->ggtt); 667 if (ret) 668 return ret; 669 670 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 671 ret = init_aliasing_ppgtt(&i915->ggtt); 672 if (ret) 673 cleanup_init_ggtt(&i915->ggtt); 674 } 675 676 return 0; 677 } 678 679 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 680 { 681 struct i915_vma *vma, *vn; 682 683 atomic_set(&ggtt->vm.open, 0); 684 685 rcu_barrier(); /* flush the RCU'ed__i915_vm_release */ 686 flush_workqueue(ggtt->vm.i915->wq); 687 688 mutex_lock(&ggtt->vm.mutex); 689 690 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) 691 WARN_ON(__i915_vma_unbind(vma)); 692 693 if (drm_mm_node_allocated(&ggtt->error_capture)) 694 drm_mm_remove_node(&ggtt->error_capture); 695 mutex_destroy(&ggtt->error_mutex); 696 697 ggtt_release_guc_top(ggtt); 698 intel_vgt_deballoon(ggtt); 699 700 ggtt->vm.cleanup(&ggtt->vm); 701 702 mutex_unlock(&ggtt->vm.mutex); 703 i915_address_space_fini(&ggtt->vm); 704 705 arch_phys_wc_del(ggtt->mtrr); 706 707 if (ggtt->iomap.size) 708 io_mapping_fini(&ggtt->iomap); 709 } 710 711 /** 712 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 713 * @i915: i915 device 714 */ 715 void i915_ggtt_driver_release(struct drm_i915_private *i915) 716 { 717 struct i915_ggtt *ggtt = &i915->ggtt; 718 struct pagevec *pvec; 719 720 fini_aliasing_ppgtt(ggtt); 721 722 intel_ggtt_fini_fences(ggtt); 723 ggtt_cleanup_hw(ggtt); 724 725 pvec = &i915->mm.wc_stash.pvec; 726 if (pvec->nr) { 727 set_pages_array_wb(pvec->pages, pvec->nr); 728 __pagevec_release(pvec); 729 } 730 } 731 732 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 733 { 734 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 735 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 736 return snb_gmch_ctl << 20; 737 } 738 739 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 740 { 741 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 742 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 743 if (bdw_gmch_ctl) 744 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 745 746 #ifdef CONFIG_X86_32 747 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 748 if (bdw_gmch_ctl > 4) 749 bdw_gmch_ctl = 4; 750 #endif 751 752 return bdw_gmch_ctl << 20; 753 } 754 755 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 756 { 757 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 758 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 759 760 if (gmch_ctrl) 761 return 1 << (20 + gmch_ctrl); 762 763 return 0; 764 } 765 766 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 767 { 768 struct drm_i915_private *i915 = ggtt->vm.i915; 769 struct pci_dev *pdev = i915->drm.pdev; 770 phys_addr_t phys_addr; 771 int ret; 772 773 /* For Modern GENs the PTEs and register space are split in the BAR */ 774 phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; 775 776 /* 777 * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range 778 * will be dropped. For WC mappings in general we have 64 byte burst 779 * writes when the WC buffer is flushed, so we can't use it, but have to 780 * resort to an uncached mapping. The WC issue is easily caught by the 781 * readback check when writing GTT PTE entries. 782 */ 783 if (IS_GEN9_LP(i915) || INTEL_GEN(i915) >= 10) 784 ggtt->gsm = ioremap(phys_addr, size); 785 else 786 ggtt->gsm = ioremap_wc(phys_addr, size); 787 if (!ggtt->gsm) { 788 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 789 return -ENOMEM; 790 } 791 792 ret = setup_scratch_page(&ggtt->vm, GFP_DMA32); 793 if (ret) { 794 drm_err(&i915->drm, "Scratch setup failed\n"); 795 /* iounmap will also get called at remove, but meh */ 796 iounmap(ggtt->gsm); 797 return ret; 798 } 799 800 ggtt->vm.scratch[0].encode = 801 ggtt->vm.pte_encode(px_dma(&ggtt->vm.scratch[0]), 802 I915_CACHE_NONE, 0); 803 804 return 0; 805 } 806 807 int ggtt_set_pages(struct i915_vma *vma) 808 { 809 int ret; 810 811 GEM_BUG_ON(vma->pages); 812 813 ret = i915_get_ggtt_vma_pages(vma); 814 if (ret) 815 return ret; 816 817 vma->page_sizes = vma->obj->mm.page_sizes; 818 819 return 0; 820 } 821 822 static void gen6_gmch_remove(struct i915_address_space *vm) 823 { 824 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 825 826 iounmap(ggtt->gsm); 827 cleanup_scratch_page(vm); 828 } 829 830 static struct resource pci_resource(struct pci_dev *pdev, int bar) 831 { 832 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar), 833 pci_resource_len(pdev, bar)); 834 } 835 836 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 837 { 838 struct drm_i915_private *i915 = ggtt->vm.i915; 839 struct pci_dev *pdev = i915->drm.pdev; 840 unsigned int size; 841 u16 snb_gmch_ctl; 842 843 /* TODO: We're not aware of mappable constraints on gen8 yet */ 844 if (!IS_DGFX(i915)) { 845 ggtt->gmadr = pci_resource(pdev, 2); 846 ggtt->mappable_end = resource_size(&ggtt->gmadr); 847 } 848 849 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 850 if (IS_CHERRYVIEW(i915)) 851 size = chv_get_total_gtt_size(snb_gmch_ctl); 852 else 853 size = gen8_get_total_gtt_size(snb_gmch_ctl); 854 855 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 856 ggtt->vm.cleanup = gen6_gmch_remove; 857 ggtt->vm.insert_page = gen8_ggtt_insert_page; 858 ggtt->vm.clear_range = nop_clear_range; 859 if (intel_scanout_needs_vtd_wa(i915)) 860 ggtt->vm.clear_range = gen8_ggtt_clear_range; 861 862 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 863 864 /* Serialize GTT updates with aperture access on BXT if VT-d is on. */ 865 if (intel_ggtt_update_needs_vtd_wa(i915) || 866 IS_CHERRYVIEW(i915) /* fails with concurrent use/update */) { 867 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 868 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 869 ggtt->vm.bind_async_flags = 870 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 871 } 872 873 ggtt->invalidate = gen8_ggtt_invalidate; 874 875 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 876 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 877 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 878 ggtt->vm.vma_ops.clear_pages = clear_pages; 879 880 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 881 882 setup_private_pat(ggtt->vm.gt->uncore); 883 884 return ggtt_probe_common(ggtt, size); 885 } 886 887 static u64 snb_pte_encode(dma_addr_t addr, 888 enum i915_cache_level level, 889 u32 flags) 890 { 891 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 892 893 switch (level) { 894 case I915_CACHE_L3_LLC: 895 case I915_CACHE_LLC: 896 pte |= GEN6_PTE_CACHE_LLC; 897 break; 898 case I915_CACHE_NONE: 899 pte |= GEN6_PTE_UNCACHED; 900 break; 901 default: 902 MISSING_CASE(level); 903 } 904 905 return pte; 906 } 907 908 static u64 ivb_pte_encode(dma_addr_t addr, 909 enum i915_cache_level level, 910 u32 flags) 911 { 912 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 913 914 switch (level) { 915 case I915_CACHE_L3_LLC: 916 pte |= GEN7_PTE_CACHE_L3_LLC; 917 break; 918 case I915_CACHE_LLC: 919 pte |= GEN6_PTE_CACHE_LLC; 920 break; 921 case I915_CACHE_NONE: 922 pte |= GEN6_PTE_UNCACHED; 923 break; 924 default: 925 MISSING_CASE(level); 926 } 927 928 return pte; 929 } 930 931 static u64 byt_pte_encode(dma_addr_t addr, 932 enum i915_cache_level level, 933 u32 flags) 934 { 935 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 936 937 if (!(flags & PTE_READ_ONLY)) 938 pte |= BYT_PTE_WRITEABLE; 939 940 if (level != I915_CACHE_NONE) 941 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 942 943 return pte; 944 } 945 946 static u64 hsw_pte_encode(dma_addr_t addr, 947 enum i915_cache_level level, 948 u32 flags) 949 { 950 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 951 952 if (level != I915_CACHE_NONE) 953 pte |= HSW_WB_LLC_AGE3; 954 955 return pte; 956 } 957 958 static u64 iris_pte_encode(dma_addr_t addr, 959 enum i915_cache_level level, 960 u32 flags) 961 { 962 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 963 964 switch (level) { 965 case I915_CACHE_NONE: 966 break; 967 case I915_CACHE_WT: 968 pte |= HSW_WT_ELLC_LLC_AGE3; 969 break; 970 default: 971 pte |= HSW_WB_ELLC_LLC_AGE3; 972 break; 973 } 974 975 return pte; 976 } 977 978 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 979 { 980 struct drm_i915_private *i915 = ggtt->vm.i915; 981 struct pci_dev *pdev = i915->drm.pdev; 982 unsigned int size; 983 u16 snb_gmch_ctl; 984 985 ggtt->gmadr = pci_resource(pdev, 2); 986 ggtt->mappable_end = resource_size(&ggtt->gmadr); 987 988 /* 989 * 64/512MB is the current min/max we actually know of, but this is 990 * just a coarse sanity check. 991 */ 992 if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { 993 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 994 &ggtt->mappable_end); 995 return -ENXIO; 996 } 997 998 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 999 1000 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1001 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1002 1003 ggtt->vm.clear_range = nop_clear_range; 1004 if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915)) 1005 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1006 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1007 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1008 ggtt->vm.cleanup = gen6_gmch_remove; 1009 1010 ggtt->invalidate = gen6_ggtt_invalidate; 1011 1012 if (HAS_EDRAM(i915)) 1013 ggtt->vm.pte_encode = iris_pte_encode; 1014 else if (IS_HASWELL(i915)) 1015 ggtt->vm.pte_encode = hsw_pte_encode; 1016 else if (IS_VALLEYVIEW(i915)) 1017 ggtt->vm.pte_encode = byt_pte_encode; 1018 else if (INTEL_GEN(i915) >= 7) 1019 ggtt->vm.pte_encode = ivb_pte_encode; 1020 else 1021 ggtt->vm.pte_encode = snb_pte_encode; 1022 1023 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 1024 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 1025 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 1026 ggtt->vm.vma_ops.clear_pages = clear_pages; 1027 1028 return ggtt_probe_common(ggtt, size); 1029 } 1030 1031 static void i915_gmch_remove(struct i915_address_space *vm) 1032 { 1033 intel_gmch_remove(); 1034 } 1035 1036 static int i915_gmch_probe(struct i915_ggtt *ggtt) 1037 { 1038 struct drm_i915_private *i915 = ggtt->vm.i915; 1039 phys_addr_t gmadr_base; 1040 int ret; 1041 1042 ret = intel_gmch_probe(i915->bridge_dev, i915->drm.pdev, NULL); 1043 if (!ret) { 1044 drm_err(&i915->drm, "failed to set up gmch\n"); 1045 return -EIO; 1046 } 1047 1048 intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); 1049 1050 ggtt->gmadr = 1051 (struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end); 1052 1053 ggtt->do_idle_maps = needs_idle_maps(i915); 1054 ggtt->vm.insert_page = i915_ggtt_insert_page; 1055 ggtt->vm.insert_entries = i915_ggtt_insert_entries; 1056 ggtt->vm.clear_range = i915_ggtt_clear_range; 1057 ggtt->vm.cleanup = i915_gmch_remove; 1058 1059 ggtt->invalidate = gmch_ggtt_invalidate; 1060 1061 ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; 1062 ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; 1063 ggtt->vm.vma_ops.set_pages = ggtt_set_pages; 1064 ggtt->vm.vma_ops.clear_pages = clear_pages; 1065 1066 if (unlikely(ggtt->do_idle_maps)) 1067 drm_notice(&i915->drm, 1068 "Applying Ironlake quirks for intel_iommu\n"); 1069 1070 return 0; 1071 } 1072 1073 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1074 { 1075 struct drm_i915_private *i915 = gt->i915; 1076 int ret; 1077 1078 ggtt->vm.gt = gt; 1079 ggtt->vm.i915 = i915; 1080 ggtt->vm.dma = &i915->drm.pdev->dev; 1081 1082 if (INTEL_GEN(i915) <= 5) 1083 ret = i915_gmch_probe(ggtt); 1084 else if (INTEL_GEN(i915) < 8) 1085 ret = gen6_gmch_probe(ggtt); 1086 else 1087 ret = gen8_gmch_probe(ggtt); 1088 if (ret) 1089 return ret; 1090 1091 if ((ggtt->vm.total - 1) >> 32) { 1092 drm_err(&i915->drm, 1093 "We never expected a Global GTT with more than 32bits" 1094 " of address space! Found %lldM!\n", 1095 ggtt->vm.total >> 20); 1096 ggtt->vm.total = 1ULL << 32; 1097 ggtt->mappable_end = 1098 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1099 } 1100 1101 if (ggtt->mappable_end > ggtt->vm.total) { 1102 drm_err(&i915->drm, 1103 "mappable aperture extends past end of GGTT," 1104 " aperture=%pa, total=%llx\n", 1105 &ggtt->mappable_end, ggtt->vm.total); 1106 ggtt->mappable_end = ggtt->vm.total; 1107 } 1108 1109 /* GMADR is the PCI mmio aperture into the global GTT. */ 1110 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1111 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1112 (u64)ggtt->mappable_end >> 20); 1113 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1114 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1115 1116 return 0; 1117 } 1118 1119 /** 1120 * i915_ggtt_probe_hw - Probe GGTT hardware location 1121 * @i915: i915 device 1122 */ 1123 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1124 { 1125 int ret; 1126 1127 ret = ggtt_probe_hw(&i915->ggtt, &i915->gt); 1128 if (ret) 1129 return ret; 1130 1131 if (intel_vtd_active()) 1132 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1133 1134 return 0; 1135 } 1136 1137 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1138 { 1139 if (INTEL_GEN(i915) < 6 && !intel_enable_gtt()) 1140 return -EIO; 1141 1142 return 0; 1143 } 1144 1145 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt) 1146 { 1147 GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate); 1148 1149 ggtt->invalidate = guc_ggtt_invalidate; 1150 1151 ggtt->invalidate(ggtt); 1152 } 1153 1154 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt) 1155 { 1156 /* XXX Temporary pardon for error unload */ 1157 if (ggtt->invalidate == gen8_ggtt_invalidate) 1158 return; 1159 1160 /* We should only be called after i915_ggtt_enable_guc() */ 1161 GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate); 1162 1163 ggtt->invalidate = gen8_ggtt_invalidate; 1164 1165 ggtt->invalidate(ggtt); 1166 } 1167 1168 static unsigned int clear_bind(struct i915_vma *vma) 1169 { 1170 return atomic_fetch_and(~I915_VMA_BIND_MASK, &vma->flags); 1171 } 1172 1173 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1174 { 1175 struct i915_vma *vma; 1176 bool flush = false; 1177 int open; 1178 1179 intel_gt_check_and_clear_faults(ggtt->vm.gt); 1180 1181 /* First fill our portion of the GTT with scratch pages */ 1182 ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); 1183 1184 /* Skip rewriting PTE on VMA unbind. */ 1185 open = atomic_xchg(&ggtt->vm.open, 0); 1186 1187 /* clflush objects bound into the GGTT and rebind them. */ 1188 list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link) { 1189 struct drm_i915_gem_object *obj = vma->obj; 1190 unsigned int was_bound = clear_bind(vma); 1191 1192 WARN_ON(i915_vma_bind(vma, 1193 obj ? obj->cache_level : 0, 1194 was_bound, NULL)); 1195 if (obj) { /* only used during resume => exclusive access */ 1196 flush |= fetch_and_zero(&obj->write_domain); 1197 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1198 } 1199 } 1200 1201 atomic_set(&ggtt->vm.open, open); 1202 ggtt->invalidate(ggtt); 1203 1204 if (flush) 1205 wbinvd_on_all_cpus(); 1206 1207 if (INTEL_GEN(ggtt->vm.i915) >= 8) 1208 setup_private_pat(ggtt->vm.gt->uncore); 1209 1210 intel_ggtt_restore_fences(ggtt); 1211 } 1212 1213 static struct scatterlist * 1214 rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset, 1215 unsigned int width, unsigned int height, 1216 unsigned int stride, 1217 struct sg_table *st, struct scatterlist *sg) 1218 { 1219 unsigned int column, row; 1220 unsigned int src_idx; 1221 1222 for (column = 0; column < width; column++) { 1223 src_idx = stride * (height - 1) + column + offset; 1224 for (row = 0; row < height; row++) { 1225 st->nents++; 1226 /* 1227 * We don't need the pages, but need to initialize 1228 * the entries so the sg list can be happily traversed. 1229 * The only thing we need are DMA addresses. 1230 */ 1231 sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); 1232 sg_dma_address(sg) = 1233 i915_gem_object_get_dma_address(obj, src_idx); 1234 sg_dma_len(sg) = I915_GTT_PAGE_SIZE; 1235 sg = sg_next(sg); 1236 src_idx -= stride; 1237 } 1238 } 1239 1240 return sg; 1241 } 1242 1243 static noinline struct sg_table * 1244 intel_rotate_pages(struct intel_rotation_info *rot_info, 1245 struct drm_i915_gem_object *obj) 1246 { 1247 unsigned int size = intel_rotation_info_size(rot_info); 1248 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1249 struct sg_table *st; 1250 struct scatterlist *sg; 1251 int ret = -ENOMEM; 1252 int i; 1253 1254 /* Allocate target SG list. */ 1255 st = kmalloc(sizeof(*st), GFP_KERNEL); 1256 if (!st) 1257 goto err_st_alloc; 1258 1259 ret = sg_alloc_table(st, size, GFP_KERNEL); 1260 if (ret) 1261 goto err_sg_alloc; 1262 1263 st->nents = 0; 1264 sg = st->sgl; 1265 1266 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { 1267 sg = rotate_pages(obj, rot_info->plane[i].offset, 1268 rot_info->plane[i].width, rot_info->plane[i].height, 1269 rot_info->plane[i].stride, st, sg); 1270 } 1271 1272 return st; 1273 1274 err_sg_alloc: 1275 kfree(st); 1276 err_st_alloc: 1277 1278 drm_dbg(&i915->drm, "Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1279 obj->base.size, rot_info->plane[0].width, 1280 rot_info->plane[0].height, size); 1281 1282 return ERR_PTR(ret); 1283 } 1284 1285 static struct scatterlist * 1286 remap_pages(struct drm_i915_gem_object *obj, unsigned int offset, 1287 unsigned int width, unsigned int height, 1288 unsigned int stride, 1289 struct sg_table *st, struct scatterlist *sg) 1290 { 1291 unsigned int row; 1292 1293 for (row = 0; row < height; row++) { 1294 unsigned int left = width * I915_GTT_PAGE_SIZE; 1295 1296 while (left) { 1297 dma_addr_t addr; 1298 unsigned int length; 1299 1300 /* 1301 * We don't need the pages, but need to initialize 1302 * the entries so the sg list can be happily traversed. 1303 * The only thing we need are DMA addresses. 1304 */ 1305 1306 addr = i915_gem_object_get_dma_address_len(obj, offset, &length); 1307 1308 length = min(left, length); 1309 1310 st->nents++; 1311 1312 sg_set_page(sg, NULL, length, 0); 1313 sg_dma_address(sg) = addr; 1314 sg_dma_len(sg) = length; 1315 sg = sg_next(sg); 1316 1317 offset += length / I915_GTT_PAGE_SIZE; 1318 left -= length; 1319 } 1320 1321 offset += stride - width; 1322 } 1323 1324 return sg; 1325 } 1326 1327 static noinline struct sg_table * 1328 intel_remap_pages(struct intel_remapped_info *rem_info, 1329 struct drm_i915_gem_object *obj) 1330 { 1331 unsigned int size = intel_remapped_info_size(rem_info); 1332 struct drm_i915_private *i915 = to_i915(obj->base.dev); 1333 struct sg_table *st; 1334 struct scatterlist *sg; 1335 int ret = -ENOMEM; 1336 int i; 1337 1338 /* Allocate target SG list. */ 1339 st = kmalloc(sizeof(*st), GFP_KERNEL); 1340 if (!st) 1341 goto err_st_alloc; 1342 1343 ret = sg_alloc_table(st, size, GFP_KERNEL); 1344 if (ret) 1345 goto err_sg_alloc; 1346 1347 st->nents = 0; 1348 sg = st->sgl; 1349 1350 for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) { 1351 sg = remap_pages(obj, rem_info->plane[i].offset, 1352 rem_info->plane[i].width, rem_info->plane[i].height, 1353 rem_info->plane[i].stride, st, sg); 1354 } 1355 1356 i915_sg_trim(st); 1357 1358 return st; 1359 1360 err_sg_alloc: 1361 kfree(st); 1362 err_st_alloc: 1363 1364 drm_dbg(&i915->drm, "Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n", 1365 obj->base.size, rem_info->plane[0].width, 1366 rem_info->plane[0].height, size); 1367 1368 return ERR_PTR(ret); 1369 } 1370 1371 static noinline struct sg_table * 1372 intel_partial_pages(const struct i915_ggtt_view *view, 1373 struct drm_i915_gem_object *obj) 1374 { 1375 struct sg_table *st; 1376 struct scatterlist *sg, *iter; 1377 unsigned int count = view->partial.size; 1378 unsigned int offset; 1379 int ret = -ENOMEM; 1380 1381 st = kmalloc(sizeof(*st), GFP_KERNEL); 1382 if (!st) 1383 goto err_st_alloc; 1384 1385 ret = sg_alloc_table(st, count, GFP_KERNEL); 1386 if (ret) 1387 goto err_sg_alloc; 1388 1389 iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); 1390 GEM_BUG_ON(!iter); 1391 1392 sg = st->sgl; 1393 st->nents = 0; 1394 do { 1395 unsigned int len; 1396 1397 len = min(iter->length - (offset << PAGE_SHIFT), 1398 count << PAGE_SHIFT); 1399 sg_set_page(sg, NULL, len, 0); 1400 sg_dma_address(sg) = 1401 sg_dma_address(iter) + (offset << PAGE_SHIFT); 1402 sg_dma_len(sg) = len; 1403 1404 st->nents++; 1405 count -= len >> PAGE_SHIFT; 1406 if (count == 0) { 1407 sg_mark_end(sg); 1408 i915_sg_trim(st); /* Drop any unused tail entries. */ 1409 1410 return st; 1411 } 1412 1413 sg = __sg_next(sg); 1414 iter = __sg_next(iter); 1415 offset = 0; 1416 } while (1); 1417 1418 err_sg_alloc: 1419 kfree(st); 1420 err_st_alloc: 1421 return ERR_PTR(ret); 1422 } 1423 1424 static int 1425 i915_get_ggtt_vma_pages(struct i915_vma *vma) 1426 { 1427 int ret; 1428 1429 /* 1430 * The vma->pages are only valid within the lifespan of the borrowed 1431 * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so 1432 * must be the vma->pages. A simple rule is that vma->pages must only 1433 * be accessed when the obj->mm.pages are pinned. 1434 */ 1435 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); 1436 1437 switch (vma->ggtt_view.type) { 1438 default: 1439 GEM_BUG_ON(vma->ggtt_view.type); 1440 /* fall through */ 1441 case I915_GGTT_VIEW_NORMAL: 1442 vma->pages = vma->obj->mm.pages; 1443 return 0; 1444 1445 case I915_GGTT_VIEW_ROTATED: 1446 vma->pages = 1447 intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); 1448 break; 1449 1450 case I915_GGTT_VIEW_REMAPPED: 1451 vma->pages = 1452 intel_remap_pages(&vma->ggtt_view.remapped, vma->obj); 1453 break; 1454 1455 case I915_GGTT_VIEW_PARTIAL: 1456 vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); 1457 break; 1458 } 1459 1460 ret = 0; 1461 if (IS_ERR(vma->pages)) { 1462 ret = PTR_ERR(vma->pages); 1463 vma->pages = NULL; 1464 drm_err(&vma->vm->i915->drm, 1465 "Failed to get pages for VMA view type %u (%d)!\n", 1466 vma->ggtt_view.type, ret); 1467 } 1468 return ret; 1469 } 1470