xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_ggtt.c (revision 1f0214a8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 
6 #include <linux/agp_backend.h>
7 #include <linux/stop_machine.h>
8 
9 #include <asm/set_memory.h>
10 #include <asm/smp.h>
11 
12 #include <drm/i915_drm.h>
13 #include <drm/intel-gtt.h>
14 
15 #include "gem/i915_gem_lmem.h"
16 
17 #include "intel_gt.h"
18 #include "intel_gt_regs.h"
19 #include "i915_drv.h"
20 #include "i915_scatterlist.h"
21 #include "i915_vgpu.h"
22 
23 #include "intel_gtt.h"
24 #include "gen8_ppgtt.h"
25 
26 static void i915_ggtt_color_adjust(const struct drm_mm_node *node,
27 				   unsigned long color,
28 				   u64 *start,
29 				   u64 *end)
30 {
31 	if (i915_node_color_differs(node, color))
32 		*start += I915_GTT_PAGE_SIZE;
33 
34 	/*
35 	 * Also leave a space between the unallocated reserved node after the
36 	 * GTT and any objects within the GTT, i.e. we use the color adjustment
37 	 * to insert a guard page to prevent prefetches crossing over the
38 	 * GTT boundary.
39 	 */
40 	node = list_next_entry(node, node_list);
41 	if (node->color != color)
42 		*end -= I915_GTT_PAGE_SIZE;
43 }
44 
45 static int ggtt_init_hw(struct i915_ggtt *ggtt)
46 {
47 	struct drm_i915_private *i915 = ggtt->vm.i915;
48 
49 	i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
50 
51 	ggtt->vm.is_ggtt = true;
52 
53 	/* Only VLV supports read-only GGTT mappings */
54 	ggtt->vm.has_read_only = IS_VALLEYVIEW(i915);
55 
56 	if (!HAS_LLC(i915) && !HAS_PPGTT(i915))
57 		ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust;
58 
59 	if (ggtt->mappable_end) {
60 		if (!io_mapping_init_wc(&ggtt->iomap,
61 					ggtt->gmadr.start,
62 					ggtt->mappable_end)) {
63 			ggtt->vm.cleanup(&ggtt->vm);
64 			return -EIO;
65 		}
66 
67 		ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start,
68 					      ggtt->mappable_end);
69 	}
70 
71 	intel_ggtt_init_fences(ggtt);
72 
73 	return 0;
74 }
75 
76 /**
77  * i915_ggtt_init_hw - Initialize GGTT hardware
78  * @i915: i915 device
79  */
80 int i915_ggtt_init_hw(struct drm_i915_private *i915)
81 {
82 	int ret;
83 
84 	/*
85 	 * Note that we use page colouring to enforce a guard page at the
86 	 * end of the address space. This is required as the CS may prefetch
87 	 * beyond the end of the batch buffer, across the page boundary,
88 	 * and beyond the end of the GTT if we do not provide a guard.
89 	 */
90 	ret = ggtt_init_hw(to_gt(i915)->ggtt);
91 	if (ret)
92 		return ret;
93 
94 	return 0;
95 }
96 
97 /*
98  * Certain Gen5 chipsets require idling the GPU before
99  * unmapping anything from the GTT when VT-d is enabled.
100  */
101 static bool needs_idle_maps(struct drm_i915_private *i915)
102 {
103 	/*
104 	 * Query intel_iommu to see if we need the workaround. Presumably that
105 	 * was loaded first.
106 	 */
107 	if (!intel_vtd_active(i915))
108 		return false;
109 
110 	if (GRAPHICS_VER(i915) == 5 && IS_MOBILE(i915))
111 		return true;
112 
113 	if (GRAPHICS_VER(i915) == 12)
114 		return true; /* XXX DMAR fault reason 7 */
115 
116 	return false;
117 }
118 
119 /**
120  * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM
121  * @vm: The VM to suspend the mappings for
122  *
123  * Suspend the memory mappings for all objects mapped to HW via the GGTT or a
124  * DPT page table.
125  */
126 void i915_ggtt_suspend_vm(struct i915_address_space *vm)
127 {
128 	struct i915_vma *vma, *vn;
129 	int open;
130 
131 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
132 
133 retry:
134 	i915_gem_drain_freed_objects(vm->i915);
135 
136 	mutex_lock(&vm->mutex);
137 
138 	/* Skip rewriting PTE on VMA unbind. */
139 	open = atomic_xchg(&vm->open, 0);
140 
141 	list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
142 		struct drm_i915_gem_object *obj = vma->obj;
143 
144 		GEM_BUG_ON(!drm_mm_node_allocated(&vma->node));
145 
146 		if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND))
147 			continue;
148 
149 		/* unlikely to race when GPU is idle, so no worry about slowpath.. */
150 		if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) {
151 			/*
152 			 * No dead objects should appear here, GPU should be
153 			 * completely idle, and userspace suspended
154 			 */
155 			i915_gem_object_get(obj);
156 
157 			atomic_set(&vm->open, open);
158 			mutex_unlock(&vm->mutex);
159 
160 			i915_gem_object_lock(obj, NULL);
161 			open = i915_vma_unbind(vma);
162 			i915_gem_object_unlock(obj);
163 
164 			GEM_WARN_ON(open);
165 
166 			i915_gem_object_put(obj);
167 			goto retry;
168 		}
169 
170 		if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) {
171 			i915_vma_wait_for_bind(vma);
172 
173 			__i915_vma_evict(vma, false);
174 			drm_mm_remove_node(&vma->node);
175 		}
176 
177 		i915_gem_object_unlock(obj);
178 	}
179 
180 	vm->clear_range(vm, 0, vm->total);
181 
182 	atomic_set(&vm->open, open);
183 
184 	mutex_unlock(&vm->mutex);
185 }
186 
187 void i915_ggtt_suspend(struct i915_ggtt *ggtt)
188 {
189 	i915_ggtt_suspend_vm(&ggtt->vm);
190 	ggtt->invalidate(ggtt);
191 
192 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
193 }
194 
195 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt)
196 {
197 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
198 
199 	spin_lock_irq(&uncore->lock);
200 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
201 	intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6);
202 	spin_unlock_irq(&uncore->lock);
203 }
204 
205 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt)
206 {
207 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
208 
209 	/*
210 	 * Note that as an uncached mmio write, this will flush the
211 	 * WCB of the writes into the GGTT before it triggers the invalidate.
212 	 */
213 	intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
214 }
215 
216 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt)
217 {
218 	struct intel_uncore *uncore = ggtt->vm.gt->uncore;
219 	struct drm_i915_private *i915 = ggtt->vm.i915;
220 
221 	gen8_ggtt_invalidate(ggtt);
222 
223 	if (GRAPHICS_VER(i915) >= 12)
224 		intel_uncore_write_fw(uncore, GEN12_GUC_TLB_INV_CR,
225 				      GEN12_GUC_TLB_INV_CR_INVALIDATE);
226 	else
227 		intel_uncore_write_fw(uncore, GEN8_GTCR, GEN8_GTCR_INVALIDATE);
228 }
229 
230 static void gmch_ggtt_invalidate(struct i915_ggtt *ggtt)
231 {
232 	intel_gtt_chipset_flush();
233 }
234 
235 u64 gen8_ggtt_pte_encode(dma_addr_t addr,
236 			 enum i915_cache_level level,
237 			 u32 flags)
238 {
239 	gen8_pte_t pte = addr | GEN8_PAGE_PRESENT;
240 
241 	if (flags & PTE_LM)
242 		pte |= GEN12_GGTT_PTE_LM;
243 
244 	return pte;
245 }
246 
247 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
248 {
249 	writeq(pte, addr);
250 }
251 
252 static void gen8_ggtt_insert_page(struct i915_address_space *vm,
253 				  dma_addr_t addr,
254 				  u64 offset,
255 				  enum i915_cache_level level,
256 				  u32 flags)
257 {
258 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
259 	gen8_pte_t __iomem *pte =
260 		(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
261 
262 	gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags));
263 
264 	ggtt->invalidate(ggtt);
265 }
266 
267 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
268 				     struct i915_vma_resource *vma_res,
269 				     enum i915_cache_level level,
270 				     u32 flags)
271 {
272 	const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags);
273 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
274 	gen8_pte_t __iomem *gte;
275 	gen8_pte_t __iomem *end;
276 	struct sgt_iter iter;
277 	dma_addr_t addr;
278 
279 	/*
280 	 * Note that we ignore PTE_READ_ONLY here. The caller must be careful
281 	 * not to allow the user to override access to a read only page.
282 	 */
283 
284 	gte = (gen8_pte_t __iomem *)ggtt->gsm;
285 	gte += vma_res->start / I915_GTT_PAGE_SIZE;
286 	end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE;
287 
288 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
289 		gen8_set_pte(gte++, pte_encode | addr);
290 	GEM_BUG_ON(gte > end);
291 
292 	/* Fill the allocated but "unused" space beyond the end of the buffer */
293 	while (gte < end)
294 		gen8_set_pte(gte++, vm->scratch[0]->encode);
295 
296 	/*
297 	 * We want to flush the TLBs only after we're certain all the PTE
298 	 * updates have finished.
299 	 */
300 	ggtt->invalidate(ggtt);
301 }
302 
303 static void gen6_ggtt_insert_page(struct i915_address_space *vm,
304 				  dma_addr_t addr,
305 				  u64 offset,
306 				  enum i915_cache_level level,
307 				  u32 flags)
308 {
309 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
310 	gen6_pte_t __iomem *pte =
311 		(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
312 
313 	iowrite32(vm->pte_encode(addr, level, flags), pte);
314 
315 	ggtt->invalidate(ggtt);
316 }
317 
318 /*
319  * Binds an object into the global gtt with the specified cache level.
320  * The object will be accessible to the GPU via commands whose operands
321  * reference offsets within the global GTT as well as accessible by the GPU
322  * through the GMADR mapped BAR (i915->mm.gtt->gtt).
323  */
324 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
325 				     struct i915_vma_resource *vma_res,
326 				     enum i915_cache_level level,
327 				     u32 flags)
328 {
329 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
330 	gen6_pte_t __iomem *gte;
331 	gen6_pte_t __iomem *end;
332 	struct sgt_iter iter;
333 	dma_addr_t addr;
334 
335 	gte = (gen6_pte_t __iomem *)ggtt->gsm;
336 	gte += vma_res->start / I915_GTT_PAGE_SIZE;
337 	end = gte + vma_res->node_size / I915_GTT_PAGE_SIZE;
338 
339 	for_each_sgt_daddr(addr, iter, vma_res->bi.pages)
340 		iowrite32(vm->pte_encode(addr, level, flags), gte++);
341 	GEM_BUG_ON(gte > end);
342 
343 	/* Fill the allocated but "unused" space beyond the end of the buffer */
344 	while (gte < end)
345 		iowrite32(vm->scratch[0]->encode, gte++);
346 
347 	/*
348 	 * We want to flush the TLBs only after we're certain all the PTE
349 	 * updates have finished.
350 	 */
351 	ggtt->invalidate(ggtt);
352 }
353 
354 static void nop_clear_range(struct i915_address_space *vm,
355 			    u64 start, u64 length)
356 {
357 }
358 
359 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
360 				  u64 start, u64 length)
361 {
362 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
363 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
364 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
365 	const gen8_pte_t scratch_pte = vm->scratch[0]->encode;
366 	gen8_pte_t __iomem *gtt_base =
367 		(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
368 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
369 	int i;
370 
371 	if (WARN(num_entries > max_entries,
372 		 "First entry = %d; Num entries = %d (max=%d)\n",
373 		 first_entry, num_entries, max_entries))
374 		num_entries = max_entries;
375 
376 	for (i = 0; i < num_entries; i++)
377 		gen8_set_pte(&gtt_base[i], scratch_pte);
378 }
379 
380 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
381 {
382 	/*
383 	 * Make sure the internal GAM fifo has been cleared of all GTT
384 	 * writes before exiting stop_machine(). This guarantees that
385 	 * any aperture accesses waiting to start in another process
386 	 * cannot back up behind the GTT writes causing a hang.
387 	 * The register can be any arbitrary GAM register.
388 	 */
389 	intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6);
390 }
391 
392 struct insert_page {
393 	struct i915_address_space *vm;
394 	dma_addr_t addr;
395 	u64 offset;
396 	enum i915_cache_level level;
397 };
398 
399 static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
400 {
401 	struct insert_page *arg = _arg;
402 
403 	gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
404 	bxt_vtd_ggtt_wa(arg->vm);
405 
406 	return 0;
407 }
408 
409 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
410 					  dma_addr_t addr,
411 					  u64 offset,
412 					  enum i915_cache_level level,
413 					  u32 unused)
414 {
415 	struct insert_page arg = { vm, addr, offset, level };
416 
417 	stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
418 }
419 
420 struct insert_entries {
421 	struct i915_address_space *vm;
422 	struct i915_vma_resource *vma_res;
423 	enum i915_cache_level level;
424 	u32 flags;
425 };
426 
427 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
428 {
429 	struct insert_entries *arg = _arg;
430 
431 	gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags);
432 	bxt_vtd_ggtt_wa(arg->vm);
433 
434 	return 0;
435 }
436 
437 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
438 					     struct i915_vma_resource *vma_res,
439 					     enum i915_cache_level level,
440 					     u32 flags)
441 {
442 	struct insert_entries arg = { vm, vma_res, level, flags };
443 
444 	stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
445 }
446 
447 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
448 				  u64 start, u64 length)
449 {
450 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
451 	unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
452 	unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
453 	gen6_pte_t scratch_pte, __iomem *gtt_base =
454 		(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
455 	const int max_entries = ggtt_total_entries(ggtt) - first_entry;
456 	int i;
457 
458 	if (WARN(num_entries > max_entries,
459 		 "First entry = %d; Num entries = %d (max=%d)\n",
460 		 first_entry, num_entries, max_entries))
461 		num_entries = max_entries;
462 
463 	scratch_pte = vm->scratch[0]->encode;
464 	for (i = 0; i < num_entries; i++)
465 		iowrite32(scratch_pte, &gtt_base[i]);
466 }
467 
468 static void i915_ggtt_insert_page(struct i915_address_space *vm,
469 				  dma_addr_t addr,
470 				  u64 offset,
471 				  enum i915_cache_level cache_level,
472 				  u32 unused)
473 {
474 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
475 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
476 
477 	intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
478 }
479 
480 static void i915_ggtt_insert_entries(struct i915_address_space *vm,
481 				     struct i915_vma_resource *vma_res,
482 				     enum i915_cache_level cache_level,
483 				     u32 unused)
484 {
485 	unsigned int flags = (cache_level == I915_CACHE_NONE) ?
486 		AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
487 
488 	intel_gtt_insert_sg_entries(vma_res->bi.pages, vma_res->start >> PAGE_SHIFT,
489 				    flags);
490 }
491 
492 static void i915_ggtt_clear_range(struct i915_address_space *vm,
493 				  u64 start, u64 length)
494 {
495 	intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
496 }
497 
498 static void ggtt_bind_vma(struct i915_address_space *vm,
499 			  struct i915_vm_pt_stash *stash,
500 			  struct i915_vma_resource *vma_res,
501 			  enum i915_cache_level cache_level,
502 			  u32 flags)
503 {
504 	u32 pte_flags;
505 
506 	if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK))
507 		return;
508 
509 	vma_res->bound_flags |= flags;
510 
511 	/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
512 	pte_flags = 0;
513 	if (vma_res->bi.readonly)
514 		pte_flags |= PTE_READ_ONLY;
515 	if (vma_res->bi.lmem)
516 		pte_flags |= PTE_LM;
517 
518 	vm->insert_entries(vm, vma_res, cache_level, pte_flags);
519 	vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE;
520 }
521 
522 static void ggtt_unbind_vma(struct i915_address_space *vm,
523 			    struct i915_vma_resource *vma_res)
524 {
525 	vm->clear_range(vm, vma_res->start, vma_res->vma_size);
526 }
527 
528 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt)
529 {
530 	u64 size;
531 	int ret;
532 
533 	if (!intel_uc_uses_guc(&ggtt->vm.gt->uc))
534 		return 0;
535 
536 	GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP);
537 	size = ggtt->vm.total - GUC_GGTT_TOP;
538 
539 	ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size,
540 				   GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE,
541 				   PIN_NOEVICT);
542 	if (ret)
543 		drm_dbg(&ggtt->vm.i915->drm,
544 			"Failed to reserve top of GGTT for GuC\n");
545 
546 	return ret;
547 }
548 
549 static void ggtt_release_guc_top(struct i915_ggtt *ggtt)
550 {
551 	if (drm_mm_node_allocated(&ggtt->uc_fw))
552 		drm_mm_remove_node(&ggtt->uc_fw);
553 }
554 
555 static void cleanup_init_ggtt(struct i915_ggtt *ggtt)
556 {
557 	ggtt_release_guc_top(ggtt);
558 	if (drm_mm_node_allocated(&ggtt->error_capture))
559 		drm_mm_remove_node(&ggtt->error_capture);
560 	mutex_destroy(&ggtt->error_mutex);
561 }
562 
563 static int init_ggtt(struct i915_ggtt *ggtt)
564 {
565 	/*
566 	 * Let GEM Manage all of the aperture.
567 	 *
568 	 * However, leave one page at the end still bound to the scratch page.
569 	 * There are a number of places where the hardware apparently prefetches
570 	 * past the end of the object, and we've seen multiple hangs with the
571 	 * GPU head pointer stuck in a batchbuffer bound at the last page of the
572 	 * aperture.  One page should be enough to keep any prefetching inside
573 	 * of the aperture.
574 	 */
575 	unsigned long hole_start, hole_end;
576 	struct drm_mm_node *entry;
577 	int ret;
578 
579 	/*
580 	 * GuC requires all resources that we're sharing with it to be placed in
581 	 * non-WOPCM memory. If GuC is not present or not in use we still need a
582 	 * small bias as ring wraparound at offset 0 sometimes hangs. No idea
583 	 * why.
584 	 */
585 	ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
586 			       intel_wopcm_guc_size(&ggtt->vm.i915->wopcm));
587 
588 	ret = intel_vgt_balloon(ggtt);
589 	if (ret)
590 		return ret;
591 
592 	mutex_init(&ggtt->error_mutex);
593 	if (ggtt->mappable_end) {
594 		/*
595 		 * Reserve a mappable slot for our lockless error capture.
596 		 *
597 		 * We strongly prefer taking address 0x0 in order to protect
598 		 * other critical buffers against accidental overwrites,
599 		 * as writing to address 0 is a very common mistake.
600 		 *
601 		 * Since 0 may already be in use by the system (e.g. the BIOS
602 		 * framebuffer), we let the reservation fail quietly and hope
603 		 * 0 remains reserved always.
604 		 *
605 		 * If we fail to reserve 0, and then fail to find any space
606 		 * for an error-capture, remain silent. We can afford not
607 		 * to reserve an error_capture node as we have fallback
608 		 * paths, and we trust that 0 will remain reserved. However,
609 		 * the only likely reason for failure to insert is a driver
610 		 * bug, which we expect to cause other failures...
611 		 */
612 		ggtt->error_capture.size = I915_GTT_PAGE_SIZE;
613 		ggtt->error_capture.color = I915_COLOR_UNEVICTABLE;
614 		if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture))
615 			drm_mm_insert_node_in_range(&ggtt->vm.mm,
616 						    &ggtt->error_capture,
617 						    ggtt->error_capture.size, 0,
618 						    ggtt->error_capture.color,
619 						    0, ggtt->mappable_end,
620 						    DRM_MM_INSERT_LOW);
621 	}
622 	if (drm_mm_node_allocated(&ggtt->error_capture))
623 		drm_dbg(&ggtt->vm.i915->drm,
624 			"Reserved GGTT:[%llx, %llx] for use by error capture\n",
625 			ggtt->error_capture.start,
626 			ggtt->error_capture.start + ggtt->error_capture.size);
627 
628 	/*
629 	 * The upper portion of the GuC address space has a sizeable hole
630 	 * (several MB) that is inaccessible by GuC. Reserve this range within
631 	 * GGTT as it can comfortably hold GuC/HuC firmware images.
632 	 */
633 	ret = ggtt_reserve_guc_top(ggtt);
634 	if (ret)
635 		goto err;
636 
637 	/* Clear any non-preallocated blocks */
638 	drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
639 		drm_dbg(&ggtt->vm.i915->drm,
640 			"clearing unused GTT space: [%lx, %lx]\n",
641 			hole_start, hole_end);
642 		ggtt->vm.clear_range(&ggtt->vm, hole_start,
643 				     hole_end - hole_start);
644 	}
645 
646 	/* And finally clear the reserved guard page */
647 	ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
648 
649 	return 0;
650 
651 err:
652 	cleanup_init_ggtt(ggtt);
653 	return ret;
654 }
655 
656 static void aliasing_gtt_bind_vma(struct i915_address_space *vm,
657 				  struct i915_vm_pt_stash *stash,
658 				  struct i915_vma_resource *vma_res,
659 				  enum i915_cache_level cache_level,
660 				  u32 flags)
661 {
662 	u32 pte_flags;
663 
664 	/* Currently applicable only to VLV */
665 	pte_flags = 0;
666 	if (vma_res->bi.readonly)
667 		pte_flags |= PTE_READ_ONLY;
668 
669 	if (flags & I915_VMA_LOCAL_BIND)
670 		ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm,
671 			       stash, vma_res, cache_level, flags);
672 
673 	if (flags & I915_VMA_GLOBAL_BIND)
674 		vm->insert_entries(vm, vma_res, cache_level, pte_flags);
675 
676 	vma_res->bound_flags |= flags;
677 }
678 
679 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm,
680 				    struct i915_vma_resource *vma_res)
681 {
682 	if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND)
683 		vm->clear_range(vm, vma_res->start, vma_res->vma_size);
684 
685 	if (vma_res->bound_flags & I915_VMA_LOCAL_BIND)
686 		ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res);
687 }
688 
689 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt)
690 {
691 	struct i915_vm_pt_stash stash = {};
692 	struct i915_ppgtt *ppgtt;
693 	int err;
694 
695 	ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0);
696 	if (IS_ERR(ppgtt))
697 		return PTR_ERR(ppgtt);
698 
699 	if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
700 		err = -ENODEV;
701 		goto err_ppgtt;
702 	}
703 
704 	err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total);
705 	if (err)
706 		goto err_ppgtt;
707 
708 	i915_gem_object_lock(ppgtt->vm.scratch[0], NULL);
709 	err = i915_vm_map_pt_stash(&ppgtt->vm, &stash);
710 	i915_gem_object_unlock(ppgtt->vm.scratch[0]);
711 	if (err)
712 		goto err_stash;
713 
714 	/*
715 	 * Note we only pre-allocate as far as the end of the global
716 	 * GTT. On 48b / 4-level page-tables, the difference is very,
717 	 * very significant! We have to preallocate as GVT/vgpu does
718 	 * not like the page directory disappearing.
719 	 */
720 	ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total);
721 
722 	ggtt->alias = ppgtt;
723 	ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags;
724 
725 	GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
726 	ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
727 
728 	GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
729 	ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
730 
731 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
732 	return 0;
733 
734 err_stash:
735 	i915_vm_free_pt_stash(&ppgtt->vm, &stash);
736 err_ppgtt:
737 	i915_vm_put(&ppgtt->vm);
738 	return err;
739 }
740 
741 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt)
742 {
743 	struct i915_ppgtt *ppgtt;
744 
745 	ppgtt = fetch_and_zero(&ggtt->alias);
746 	if (!ppgtt)
747 		return;
748 
749 	i915_vm_put(&ppgtt->vm);
750 
751 	ggtt->vm.vma_ops.bind_vma   = ggtt_bind_vma;
752 	ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
753 }
754 
755 int i915_init_ggtt(struct drm_i915_private *i915)
756 {
757 	int ret;
758 
759 	ret = init_ggtt(to_gt(i915)->ggtt);
760 	if (ret)
761 		return ret;
762 
763 	if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) {
764 		ret = init_aliasing_ppgtt(to_gt(i915)->ggtt);
765 		if (ret)
766 			cleanup_init_ggtt(to_gt(i915)->ggtt);
767 	}
768 
769 	return 0;
770 }
771 
772 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt)
773 {
774 	struct i915_vma *vma, *vn;
775 
776 	atomic_set(&ggtt->vm.open, 0);
777 
778 	flush_workqueue(ggtt->vm.i915->wq);
779 	i915_gem_drain_freed_objects(ggtt->vm.i915);
780 
781 	mutex_lock(&ggtt->vm.mutex);
782 
783 	list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
784 		struct drm_i915_gem_object *obj = vma->obj;
785 		bool trylock;
786 
787 		trylock = i915_gem_object_trylock(obj, NULL);
788 		WARN_ON(!trylock);
789 
790 		WARN_ON(__i915_vma_unbind(vma));
791 		if (trylock)
792 			i915_gem_object_unlock(obj);
793 	}
794 
795 	if (drm_mm_node_allocated(&ggtt->error_capture))
796 		drm_mm_remove_node(&ggtt->error_capture);
797 	mutex_destroy(&ggtt->error_mutex);
798 
799 	ggtt_release_guc_top(ggtt);
800 	intel_vgt_deballoon(ggtt);
801 
802 	ggtt->vm.cleanup(&ggtt->vm);
803 
804 	mutex_unlock(&ggtt->vm.mutex);
805 	i915_address_space_fini(&ggtt->vm);
806 
807 	arch_phys_wc_del(ggtt->mtrr);
808 
809 	if (ggtt->iomap.size)
810 		io_mapping_fini(&ggtt->iomap);
811 }
812 
813 /**
814  * i915_ggtt_driver_release - Clean up GGTT hardware initialization
815  * @i915: i915 device
816  */
817 void i915_ggtt_driver_release(struct drm_i915_private *i915)
818 {
819 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
820 
821 	fini_aliasing_ppgtt(ggtt);
822 
823 	intel_ggtt_fini_fences(ggtt);
824 	ggtt_cleanup_hw(ggtt);
825 }
826 
827 /**
828  * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after
829  * all free objects have been drained.
830  * @i915: i915 device
831  */
832 void i915_ggtt_driver_late_release(struct drm_i915_private *i915)
833 {
834 	struct i915_ggtt *ggtt = to_gt(i915)->ggtt;
835 
836 	GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1);
837 	dma_resv_fini(&ggtt->vm._resv);
838 }
839 
840 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
841 {
842 	snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
843 	snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
844 	return snb_gmch_ctl << 20;
845 }
846 
847 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
848 {
849 	bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
850 	bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
851 	if (bdw_gmch_ctl)
852 		bdw_gmch_ctl = 1 << bdw_gmch_ctl;
853 
854 #ifdef CONFIG_X86_32
855 	/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
856 	if (bdw_gmch_ctl > 4)
857 		bdw_gmch_ctl = 4;
858 #endif
859 
860 	return bdw_gmch_ctl << 20;
861 }
862 
863 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
864 {
865 	gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
866 	gmch_ctrl &= SNB_GMCH_GGMS_MASK;
867 
868 	if (gmch_ctrl)
869 		return 1 << (20 + gmch_ctrl);
870 
871 	return 0;
872 }
873 
874 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915)
875 {
876 	/*
877 	 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset
878 	 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset
879 	 */
880 	GEM_BUG_ON(GRAPHICS_VER(i915) < 6);
881 	return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M;
882 }
883 
884 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915)
885 {
886 	return gen6_gttmmadr_size(i915) / 2;
887 }
888 
889 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
890 {
891 	struct drm_i915_private *i915 = ggtt->vm.i915;
892 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
893 	phys_addr_t phys_addr;
894 	u32 pte_flags;
895 	int ret;
896 
897 	GEM_WARN_ON(pci_resource_len(pdev, 0) != gen6_gttmmadr_size(i915));
898 	phys_addr = pci_resource_start(pdev, 0) + gen6_gttadr_offset(i915);
899 
900 	/*
901 	 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range
902 	 * will be dropped. For WC mappings in general we have 64 byte burst
903 	 * writes when the WC buffer is flushed, so we can't use it, but have to
904 	 * resort to an uncached mapping. The WC issue is easily caught by the
905 	 * readback check when writing GTT PTE entries.
906 	 */
907 	if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11)
908 		ggtt->gsm = ioremap(phys_addr, size);
909 	else
910 		ggtt->gsm = ioremap_wc(phys_addr, size);
911 	if (!ggtt->gsm) {
912 		drm_err(&i915->drm, "Failed to map the ggtt page table\n");
913 		return -ENOMEM;
914 	}
915 
916 	kref_init(&ggtt->vm.resv_ref);
917 	ret = setup_scratch_page(&ggtt->vm);
918 	if (ret) {
919 		drm_err(&i915->drm, "Scratch setup failed\n");
920 		/* iounmap will also get called at remove, but meh */
921 		iounmap(ggtt->gsm);
922 		return ret;
923 	}
924 
925 	pte_flags = 0;
926 	if (i915_gem_object_is_lmem(ggtt->vm.scratch[0]))
927 		pte_flags |= PTE_LM;
928 
929 	ggtt->vm.scratch[0]->encode =
930 		ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]),
931 				    I915_CACHE_NONE, pte_flags);
932 
933 	return 0;
934 }
935 
936 static void gen6_gmch_remove(struct i915_address_space *vm)
937 {
938 	struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
939 
940 	iounmap(ggtt->gsm);
941 	free_scratch(vm);
942 }
943 
944 static struct resource pci_resource(struct pci_dev *pdev, int bar)
945 {
946 	return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar),
947 					       pci_resource_len(pdev, bar));
948 }
949 
950 static int gen8_gmch_probe(struct i915_ggtt *ggtt)
951 {
952 	struct drm_i915_private *i915 = ggtt->vm.i915;
953 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
954 	unsigned int size;
955 	u16 snb_gmch_ctl;
956 
957 	/* TODO: We're not aware of mappable constraints on gen8 yet */
958 	if (!HAS_LMEM(i915)) {
959 		ggtt->gmadr = pci_resource(pdev, 2);
960 		ggtt->mappable_end = resource_size(&ggtt->gmadr);
961 	}
962 
963 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
964 	if (IS_CHERRYVIEW(i915))
965 		size = chv_get_total_gtt_size(snb_gmch_ctl);
966 	else
967 		size = gen8_get_total_gtt_size(snb_gmch_ctl);
968 
969 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
970 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
971 	ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY;
972 
973 	ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
974 	ggtt->vm.cleanup = gen6_gmch_remove;
975 	ggtt->vm.insert_page = gen8_ggtt_insert_page;
976 	ggtt->vm.clear_range = nop_clear_range;
977 	if (intel_scanout_needs_vtd_wa(i915))
978 		ggtt->vm.clear_range = gen8_ggtt_clear_range;
979 
980 	ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
981 
982 	/*
983 	 * Serialize GTT updates with aperture access on BXT if VT-d is on,
984 	 * and always on CHV.
985 	 */
986 	if (intel_vm_no_concurrent_access_wa(i915)) {
987 		ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
988 		ggtt->vm.insert_page    = bxt_vtd_ggtt_insert_page__BKL;
989 		ggtt->vm.bind_async_flags =
990 			I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
991 	}
992 
993 	ggtt->invalidate = gen8_ggtt_invalidate;
994 
995 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
996 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
997 
998 	ggtt->vm.pte_encode = gen8_ggtt_pte_encode;
999 
1000 	setup_private_pat(ggtt->vm.gt->uncore);
1001 
1002 	return ggtt_probe_common(ggtt, size);
1003 }
1004 
1005 static u64 snb_pte_encode(dma_addr_t addr,
1006 			  enum i915_cache_level level,
1007 			  u32 flags)
1008 {
1009 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1010 
1011 	switch (level) {
1012 	case I915_CACHE_L3_LLC:
1013 	case I915_CACHE_LLC:
1014 		pte |= GEN6_PTE_CACHE_LLC;
1015 		break;
1016 	case I915_CACHE_NONE:
1017 		pte |= GEN6_PTE_UNCACHED;
1018 		break;
1019 	default:
1020 		MISSING_CASE(level);
1021 	}
1022 
1023 	return pte;
1024 }
1025 
1026 static u64 ivb_pte_encode(dma_addr_t addr,
1027 			  enum i915_cache_level level,
1028 			  u32 flags)
1029 {
1030 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1031 
1032 	switch (level) {
1033 	case I915_CACHE_L3_LLC:
1034 		pte |= GEN7_PTE_CACHE_L3_LLC;
1035 		break;
1036 	case I915_CACHE_LLC:
1037 		pte |= GEN6_PTE_CACHE_LLC;
1038 		break;
1039 	case I915_CACHE_NONE:
1040 		pte |= GEN6_PTE_UNCACHED;
1041 		break;
1042 	default:
1043 		MISSING_CASE(level);
1044 	}
1045 
1046 	return pte;
1047 }
1048 
1049 static u64 byt_pte_encode(dma_addr_t addr,
1050 			  enum i915_cache_level level,
1051 			  u32 flags)
1052 {
1053 	gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1054 
1055 	if (!(flags & PTE_READ_ONLY))
1056 		pte |= BYT_PTE_WRITEABLE;
1057 
1058 	if (level != I915_CACHE_NONE)
1059 		pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
1060 
1061 	return pte;
1062 }
1063 
1064 static u64 hsw_pte_encode(dma_addr_t addr,
1065 			  enum i915_cache_level level,
1066 			  u32 flags)
1067 {
1068 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1069 
1070 	if (level != I915_CACHE_NONE)
1071 		pte |= HSW_WB_LLC_AGE3;
1072 
1073 	return pte;
1074 }
1075 
1076 static u64 iris_pte_encode(dma_addr_t addr,
1077 			   enum i915_cache_level level,
1078 			   u32 flags)
1079 {
1080 	gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID;
1081 
1082 	switch (level) {
1083 	case I915_CACHE_NONE:
1084 		break;
1085 	case I915_CACHE_WT:
1086 		pte |= HSW_WT_ELLC_LLC_AGE3;
1087 		break;
1088 	default:
1089 		pte |= HSW_WB_ELLC_LLC_AGE3;
1090 		break;
1091 	}
1092 
1093 	return pte;
1094 }
1095 
1096 static int gen6_gmch_probe(struct i915_ggtt *ggtt)
1097 {
1098 	struct drm_i915_private *i915 = ggtt->vm.i915;
1099 	struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
1100 	unsigned int size;
1101 	u16 snb_gmch_ctl;
1102 
1103 	ggtt->gmadr = pci_resource(pdev, 2);
1104 	ggtt->mappable_end = resource_size(&ggtt->gmadr);
1105 
1106 	/*
1107 	 * 64/512MB is the current min/max we actually know of, but this is
1108 	 * just a coarse sanity check.
1109 	 */
1110 	if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
1111 		drm_err(&i915->drm, "Unknown GMADR size (%pa)\n",
1112 			&ggtt->mappable_end);
1113 		return -ENXIO;
1114 	}
1115 
1116 	pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1117 
1118 	size = gen6_get_total_gtt_size(snb_gmch_ctl);
1119 	ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
1120 
1121 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1122 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1123 
1124 	ggtt->vm.clear_range = nop_clear_range;
1125 	if (!HAS_FULL_PPGTT(i915) || intel_scanout_needs_vtd_wa(i915))
1126 		ggtt->vm.clear_range = gen6_ggtt_clear_range;
1127 	ggtt->vm.insert_page = gen6_ggtt_insert_page;
1128 	ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
1129 	ggtt->vm.cleanup = gen6_gmch_remove;
1130 
1131 	ggtt->invalidate = gen6_ggtt_invalidate;
1132 
1133 	if (HAS_EDRAM(i915))
1134 		ggtt->vm.pte_encode = iris_pte_encode;
1135 	else if (IS_HASWELL(i915))
1136 		ggtt->vm.pte_encode = hsw_pte_encode;
1137 	else if (IS_VALLEYVIEW(i915))
1138 		ggtt->vm.pte_encode = byt_pte_encode;
1139 	else if (GRAPHICS_VER(i915) >= 7)
1140 		ggtt->vm.pte_encode = ivb_pte_encode;
1141 	else
1142 		ggtt->vm.pte_encode = snb_pte_encode;
1143 
1144 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1145 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1146 
1147 	return ggtt_probe_common(ggtt, size);
1148 }
1149 
1150 static void i915_gmch_remove(struct i915_address_space *vm)
1151 {
1152 	intel_gmch_remove();
1153 }
1154 
1155 static int i915_gmch_probe(struct i915_ggtt *ggtt)
1156 {
1157 	struct drm_i915_private *i915 = ggtt->vm.i915;
1158 	phys_addr_t gmadr_base;
1159 	int ret;
1160 
1161 	ret = intel_gmch_probe(i915->bridge_dev, to_pci_dev(i915->drm.dev), NULL);
1162 	if (!ret) {
1163 		drm_err(&i915->drm, "failed to set up gmch\n");
1164 		return -EIO;
1165 	}
1166 
1167 	intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
1168 
1169 	ggtt->gmadr =
1170 		(struct resource)DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end);
1171 
1172 	ggtt->vm.alloc_pt_dma = alloc_pt_dma;
1173 	ggtt->vm.alloc_scratch_dma = alloc_pt_dma;
1174 
1175 	if (needs_idle_maps(i915)) {
1176 		drm_notice(&i915->drm,
1177 			   "Flushing DMA requests before IOMMU unmaps; performance may be degraded\n");
1178 		ggtt->do_idle_maps = true;
1179 	}
1180 
1181 	ggtt->vm.insert_page = i915_ggtt_insert_page;
1182 	ggtt->vm.insert_entries = i915_ggtt_insert_entries;
1183 	ggtt->vm.clear_range = i915_ggtt_clear_range;
1184 	ggtt->vm.cleanup = i915_gmch_remove;
1185 
1186 	ggtt->invalidate = gmch_ggtt_invalidate;
1187 
1188 	ggtt->vm.vma_ops.bind_vma    = ggtt_bind_vma;
1189 	ggtt->vm.vma_ops.unbind_vma  = ggtt_unbind_vma;
1190 
1191 	if (unlikely(ggtt->do_idle_maps))
1192 		drm_notice(&i915->drm,
1193 			   "Applying Ironlake quirks for intel_iommu\n");
1194 
1195 	return 0;
1196 }
1197 
1198 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt)
1199 {
1200 	struct drm_i915_private *i915 = gt->i915;
1201 	int ret;
1202 
1203 	ggtt->vm.gt = gt;
1204 	ggtt->vm.i915 = i915;
1205 	ggtt->vm.dma = i915->drm.dev;
1206 	dma_resv_init(&ggtt->vm._resv);
1207 
1208 	if (GRAPHICS_VER(i915) <= 5)
1209 		ret = i915_gmch_probe(ggtt);
1210 	else if (GRAPHICS_VER(i915) < 8)
1211 		ret = gen6_gmch_probe(ggtt);
1212 	else
1213 		ret = gen8_gmch_probe(ggtt);
1214 	if (ret) {
1215 		dma_resv_fini(&ggtt->vm._resv);
1216 		return ret;
1217 	}
1218 
1219 	if ((ggtt->vm.total - 1) >> 32) {
1220 		drm_err(&i915->drm,
1221 			"We never expected a Global GTT with more than 32bits"
1222 			" of address space! Found %lldM!\n",
1223 			ggtt->vm.total >> 20);
1224 		ggtt->vm.total = 1ULL << 32;
1225 		ggtt->mappable_end =
1226 			min_t(u64, ggtt->mappable_end, ggtt->vm.total);
1227 	}
1228 
1229 	if (ggtt->mappable_end > ggtt->vm.total) {
1230 		drm_err(&i915->drm,
1231 			"mappable aperture extends past end of GGTT,"
1232 			" aperture=%pa, total=%llx\n",
1233 			&ggtt->mappable_end, ggtt->vm.total);
1234 		ggtt->mappable_end = ggtt->vm.total;
1235 	}
1236 
1237 	/* GMADR is the PCI mmio aperture into the global GTT. */
1238 	drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20);
1239 	drm_dbg(&i915->drm, "GMADR size = %lluM\n",
1240 		(u64)ggtt->mappable_end >> 20);
1241 	drm_dbg(&i915->drm, "DSM size = %lluM\n",
1242 		(u64)resource_size(&intel_graphics_stolen_res) >> 20);
1243 
1244 	return 0;
1245 }
1246 
1247 /**
1248  * i915_ggtt_probe_hw - Probe GGTT hardware location
1249  * @i915: i915 device
1250  */
1251 int i915_ggtt_probe_hw(struct drm_i915_private *i915)
1252 {
1253 	int ret;
1254 
1255 	ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915));
1256 	if (ret)
1257 		return ret;
1258 
1259 	if (intel_vtd_active(i915))
1260 		drm_info(&i915->drm, "VT-d active for gfx access\n");
1261 
1262 	return 0;
1263 }
1264 
1265 int i915_ggtt_enable_hw(struct drm_i915_private *i915)
1266 {
1267 	if (GRAPHICS_VER(i915) < 6 && !intel_enable_gtt())
1268 		return -EIO;
1269 
1270 	return 0;
1271 }
1272 
1273 void i915_ggtt_enable_guc(struct i915_ggtt *ggtt)
1274 {
1275 	GEM_BUG_ON(ggtt->invalidate != gen8_ggtt_invalidate);
1276 
1277 	ggtt->invalidate = guc_ggtt_invalidate;
1278 
1279 	ggtt->invalidate(ggtt);
1280 }
1281 
1282 void i915_ggtt_disable_guc(struct i915_ggtt *ggtt)
1283 {
1284 	/* XXX Temporary pardon for error unload */
1285 	if (ggtt->invalidate == gen8_ggtt_invalidate)
1286 		return;
1287 
1288 	/* We should only be called after i915_ggtt_enable_guc() */
1289 	GEM_BUG_ON(ggtt->invalidate != guc_ggtt_invalidate);
1290 
1291 	ggtt->invalidate = gen8_ggtt_invalidate;
1292 
1293 	ggtt->invalidate(ggtt);
1294 }
1295 
1296 /**
1297  * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM
1298  * @vm: The VM to restore the mappings for
1299  *
1300  * Restore the memory mappings for all objects mapped to HW via the GGTT or a
1301  * DPT page table.
1302  *
1303  * Returns %true if restoring the mapping for any object that was in a write
1304  * domain before suspend.
1305  */
1306 bool i915_ggtt_resume_vm(struct i915_address_space *vm)
1307 {
1308 	struct i915_vma *vma;
1309 	bool write_domain_objs = false;
1310 	int open;
1311 
1312 	drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt);
1313 
1314 	/* First fill our portion of the GTT with scratch pages */
1315 	vm->clear_range(vm, 0, vm->total);
1316 
1317 	/* Skip rewriting PTE on VMA unbind. */
1318 	open = atomic_xchg(&vm->open, 0);
1319 
1320 	/* clflush objects bound into the GGTT and rebind them. */
1321 	list_for_each_entry(vma, &vm->bound_list, vm_link) {
1322 		struct drm_i915_gem_object *obj = vma->obj;
1323 		unsigned int was_bound =
1324 			atomic_read(&vma->flags) & I915_VMA_BIND_MASK;
1325 
1326 		GEM_BUG_ON(!was_bound);
1327 		vma->ops->bind_vma(vm, NULL, vma->resource,
1328 				   obj ? obj->cache_level : 0,
1329 				   was_bound);
1330 		if (obj) { /* only used during resume => exclusive access */
1331 			write_domain_objs |= fetch_and_zero(&obj->write_domain);
1332 			obj->read_domains |= I915_GEM_DOMAIN_GTT;
1333 		}
1334 	}
1335 
1336 	atomic_set(&vm->open, open);
1337 
1338 	return write_domain_objs;
1339 }
1340 
1341 void i915_ggtt_resume(struct i915_ggtt *ggtt)
1342 {
1343 	bool flush;
1344 
1345 	intel_gt_check_and_clear_faults(ggtt->vm.gt);
1346 
1347 	flush = i915_ggtt_resume_vm(&ggtt->vm);
1348 
1349 	ggtt->invalidate(ggtt);
1350 
1351 	if (flush)
1352 		wbinvd_on_all_cpus();
1353 
1354 	if (GRAPHICS_VER(ggtt->vm.i915) >= 8)
1355 		setup_private_pat(ggtt->vm.gt->uncore);
1356 
1357 	intel_ggtt_restore_fences(ggtt);
1358 }
1359