1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <asm/set_memory.h> 7 #include <asm/smp.h> 8 #include <linux/types.h> 9 #include <linux/stop_machine.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/i915_drm.h> 13 #include <drm/intel-gtt.h> 14 15 #include "display/intel_display.h" 16 #include "gem/i915_gem_lmem.h" 17 18 #include "intel_ggtt_gmch.h" 19 #include "intel_gt.h" 20 #include "intel_gt_regs.h" 21 #include "intel_pci_config.h" 22 #include "i915_drv.h" 23 #include "i915_pci.h" 24 #include "i915_scatterlist.h" 25 #include "i915_utils.h" 26 #include "i915_vgpu.h" 27 28 #include "intel_gtt.h" 29 #include "gen8_ppgtt.h" 30 31 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 32 unsigned long color, 33 u64 *start, 34 u64 *end) 35 { 36 if (i915_node_color_differs(node, color)) 37 *start += I915_GTT_PAGE_SIZE; 38 39 /* 40 * Also leave a space between the unallocated reserved node after the 41 * GTT and any objects within the GTT, i.e. we use the color adjustment 42 * to insert a guard page to prevent prefetches crossing over the 43 * GTT boundary. 44 */ 45 node = list_next_entry(node, node_list); 46 if (node->color != color) 47 *end -= I915_GTT_PAGE_SIZE; 48 } 49 50 static int ggtt_init_hw(struct i915_ggtt *ggtt) 51 { 52 struct drm_i915_private *i915 = ggtt->vm.i915; 53 54 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 55 56 ggtt->vm.is_ggtt = true; 57 58 /* Only VLV supports read-only GGTT mappings */ 59 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 60 61 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 62 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 63 64 if (ggtt->mappable_end) { 65 if (!io_mapping_init_wc(&ggtt->iomap, 66 ggtt->gmadr.start, 67 ggtt->mappable_end)) { 68 ggtt->vm.cleanup(&ggtt->vm); 69 return -EIO; 70 } 71 72 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 73 ggtt->mappable_end); 74 } 75 76 intel_ggtt_init_fences(ggtt); 77 78 return 0; 79 } 80 81 /** 82 * i915_ggtt_init_hw - Initialize GGTT hardware 83 * @i915: i915 device 84 */ 85 int i915_ggtt_init_hw(struct drm_i915_private *i915) 86 { 87 int ret; 88 89 /* 90 * Note that we use page colouring to enforce a guard page at the 91 * end of the address space. This is required as the CS may prefetch 92 * beyond the end of the batch buffer, across the page boundary, 93 * and beyond the end of the GTT if we do not provide a guard. 94 */ 95 ret = ggtt_init_hw(to_gt(i915)->ggtt); 96 if (ret) 97 return ret; 98 99 return 0; 100 } 101 102 /** 103 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 104 * @vm: The VM to suspend the mappings for 105 * 106 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 107 * DPT page table. 108 */ 109 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 110 { 111 struct i915_vma *vma, *vn; 112 int save_skip_rewrite; 113 114 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 115 116 retry: 117 i915_gem_drain_freed_objects(vm->i915); 118 119 mutex_lock(&vm->mutex); 120 121 /* 122 * Skip rewriting PTE on VMA unbind. 123 * FIXME: Use an argument to i915_vma_unbind() instead? 124 */ 125 save_skip_rewrite = vm->skip_pte_rewrite; 126 vm->skip_pte_rewrite = true; 127 128 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 129 struct drm_i915_gem_object *obj = vma->obj; 130 131 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 132 133 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 134 continue; 135 136 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 137 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 138 /* 139 * No dead objects should appear here, GPU should be 140 * completely idle, and userspace suspended 141 */ 142 i915_gem_object_get(obj); 143 144 mutex_unlock(&vm->mutex); 145 146 i915_gem_object_lock(obj, NULL); 147 GEM_WARN_ON(i915_vma_unbind(vma)); 148 i915_gem_object_unlock(obj); 149 i915_gem_object_put(obj); 150 151 vm->skip_pte_rewrite = save_skip_rewrite; 152 goto retry; 153 } 154 155 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 156 i915_vma_wait_for_bind(vma); 157 158 __i915_vma_evict(vma, false); 159 drm_mm_remove_node(&vma->node); 160 } 161 162 i915_gem_object_unlock(obj); 163 } 164 165 vm->clear_range(vm, 0, vm->total); 166 167 vm->skip_pte_rewrite = save_skip_rewrite; 168 169 mutex_unlock(&vm->mutex); 170 } 171 172 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 173 { 174 struct intel_gt *gt; 175 176 i915_ggtt_suspend_vm(&ggtt->vm); 177 ggtt->invalidate(ggtt); 178 179 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 180 intel_gt_check_and_clear_faults(gt); 181 } 182 183 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 184 { 185 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 186 187 spin_lock_irq(&uncore->lock); 188 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 189 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 190 spin_unlock_irq(&uncore->lock); 191 } 192 193 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 194 { 195 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 196 197 /* 198 * Note that as an uncached mmio write, this will flush the 199 * WCB of the writes into the GGTT before it triggers the invalidate. 200 */ 201 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 202 } 203 204 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 205 { 206 struct drm_i915_private *i915 = ggtt->vm.i915; 207 208 gen8_ggtt_invalidate(ggtt); 209 210 if (GRAPHICS_VER(i915) >= 12) { 211 struct intel_gt *gt; 212 213 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 214 intel_uncore_write_fw(gt->uncore, 215 GEN12_GUC_TLB_INV_CR, 216 GEN12_GUC_TLB_INV_CR_INVALIDATE); 217 } else { 218 intel_uncore_write_fw(ggtt->vm.gt->uncore, 219 GEN8_GTCR, GEN8_GTCR_INVALIDATE); 220 } 221 } 222 223 static u64 mtl_ggtt_pte_encode(dma_addr_t addr, 224 unsigned int pat_index, 225 u32 flags) 226 { 227 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 228 229 WARN_ON_ONCE(addr & ~GEN12_GGTT_PTE_ADDR_MASK); 230 231 if (flags & PTE_LM) 232 pte |= GEN12_GGTT_PTE_LM; 233 234 if (pat_index & BIT(0)) 235 pte |= MTL_GGTT_PTE_PAT0; 236 237 if (pat_index & BIT(1)) 238 pte |= MTL_GGTT_PTE_PAT1; 239 240 return pte; 241 } 242 243 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 244 unsigned int pat_index, 245 u32 flags) 246 { 247 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 248 249 if (flags & PTE_LM) 250 pte |= GEN12_GGTT_PTE_LM; 251 252 return pte; 253 } 254 255 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 256 { 257 writeq(pte, addr); 258 } 259 260 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 261 dma_addr_t addr, 262 u64 offset, 263 unsigned int pat_index, 264 u32 flags) 265 { 266 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 267 gen8_pte_t __iomem *pte = 268 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 269 270 gen8_set_pte(pte, ggtt->vm.pte_encode(addr, pat_index, flags)); 271 272 ggtt->invalidate(ggtt); 273 } 274 275 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 276 struct i915_vma_resource *vma_res, 277 unsigned int pat_index, 278 u32 flags) 279 { 280 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 281 const gen8_pte_t pte_encode = ggtt->vm.pte_encode(0, pat_index, flags); 282 gen8_pte_t __iomem *gte; 283 gen8_pte_t __iomem *end; 284 struct sgt_iter iter; 285 dma_addr_t addr; 286 287 /* 288 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 289 * not to allow the user to override access to a read only page. 290 */ 291 292 gte = (gen8_pte_t __iomem *)ggtt->gsm; 293 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 294 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 295 while (gte < end) 296 gen8_set_pte(gte++, vm->scratch[0]->encode); 297 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 298 299 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 300 gen8_set_pte(gte++, pte_encode | addr); 301 GEM_BUG_ON(gte > end); 302 303 /* Fill the allocated but "unused" space beyond the end of the buffer */ 304 while (gte < end) 305 gen8_set_pte(gte++, vm->scratch[0]->encode); 306 307 /* 308 * We want to flush the TLBs only after we're certain all the PTE 309 * updates have finished. 310 */ 311 ggtt->invalidate(ggtt); 312 } 313 314 static void gen8_ggtt_clear_range(struct i915_address_space *vm, 315 u64 start, u64 length) 316 { 317 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 318 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 319 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 320 const gen8_pte_t scratch_pte = vm->scratch[0]->encode; 321 gen8_pte_t __iomem *gtt_base = 322 (gen8_pte_t __iomem *)ggtt->gsm + first_entry; 323 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 324 int i; 325 326 if (WARN(num_entries > max_entries, 327 "First entry = %d; Num entries = %d (max=%d)\n", 328 first_entry, num_entries, max_entries)) 329 num_entries = max_entries; 330 331 for (i = 0; i < num_entries; i++) 332 gen8_set_pte(>t_base[i], scratch_pte); 333 } 334 335 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 336 dma_addr_t addr, 337 u64 offset, 338 unsigned int pat_index, 339 u32 flags) 340 { 341 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 342 gen6_pte_t __iomem *pte = 343 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 344 345 iowrite32(vm->pte_encode(addr, pat_index, flags), pte); 346 347 ggtt->invalidate(ggtt); 348 } 349 350 /* 351 * Binds an object into the global gtt with the specified cache level. 352 * The object will be accessible to the GPU via commands whose operands 353 * reference offsets within the global GTT as well as accessible by the GPU 354 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 355 */ 356 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 357 struct i915_vma_resource *vma_res, 358 unsigned int pat_index, 359 u32 flags) 360 { 361 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 362 gen6_pte_t __iomem *gte; 363 gen6_pte_t __iomem *end; 364 struct sgt_iter iter; 365 dma_addr_t addr; 366 367 gte = (gen6_pte_t __iomem *)ggtt->gsm; 368 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 369 370 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 371 while (gte < end) 372 iowrite32(vm->scratch[0]->encode, gte++); 373 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 374 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 375 iowrite32(vm->pte_encode(addr, pat_index, flags), gte++); 376 GEM_BUG_ON(gte > end); 377 378 /* Fill the allocated but "unused" space beyond the end of the buffer */ 379 while (gte < end) 380 iowrite32(vm->scratch[0]->encode, gte++); 381 382 /* 383 * We want to flush the TLBs only after we're certain all the PTE 384 * updates have finished. 385 */ 386 ggtt->invalidate(ggtt); 387 } 388 389 static void nop_clear_range(struct i915_address_space *vm, 390 u64 start, u64 length) 391 { 392 } 393 394 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 395 { 396 /* 397 * Make sure the internal GAM fifo has been cleared of all GTT 398 * writes before exiting stop_machine(). This guarantees that 399 * any aperture accesses waiting to start in another process 400 * cannot back up behind the GTT writes causing a hang. 401 * The register can be any arbitrary GAM register. 402 */ 403 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 404 } 405 406 struct insert_page { 407 struct i915_address_space *vm; 408 dma_addr_t addr; 409 u64 offset; 410 unsigned int pat_index; 411 }; 412 413 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 414 { 415 struct insert_page *arg = _arg; 416 417 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, 418 arg->pat_index, 0); 419 bxt_vtd_ggtt_wa(arg->vm); 420 421 return 0; 422 } 423 424 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 425 dma_addr_t addr, 426 u64 offset, 427 unsigned int pat_index, 428 u32 unused) 429 { 430 struct insert_page arg = { vm, addr, offset, pat_index }; 431 432 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 433 } 434 435 struct insert_entries { 436 struct i915_address_space *vm; 437 struct i915_vma_resource *vma_res; 438 unsigned int pat_index; 439 u32 flags; 440 }; 441 442 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 443 { 444 struct insert_entries *arg = _arg; 445 446 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, 447 arg->pat_index, arg->flags); 448 bxt_vtd_ggtt_wa(arg->vm); 449 450 return 0; 451 } 452 453 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 454 struct i915_vma_resource *vma_res, 455 unsigned int pat_index, 456 u32 flags) 457 { 458 struct insert_entries arg = { vm, vma_res, pat_index, flags }; 459 460 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 461 } 462 463 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 464 u64 start, u64 length) 465 { 466 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 467 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 468 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 469 gen6_pte_t scratch_pte, __iomem *gtt_base = 470 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 471 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 472 int i; 473 474 if (WARN(num_entries > max_entries, 475 "First entry = %d; Num entries = %d (max=%d)\n", 476 first_entry, num_entries, max_entries)) 477 num_entries = max_entries; 478 479 scratch_pte = vm->scratch[0]->encode; 480 for (i = 0; i < num_entries; i++) 481 iowrite32(scratch_pte, >t_base[i]); 482 } 483 484 void intel_ggtt_bind_vma(struct i915_address_space *vm, 485 struct i915_vm_pt_stash *stash, 486 struct i915_vma_resource *vma_res, 487 unsigned int pat_index, 488 u32 flags) 489 { 490 u32 pte_flags; 491 492 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 493 return; 494 495 vma_res->bound_flags |= flags; 496 497 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 498 pte_flags = 0; 499 if (vma_res->bi.readonly) 500 pte_flags |= PTE_READ_ONLY; 501 if (vma_res->bi.lmem) 502 pte_flags |= PTE_LM; 503 504 vm->insert_entries(vm, vma_res, pat_index, pte_flags); 505 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 506 } 507 508 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 509 struct i915_vma_resource *vma_res) 510 { 511 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 512 } 513 514 /* 515 * Reserve the top of the GuC address space for firmware images. Addresses 516 * beyond GUC_GGTT_TOP in the GuC address space are inaccessible by GuC, 517 * which makes for a suitable range to hold GuC/HuC firmware images if the 518 * size of the GGTT is 4G. However, on a 32-bit platform the size of the GGTT 519 * is limited to 2G, which is less than GUC_GGTT_TOP, but we reserve a chunk 520 * of the same size anyway, which is far more than needed, to keep the logic 521 * in uc_fw_ggtt_offset() simple. 522 */ 523 #define GUC_TOP_RESERVE_SIZE (SZ_4G - GUC_GGTT_TOP) 524 525 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 526 { 527 u64 offset; 528 int ret; 529 530 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 531 return 0; 532 533 GEM_BUG_ON(ggtt->vm.total <= GUC_TOP_RESERVE_SIZE); 534 offset = ggtt->vm.total - GUC_TOP_RESERVE_SIZE; 535 536 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, 537 GUC_TOP_RESERVE_SIZE, offset, 538 I915_COLOR_UNEVICTABLE, PIN_NOEVICT); 539 if (ret) 540 drm_dbg(&ggtt->vm.i915->drm, 541 "Failed to reserve top of GGTT for GuC\n"); 542 543 return ret; 544 } 545 546 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 547 { 548 if (drm_mm_node_allocated(&ggtt->uc_fw)) 549 drm_mm_remove_node(&ggtt->uc_fw); 550 } 551 552 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 553 { 554 ggtt_release_guc_top(ggtt); 555 if (drm_mm_node_allocated(&ggtt->error_capture)) 556 drm_mm_remove_node(&ggtt->error_capture); 557 mutex_destroy(&ggtt->error_mutex); 558 } 559 560 static int init_ggtt(struct i915_ggtt *ggtt) 561 { 562 /* 563 * Let GEM Manage all of the aperture. 564 * 565 * However, leave one page at the end still bound to the scratch page. 566 * There are a number of places where the hardware apparently prefetches 567 * past the end of the object, and we've seen multiple hangs with the 568 * GPU head pointer stuck in a batchbuffer bound at the last page of the 569 * aperture. One page should be enough to keep any prefetching inside 570 * of the aperture. 571 */ 572 unsigned long hole_start, hole_end; 573 struct drm_mm_node *entry; 574 int ret; 575 576 /* 577 * GuC requires all resources that we're sharing with it to be placed in 578 * non-WOPCM memory. If GuC is not present or not in use we still need a 579 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 580 * why. 581 */ 582 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 583 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); 584 585 ret = intel_vgt_balloon(ggtt); 586 if (ret) 587 return ret; 588 589 mutex_init(&ggtt->error_mutex); 590 if (ggtt->mappable_end) { 591 /* 592 * Reserve a mappable slot for our lockless error capture. 593 * 594 * We strongly prefer taking address 0x0 in order to protect 595 * other critical buffers against accidental overwrites, 596 * as writing to address 0 is a very common mistake. 597 * 598 * Since 0 may already be in use by the system (e.g. the BIOS 599 * framebuffer), we let the reservation fail quietly and hope 600 * 0 remains reserved always. 601 * 602 * If we fail to reserve 0, and then fail to find any space 603 * for an error-capture, remain silent. We can afford not 604 * to reserve an error_capture node as we have fallback 605 * paths, and we trust that 0 will remain reserved. However, 606 * the only likely reason for failure to insert is a driver 607 * bug, which we expect to cause other failures... 608 * 609 * Since CPU can perform speculative reads on error capture 610 * (write-combining allows it) add scratch page after error 611 * capture to avoid DMAR errors. 612 */ 613 ggtt->error_capture.size = 2 * I915_GTT_PAGE_SIZE; 614 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 615 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 616 drm_mm_insert_node_in_range(&ggtt->vm.mm, 617 &ggtt->error_capture, 618 ggtt->error_capture.size, 0, 619 ggtt->error_capture.color, 620 0, ggtt->mappable_end, 621 DRM_MM_INSERT_LOW); 622 } 623 if (drm_mm_node_allocated(&ggtt->error_capture)) { 624 u64 start = ggtt->error_capture.start; 625 u64 size = ggtt->error_capture.size; 626 627 ggtt->vm.scratch_range(&ggtt->vm, start, size); 628 drm_dbg(&ggtt->vm.i915->drm, 629 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 630 start, start + size); 631 } 632 633 /* 634 * The upper portion of the GuC address space has a sizeable hole 635 * (several MB) that is inaccessible by GuC. Reserve this range within 636 * GGTT as it can comfortably hold GuC/HuC firmware images. 637 */ 638 ret = ggtt_reserve_guc_top(ggtt); 639 if (ret) 640 goto err; 641 642 /* Clear any non-preallocated blocks */ 643 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 644 drm_dbg(&ggtt->vm.i915->drm, 645 "clearing unused GTT space: [%lx, %lx]\n", 646 hole_start, hole_end); 647 ggtt->vm.clear_range(&ggtt->vm, hole_start, 648 hole_end - hole_start); 649 } 650 651 /* And finally clear the reserved guard page */ 652 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 653 654 return 0; 655 656 err: 657 cleanup_init_ggtt(ggtt); 658 return ret; 659 } 660 661 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 662 struct i915_vm_pt_stash *stash, 663 struct i915_vma_resource *vma_res, 664 unsigned int pat_index, 665 u32 flags) 666 { 667 u32 pte_flags; 668 669 /* Currently applicable only to VLV */ 670 pte_flags = 0; 671 if (vma_res->bi.readonly) 672 pte_flags |= PTE_READ_ONLY; 673 674 if (flags & I915_VMA_LOCAL_BIND) 675 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 676 stash, vma_res, pat_index, flags); 677 678 if (flags & I915_VMA_GLOBAL_BIND) 679 vm->insert_entries(vm, vma_res, pat_index, pte_flags); 680 681 vma_res->bound_flags |= flags; 682 } 683 684 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 685 struct i915_vma_resource *vma_res) 686 { 687 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 688 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 689 690 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 691 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 692 } 693 694 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 695 { 696 struct i915_vm_pt_stash stash = {}; 697 struct i915_ppgtt *ppgtt; 698 int err; 699 700 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 701 if (IS_ERR(ppgtt)) 702 return PTR_ERR(ppgtt); 703 704 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 705 err = -ENODEV; 706 goto err_ppgtt; 707 } 708 709 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 710 if (err) 711 goto err_ppgtt; 712 713 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 714 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 715 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 716 if (err) 717 goto err_stash; 718 719 /* 720 * Note we only pre-allocate as far as the end of the global 721 * GTT. On 48b / 4-level page-tables, the difference is very, 722 * very significant! We have to preallocate as GVT/vgpu does 723 * not like the page directory disappearing. 724 */ 725 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 726 727 ggtt->alias = ppgtt; 728 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 729 730 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); 731 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 732 733 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); 734 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 735 736 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 737 return 0; 738 739 err_stash: 740 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 741 err_ppgtt: 742 i915_vm_put(&ppgtt->vm); 743 return err; 744 } 745 746 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 747 { 748 struct i915_ppgtt *ppgtt; 749 750 ppgtt = fetch_and_zero(&ggtt->alias); 751 if (!ppgtt) 752 return; 753 754 i915_vm_put(&ppgtt->vm); 755 756 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 757 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 758 } 759 760 int i915_init_ggtt(struct drm_i915_private *i915) 761 { 762 int ret; 763 764 ret = init_ggtt(to_gt(i915)->ggtt); 765 if (ret) 766 return ret; 767 768 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 769 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 770 if (ret) 771 cleanup_init_ggtt(to_gt(i915)->ggtt); 772 } 773 774 return 0; 775 } 776 777 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 778 { 779 struct i915_vma *vma, *vn; 780 781 flush_workqueue(ggtt->vm.i915->wq); 782 i915_gem_drain_freed_objects(ggtt->vm.i915); 783 784 mutex_lock(&ggtt->vm.mutex); 785 786 ggtt->vm.skip_pte_rewrite = true; 787 788 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 789 struct drm_i915_gem_object *obj = vma->obj; 790 bool trylock; 791 792 trylock = i915_gem_object_trylock(obj, NULL); 793 WARN_ON(!trylock); 794 795 WARN_ON(__i915_vma_unbind(vma)); 796 if (trylock) 797 i915_gem_object_unlock(obj); 798 } 799 800 if (drm_mm_node_allocated(&ggtt->error_capture)) 801 drm_mm_remove_node(&ggtt->error_capture); 802 mutex_destroy(&ggtt->error_mutex); 803 804 ggtt_release_guc_top(ggtt); 805 intel_vgt_deballoon(ggtt); 806 807 ggtt->vm.cleanup(&ggtt->vm); 808 809 mutex_unlock(&ggtt->vm.mutex); 810 i915_address_space_fini(&ggtt->vm); 811 812 arch_phys_wc_del(ggtt->mtrr); 813 814 if (ggtt->iomap.size) 815 io_mapping_fini(&ggtt->iomap); 816 } 817 818 /** 819 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 820 * @i915: i915 device 821 */ 822 void i915_ggtt_driver_release(struct drm_i915_private *i915) 823 { 824 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 825 826 fini_aliasing_ppgtt(ggtt); 827 828 intel_ggtt_fini_fences(ggtt); 829 ggtt_cleanup_hw(ggtt); 830 } 831 832 /** 833 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 834 * all free objects have been drained. 835 * @i915: i915 device 836 */ 837 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 838 { 839 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 840 841 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 842 dma_resv_fini(&ggtt->vm._resv); 843 } 844 845 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 846 { 847 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 848 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 849 return snb_gmch_ctl << 20; 850 } 851 852 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 853 { 854 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 855 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 856 if (bdw_gmch_ctl) 857 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 858 859 #ifdef CONFIG_X86_32 860 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 861 if (bdw_gmch_ctl > 4) 862 bdw_gmch_ctl = 4; 863 #endif 864 865 return bdw_gmch_ctl << 20; 866 } 867 868 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 869 { 870 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 871 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 872 873 if (gmch_ctrl) 874 return 1 << (20 + gmch_ctrl); 875 876 return 0; 877 } 878 879 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 880 { 881 /* 882 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 883 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 884 */ 885 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 886 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 887 } 888 889 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 890 { 891 return gen6_gttmmadr_size(i915) / 2; 892 } 893 894 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 895 { 896 struct drm_i915_private *i915 = ggtt->vm.i915; 897 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 898 phys_addr_t phys_addr; 899 u32 pte_flags; 900 int ret; 901 902 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); 903 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); 904 905 /* 906 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 907 * will be dropped. For WC mappings in general we have 64 byte burst 908 * writes when the WC buffer is flushed, so we can't use it, but have to 909 * resort to an uncached mapping. The WC issue is easily caught by the 910 * readback check when writing GTT PTE entries. 911 */ 912 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 913 ggtt->gsm = ioremap(phys_addr, size); 914 else 915 ggtt->gsm = ioremap_wc(phys_addr, size); 916 if (!ggtt->gsm) { 917 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 918 return -ENOMEM; 919 } 920 921 kref_init(&ggtt->vm.resv_ref); 922 ret = setup_scratch_page(&ggtt->vm); 923 if (ret) { 924 drm_err(&i915->drm, "Scratch setup failed\n"); 925 /* iounmap will also get called at remove, but meh */ 926 iounmap(ggtt->gsm); 927 return ret; 928 } 929 930 pte_flags = 0; 931 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 932 pte_flags |= PTE_LM; 933 934 ggtt->vm.scratch[0]->encode = 935 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 936 i915_gem_get_pat_index(i915, 937 I915_CACHE_NONE), 938 pte_flags); 939 940 return 0; 941 } 942 943 static void gen6_gmch_remove(struct i915_address_space *vm) 944 { 945 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 946 947 iounmap(ggtt->gsm); 948 free_scratch(vm); 949 } 950 951 static struct resource pci_resource(struct pci_dev *pdev, int bar) 952 { 953 return DEFINE_RES_MEM(pci_resource_start(pdev, bar), 954 pci_resource_len(pdev, bar)); 955 } 956 957 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 958 { 959 struct drm_i915_private *i915 = ggtt->vm.i915; 960 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 961 unsigned int size; 962 u16 snb_gmch_ctl; 963 964 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { 965 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 966 return -ENXIO; 967 968 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 969 ggtt->mappable_end = resource_size(&ggtt->gmadr); 970 } 971 972 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 973 if (IS_CHERRYVIEW(i915)) 974 size = chv_get_total_gtt_size(snb_gmch_ctl); 975 else 976 size = gen8_get_total_gtt_size(snb_gmch_ctl); 977 978 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 979 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 980 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 981 982 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 983 ggtt->vm.cleanup = gen6_gmch_remove; 984 ggtt->vm.insert_page = gen8_ggtt_insert_page; 985 ggtt->vm.clear_range = nop_clear_range; 986 ggtt->vm.scratch_range = gen8_ggtt_clear_range; 987 988 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 989 990 /* 991 * Serialize GTT updates with aperture access on BXT if VT-d is on, 992 * and always on CHV. 993 */ 994 if (intel_vm_no_concurrent_access_wa(i915)) { 995 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 996 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 997 998 /* 999 * Calling stop_machine() version of GGTT update function 1000 * at error capture/reset path will raise lockdep warning. 1001 * Allow calling gen8_ggtt_insert_* directly at reset path 1002 * which is safe from parallel GGTT updates. 1003 */ 1004 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 1005 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; 1006 1007 ggtt->vm.bind_async_flags = 1008 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 1009 } 1010 1011 if (intel_uc_wants_guc(&ggtt->vm.gt->uc)) 1012 ggtt->invalidate = guc_ggtt_invalidate; 1013 else 1014 ggtt->invalidate = gen8_ggtt_invalidate; 1015 1016 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1017 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1018 1019 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) 1020 ggtt->vm.pte_encode = mtl_ggtt_pte_encode; 1021 else 1022 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 1023 1024 return ggtt_probe_common(ggtt, size); 1025 } 1026 1027 /* 1028 * For pre-gen8 platforms pat_index is the same as enum i915_cache_level, 1029 * so the switch-case statements in these PTE encode functions are still valid. 1030 * See translation table LEGACY_CACHELEVEL. 1031 */ 1032 static u64 snb_pte_encode(dma_addr_t addr, 1033 unsigned int pat_index, 1034 u32 flags) 1035 { 1036 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1037 1038 switch (pat_index) { 1039 case I915_CACHE_L3_LLC: 1040 case I915_CACHE_LLC: 1041 pte |= GEN6_PTE_CACHE_LLC; 1042 break; 1043 case I915_CACHE_NONE: 1044 pte |= GEN6_PTE_UNCACHED; 1045 break; 1046 default: 1047 MISSING_CASE(pat_index); 1048 } 1049 1050 return pte; 1051 } 1052 1053 static u64 ivb_pte_encode(dma_addr_t addr, 1054 unsigned int pat_index, 1055 u32 flags) 1056 { 1057 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1058 1059 switch (pat_index) { 1060 case I915_CACHE_L3_LLC: 1061 pte |= GEN7_PTE_CACHE_L3_LLC; 1062 break; 1063 case I915_CACHE_LLC: 1064 pte |= GEN6_PTE_CACHE_LLC; 1065 break; 1066 case I915_CACHE_NONE: 1067 pte |= GEN6_PTE_UNCACHED; 1068 break; 1069 default: 1070 MISSING_CASE(pat_index); 1071 } 1072 1073 return pte; 1074 } 1075 1076 static u64 byt_pte_encode(dma_addr_t addr, 1077 unsigned int pat_index, 1078 u32 flags) 1079 { 1080 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1081 1082 if (!(flags & PTE_READ_ONLY)) 1083 pte |= BYT_PTE_WRITEABLE; 1084 1085 if (pat_index != I915_CACHE_NONE) 1086 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1087 1088 return pte; 1089 } 1090 1091 static u64 hsw_pte_encode(dma_addr_t addr, 1092 unsigned int pat_index, 1093 u32 flags) 1094 { 1095 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1096 1097 if (pat_index != I915_CACHE_NONE) 1098 pte |= HSW_WB_LLC_AGE3; 1099 1100 return pte; 1101 } 1102 1103 static u64 iris_pte_encode(dma_addr_t addr, 1104 unsigned int pat_index, 1105 u32 flags) 1106 { 1107 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1108 1109 switch (pat_index) { 1110 case I915_CACHE_NONE: 1111 break; 1112 case I915_CACHE_WT: 1113 pte |= HSW_WT_ELLC_LLC_AGE3; 1114 break; 1115 default: 1116 pte |= HSW_WB_ELLC_LLC_AGE3; 1117 break; 1118 } 1119 1120 return pte; 1121 } 1122 1123 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1124 { 1125 struct drm_i915_private *i915 = ggtt->vm.i915; 1126 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1127 unsigned int size; 1128 u16 snb_gmch_ctl; 1129 1130 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 1131 return -ENXIO; 1132 1133 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 1134 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1135 1136 /* 1137 * 64/512MB is the current min/max we actually know of, but this is 1138 * just a coarse sanity check. 1139 */ 1140 if (ggtt->mappable_end < (64 << 20) || 1141 ggtt->mappable_end > (512 << 20)) { 1142 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1143 &ggtt->mappable_end); 1144 return -ENXIO; 1145 } 1146 1147 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1148 1149 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1150 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1151 1152 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1153 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1154 1155 ggtt->vm.clear_range = nop_clear_range; 1156 if (!HAS_FULL_PPGTT(i915)) 1157 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1158 ggtt->vm.scratch_range = gen6_ggtt_clear_range; 1159 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1160 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1161 ggtt->vm.cleanup = gen6_gmch_remove; 1162 1163 ggtt->invalidate = gen6_ggtt_invalidate; 1164 1165 if (HAS_EDRAM(i915)) 1166 ggtt->vm.pte_encode = iris_pte_encode; 1167 else if (IS_HASWELL(i915)) 1168 ggtt->vm.pte_encode = hsw_pte_encode; 1169 else if (IS_VALLEYVIEW(i915)) 1170 ggtt->vm.pte_encode = byt_pte_encode; 1171 else if (GRAPHICS_VER(i915) >= 7) 1172 ggtt->vm.pte_encode = ivb_pte_encode; 1173 else 1174 ggtt->vm.pte_encode = snb_pte_encode; 1175 1176 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1177 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1178 1179 return ggtt_probe_common(ggtt, size); 1180 } 1181 1182 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1183 { 1184 struct drm_i915_private *i915 = gt->i915; 1185 int ret; 1186 1187 ggtt->vm.gt = gt; 1188 ggtt->vm.i915 = i915; 1189 ggtt->vm.dma = i915->drm.dev; 1190 dma_resv_init(&ggtt->vm._resv); 1191 1192 if (GRAPHICS_VER(i915) >= 8) 1193 ret = gen8_gmch_probe(ggtt); 1194 else if (GRAPHICS_VER(i915) >= 6) 1195 ret = gen6_gmch_probe(ggtt); 1196 else 1197 ret = intel_ggtt_gmch_probe(ggtt); 1198 1199 if (ret) { 1200 dma_resv_fini(&ggtt->vm._resv); 1201 return ret; 1202 } 1203 1204 if ((ggtt->vm.total - 1) >> 32) { 1205 drm_err(&i915->drm, 1206 "We never expected a Global GTT with more than 32bits" 1207 " of address space! Found %lldM!\n", 1208 ggtt->vm.total >> 20); 1209 ggtt->vm.total = 1ULL << 32; 1210 ggtt->mappable_end = 1211 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1212 } 1213 1214 if (ggtt->mappable_end > ggtt->vm.total) { 1215 drm_err(&i915->drm, 1216 "mappable aperture extends past end of GGTT," 1217 " aperture=%pa, total=%llx\n", 1218 &ggtt->mappable_end, ggtt->vm.total); 1219 ggtt->mappable_end = ggtt->vm.total; 1220 } 1221 1222 /* GMADR is the PCI mmio aperture into the global GTT. */ 1223 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1224 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1225 (u64)ggtt->mappable_end >> 20); 1226 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1227 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1228 1229 return 0; 1230 } 1231 1232 /** 1233 * i915_ggtt_probe_hw - Probe GGTT hardware location 1234 * @i915: i915 device 1235 */ 1236 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1237 { 1238 struct intel_gt *gt; 1239 int ret, i; 1240 1241 for_each_gt(gt, i915, i) { 1242 ret = intel_gt_assign_ggtt(gt); 1243 if (ret) 1244 return ret; 1245 } 1246 1247 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1248 if (ret) 1249 return ret; 1250 1251 if (i915_vtd_active(i915)) 1252 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1253 1254 return 0; 1255 } 1256 1257 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) 1258 { 1259 struct i915_ggtt *ggtt; 1260 1261 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); 1262 if (!ggtt) 1263 return ERR_PTR(-ENOMEM); 1264 1265 INIT_LIST_HEAD(&ggtt->gt_list); 1266 1267 return ggtt; 1268 } 1269 1270 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1271 { 1272 if (GRAPHICS_VER(i915) < 6) 1273 return intel_ggtt_gmch_enable_hw(i915); 1274 1275 return 0; 1276 } 1277 1278 /** 1279 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1280 * @vm: The VM to restore the mappings for 1281 * 1282 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1283 * DPT page table. 1284 * 1285 * Returns %true if restoring the mapping for any object that was in a write 1286 * domain before suspend. 1287 */ 1288 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1289 { 1290 struct i915_vma *vma; 1291 bool write_domain_objs = false; 1292 1293 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1294 1295 /* First fill our portion of the GTT with scratch pages */ 1296 vm->clear_range(vm, 0, vm->total); 1297 1298 /* clflush objects bound into the GGTT and rebind them. */ 1299 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1300 struct drm_i915_gem_object *obj = vma->obj; 1301 unsigned int was_bound = 1302 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1303 1304 GEM_BUG_ON(!was_bound); 1305 1306 /* 1307 * Clear the bound flags of the vma resource to allow 1308 * ptes to be repopulated. 1309 */ 1310 vma->resource->bound_flags = 0; 1311 vma->ops->bind_vma(vm, NULL, vma->resource, 1312 obj ? obj->pat_index : 1313 i915_gem_get_pat_index(vm->i915, 1314 I915_CACHE_NONE), 1315 was_bound); 1316 1317 if (obj) { /* only used during resume => exclusive access */ 1318 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1319 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1320 } 1321 } 1322 1323 return write_domain_objs; 1324 } 1325 1326 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1327 { 1328 struct intel_gt *gt; 1329 bool flush; 1330 1331 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1332 intel_gt_check_and_clear_faults(gt); 1333 1334 flush = i915_ggtt_resume_vm(&ggtt->vm); 1335 1336 if (drm_mm_node_allocated(&ggtt->error_capture)) 1337 ggtt->vm.scratch_range(&ggtt->vm, ggtt->error_capture.start, 1338 ggtt->error_capture.size); 1339 1340 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1341 intel_uc_resume_mappings(>->uc); 1342 1343 ggtt->invalidate(ggtt); 1344 1345 if (flush) 1346 wbinvd_on_all_cpus(); 1347 1348 intel_ggtt_restore_fences(ggtt); 1349 } 1350