1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2020 Intel Corporation 4 */ 5 6 #include <asm/set_memory.h> 7 #include <asm/smp.h> 8 #include <linux/types.h> 9 #include <linux/stop_machine.h> 10 11 #include <drm/drm_managed.h> 12 #include <drm/i915_drm.h> 13 #include <drm/intel-gtt.h> 14 15 #include "gem/i915_gem_lmem.h" 16 17 #include "intel_ggtt_gmch.h" 18 #include "intel_gt.h" 19 #include "intel_gt_regs.h" 20 #include "intel_pci_config.h" 21 #include "i915_drv.h" 22 #include "i915_pci.h" 23 #include "i915_scatterlist.h" 24 #include "i915_utils.h" 25 #include "i915_vgpu.h" 26 27 #include "intel_gtt.h" 28 #include "gen8_ppgtt.h" 29 30 static void i915_ggtt_color_adjust(const struct drm_mm_node *node, 31 unsigned long color, 32 u64 *start, 33 u64 *end) 34 { 35 if (i915_node_color_differs(node, color)) 36 *start += I915_GTT_PAGE_SIZE; 37 38 /* 39 * Also leave a space between the unallocated reserved node after the 40 * GTT and any objects within the GTT, i.e. we use the color adjustment 41 * to insert a guard page to prevent prefetches crossing over the 42 * GTT boundary. 43 */ 44 node = list_next_entry(node, node_list); 45 if (node->color != color) 46 *end -= I915_GTT_PAGE_SIZE; 47 } 48 49 static int ggtt_init_hw(struct i915_ggtt *ggtt) 50 { 51 struct drm_i915_private *i915 = ggtt->vm.i915; 52 53 i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT); 54 55 ggtt->vm.is_ggtt = true; 56 57 /* Only VLV supports read-only GGTT mappings */ 58 ggtt->vm.has_read_only = IS_VALLEYVIEW(i915); 59 60 if (!HAS_LLC(i915) && !HAS_PPGTT(i915)) 61 ggtt->vm.mm.color_adjust = i915_ggtt_color_adjust; 62 63 if (ggtt->mappable_end) { 64 if (!io_mapping_init_wc(&ggtt->iomap, 65 ggtt->gmadr.start, 66 ggtt->mappable_end)) { 67 ggtt->vm.cleanup(&ggtt->vm); 68 return -EIO; 69 } 70 71 ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, 72 ggtt->mappable_end); 73 } 74 75 intel_ggtt_init_fences(ggtt); 76 77 return 0; 78 } 79 80 /** 81 * i915_ggtt_init_hw - Initialize GGTT hardware 82 * @i915: i915 device 83 */ 84 int i915_ggtt_init_hw(struct drm_i915_private *i915) 85 { 86 int ret; 87 88 /* 89 * Note that we use page colouring to enforce a guard page at the 90 * end of the address space. This is required as the CS may prefetch 91 * beyond the end of the batch buffer, across the page boundary, 92 * and beyond the end of the GTT if we do not provide a guard. 93 */ 94 ret = ggtt_init_hw(to_gt(i915)->ggtt); 95 if (ret) 96 return ret; 97 98 return 0; 99 } 100 101 /** 102 * i915_ggtt_suspend_vm - Suspend the memory mappings for a GGTT or DPT VM 103 * @vm: The VM to suspend the mappings for 104 * 105 * Suspend the memory mappings for all objects mapped to HW via the GGTT or a 106 * DPT page table. 107 */ 108 void i915_ggtt_suspend_vm(struct i915_address_space *vm) 109 { 110 struct i915_vma *vma, *vn; 111 int save_skip_rewrite; 112 113 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 114 115 retry: 116 i915_gem_drain_freed_objects(vm->i915); 117 118 mutex_lock(&vm->mutex); 119 120 /* 121 * Skip rewriting PTE on VMA unbind. 122 * FIXME: Use an argument to i915_vma_unbind() instead? 123 */ 124 save_skip_rewrite = vm->skip_pte_rewrite; 125 vm->skip_pte_rewrite = true; 126 127 list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) { 128 struct drm_i915_gem_object *obj = vma->obj; 129 130 GEM_BUG_ON(!drm_mm_node_allocated(&vma->node)); 131 132 if (i915_vma_is_pinned(vma) || !i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) 133 continue; 134 135 /* unlikely to race when GPU is idle, so no worry about slowpath.. */ 136 if (WARN_ON(!i915_gem_object_trylock(obj, NULL))) { 137 /* 138 * No dead objects should appear here, GPU should be 139 * completely idle, and userspace suspended 140 */ 141 i915_gem_object_get(obj); 142 143 mutex_unlock(&vm->mutex); 144 145 i915_gem_object_lock(obj, NULL); 146 GEM_WARN_ON(i915_vma_unbind(vma)); 147 i915_gem_object_unlock(obj); 148 i915_gem_object_put(obj); 149 150 vm->skip_pte_rewrite = save_skip_rewrite; 151 goto retry; 152 } 153 154 if (!i915_vma_is_bound(vma, I915_VMA_GLOBAL_BIND)) { 155 i915_vma_wait_for_bind(vma); 156 157 __i915_vma_evict(vma, false); 158 drm_mm_remove_node(&vma->node); 159 } 160 161 i915_gem_object_unlock(obj); 162 } 163 164 vm->clear_range(vm, 0, vm->total); 165 166 vm->skip_pte_rewrite = save_skip_rewrite; 167 168 mutex_unlock(&vm->mutex); 169 } 170 171 void i915_ggtt_suspend(struct i915_ggtt *ggtt) 172 { 173 struct intel_gt *gt; 174 175 i915_ggtt_suspend_vm(&ggtt->vm); 176 ggtt->invalidate(ggtt); 177 178 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 179 intel_gt_check_and_clear_faults(gt); 180 } 181 182 void gen6_ggtt_invalidate(struct i915_ggtt *ggtt) 183 { 184 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 185 186 spin_lock_irq(&uncore->lock); 187 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 188 intel_uncore_read_fw(uncore, GFX_FLSH_CNTL_GEN6); 189 spin_unlock_irq(&uncore->lock); 190 } 191 192 static void gen8_ggtt_invalidate(struct i915_ggtt *ggtt) 193 { 194 struct intel_uncore *uncore = ggtt->vm.gt->uncore; 195 196 /* 197 * Note that as an uncached mmio write, this will flush the 198 * WCB of the writes into the GGTT before it triggers the invalidate. 199 */ 200 intel_uncore_write_fw(uncore, GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); 201 } 202 203 static void guc_ggtt_invalidate(struct i915_ggtt *ggtt) 204 { 205 struct drm_i915_private *i915 = ggtt->vm.i915; 206 207 gen8_ggtt_invalidate(ggtt); 208 209 if (GRAPHICS_VER(i915) >= 12) { 210 struct intel_gt *gt; 211 212 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 213 intel_uncore_write_fw(gt->uncore, 214 GEN12_GUC_TLB_INV_CR, 215 GEN12_GUC_TLB_INV_CR_INVALIDATE); 216 } else { 217 intel_uncore_write_fw(ggtt->vm.gt->uncore, 218 GEN8_GTCR, GEN8_GTCR_INVALIDATE); 219 } 220 } 221 222 u64 gen8_ggtt_pte_encode(dma_addr_t addr, 223 enum i915_cache_level level, 224 u32 flags) 225 { 226 gen8_pte_t pte = addr | GEN8_PAGE_PRESENT; 227 228 if (flags & PTE_LM) 229 pte |= GEN12_GGTT_PTE_LM; 230 231 return pte; 232 } 233 234 static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) 235 { 236 writeq(pte, addr); 237 } 238 239 static void gen8_ggtt_insert_page(struct i915_address_space *vm, 240 dma_addr_t addr, 241 u64 offset, 242 enum i915_cache_level level, 243 u32 flags) 244 { 245 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 246 gen8_pte_t __iomem *pte = 247 (gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 248 249 gen8_set_pte(pte, gen8_ggtt_pte_encode(addr, level, flags)); 250 251 ggtt->invalidate(ggtt); 252 } 253 254 static void gen8_ggtt_insert_entries(struct i915_address_space *vm, 255 struct i915_vma_resource *vma_res, 256 enum i915_cache_level level, 257 u32 flags) 258 { 259 const gen8_pte_t pte_encode = gen8_ggtt_pte_encode(0, level, flags); 260 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 261 gen8_pte_t __iomem *gte; 262 gen8_pte_t __iomem *end; 263 struct sgt_iter iter; 264 dma_addr_t addr; 265 266 /* 267 * Note that we ignore PTE_READ_ONLY here. The caller must be careful 268 * not to allow the user to override access to a read only page. 269 */ 270 271 gte = (gen8_pte_t __iomem *)ggtt->gsm; 272 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 273 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 274 while (gte < end) 275 gen8_set_pte(gte++, vm->scratch[0]->encode); 276 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 277 278 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 279 gen8_set_pte(gte++, pte_encode | addr); 280 GEM_BUG_ON(gte > end); 281 282 /* Fill the allocated but "unused" space beyond the end of the buffer */ 283 while (gte < end) 284 gen8_set_pte(gte++, vm->scratch[0]->encode); 285 286 /* 287 * We want to flush the TLBs only after we're certain all the PTE 288 * updates have finished. 289 */ 290 ggtt->invalidate(ggtt); 291 } 292 293 static void gen6_ggtt_insert_page(struct i915_address_space *vm, 294 dma_addr_t addr, 295 u64 offset, 296 enum i915_cache_level level, 297 u32 flags) 298 { 299 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 300 gen6_pte_t __iomem *pte = 301 (gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE; 302 303 iowrite32(vm->pte_encode(addr, level, flags), pte); 304 305 ggtt->invalidate(ggtt); 306 } 307 308 /* 309 * Binds an object into the global gtt with the specified cache level. 310 * The object will be accessible to the GPU via commands whose operands 311 * reference offsets within the global GTT as well as accessible by the GPU 312 * through the GMADR mapped BAR (i915->mm.gtt->gtt). 313 */ 314 static void gen6_ggtt_insert_entries(struct i915_address_space *vm, 315 struct i915_vma_resource *vma_res, 316 enum i915_cache_level level, 317 u32 flags) 318 { 319 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 320 gen6_pte_t __iomem *gte; 321 gen6_pte_t __iomem *end; 322 struct sgt_iter iter; 323 dma_addr_t addr; 324 325 gte = (gen6_pte_t __iomem *)ggtt->gsm; 326 gte += (vma_res->start - vma_res->guard) / I915_GTT_PAGE_SIZE; 327 328 end = gte + vma_res->guard / I915_GTT_PAGE_SIZE; 329 while (gte < end) 330 iowrite32(vm->scratch[0]->encode, gte++); 331 end += (vma_res->node_size + vma_res->guard) / I915_GTT_PAGE_SIZE; 332 for_each_sgt_daddr(addr, iter, vma_res->bi.pages) 333 iowrite32(vm->pte_encode(addr, level, flags), gte++); 334 GEM_BUG_ON(gte > end); 335 336 /* Fill the allocated but "unused" space beyond the end of the buffer */ 337 while (gte < end) 338 iowrite32(vm->scratch[0]->encode, gte++); 339 340 /* 341 * We want to flush the TLBs only after we're certain all the PTE 342 * updates have finished. 343 */ 344 ggtt->invalidate(ggtt); 345 } 346 347 static void nop_clear_range(struct i915_address_space *vm, 348 u64 start, u64 length) 349 { 350 } 351 352 static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) 353 { 354 /* 355 * Make sure the internal GAM fifo has been cleared of all GTT 356 * writes before exiting stop_machine(). This guarantees that 357 * any aperture accesses waiting to start in another process 358 * cannot back up behind the GTT writes causing a hang. 359 * The register can be any arbitrary GAM register. 360 */ 361 intel_uncore_posting_read_fw(vm->gt->uncore, GFX_FLSH_CNTL_GEN6); 362 } 363 364 struct insert_page { 365 struct i915_address_space *vm; 366 dma_addr_t addr; 367 u64 offset; 368 enum i915_cache_level level; 369 }; 370 371 static int bxt_vtd_ggtt_insert_page__cb(void *_arg) 372 { 373 struct insert_page *arg = _arg; 374 375 gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); 376 bxt_vtd_ggtt_wa(arg->vm); 377 378 return 0; 379 } 380 381 static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, 382 dma_addr_t addr, 383 u64 offset, 384 enum i915_cache_level level, 385 u32 unused) 386 { 387 struct insert_page arg = { vm, addr, offset, level }; 388 389 stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); 390 } 391 392 struct insert_entries { 393 struct i915_address_space *vm; 394 struct i915_vma_resource *vma_res; 395 enum i915_cache_level level; 396 u32 flags; 397 }; 398 399 static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) 400 { 401 struct insert_entries *arg = _arg; 402 403 gen8_ggtt_insert_entries(arg->vm, arg->vma_res, arg->level, arg->flags); 404 bxt_vtd_ggtt_wa(arg->vm); 405 406 return 0; 407 } 408 409 static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, 410 struct i915_vma_resource *vma_res, 411 enum i915_cache_level level, 412 u32 flags) 413 { 414 struct insert_entries arg = { vm, vma_res, level, flags }; 415 416 stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); 417 } 418 419 static void gen6_ggtt_clear_range(struct i915_address_space *vm, 420 u64 start, u64 length) 421 { 422 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 423 unsigned int first_entry = start / I915_GTT_PAGE_SIZE; 424 unsigned int num_entries = length / I915_GTT_PAGE_SIZE; 425 gen6_pte_t scratch_pte, __iomem *gtt_base = 426 (gen6_pte_t __iomem *)ggtt->gsm + first_entry; 427 const int max_entries = ggtt_total_entries(ggtt) - first_entry; 428 int i; 429 430 if (WARN(num_entries > max_entries, 431 "First entry = %d; Num entries = %d (max=%d)\n", 432 first_entry, num_entries, max_entries)) 433 num_entries = max_entries; 434 435 scratch_pte = vm->scratch[0]->encode; 436 for (i = 0; i < num_entries; i++) 437 iowrite32(scratch_pte, >t_base[i]); 438 } 439 440 void intel_ggtt_bind_vma(struct i915_address_space *vm, 441 struct i915_vm_pt_stash *stash, 442 struct i915_vma_resource *vma_res, 443 enum i915_cache_level cache_level, 444 u32 flags) 445 { 446 u32 pte_flags; 447 448 if (vma_res->bound_flags & (~flags & I915_VMA_BIND_MASK)) 449 return; 450 451 vma_res->bound_flags |= flags; 452 453 /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ 454 pte_flags = 0; 455 if (vma_res->bi.readonly) 456 pte_flags |= PTE_READ_ONLY; 457 if (vma_res->bi.lmem) 458 pte_flags |= PTE_LM; 459 460 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 461 vma_res->page_sizes_gtt = I915_GTT_PAGE_SIZE; 462 } 463 464 void intel_ggtt_unbind_vma(struct i915_address_space *vm, 465 struct i915_vma_resource *vma_res) 466 { 467 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 468 } 469 470 static int ggtt_reserve_guc_top(struct i915_ggtt *ggtt) 471 { 472 u64 size; 473 int ret; 474 475 if (!intel_uc_uses_guc(&ggtt->vm.gt->uc)) 476 return 0; 477 478 GEM_BUG_ON(ggtt->vm.total <= GUC_GGTT_TOP); 479 size = ggtt->vm.total - GUC_GGTT_TOP; 480 481 ret = i915_gem_gtt_reserve(&ggtt->vm, NULL, &ggtt->uc_fw, size, 482 GUC_GGTT_TOP, I915_COLOR_UNEVICTABLE, 483 PIN_NOEVICT); 484 if (ret) 485 drm_dbg(&ggtt->vm.i915->drm, 486 "Failed to reserve top of GGTT for GuC\n"); 487 488 return ret; 489 } 490 491 static void ggtt_release_guc_top(struct i915_ggtt *ggtt) 492 { 493 if (drm_mm_node_allocated(&ggtt->uc_fw)) 494 drm_mm_remove_node(&ggtt->uc_fw); 495 } 496 497 static void cleanup_init_ggtt(struct i915_ggtt *ggtt) 498 { 499 ggtt_release_guc_top(ggtt); 500 if (drm_mm_node_allocated(&ggtt->error_capture)) 501 drm_mm_remove_node(&ggtt->error_capture); 502 mutex_destroy(&ggtt->error_mutex); 503 } 504 505 static int init_ggtt(struct i915_ggtt *ggtt) 506 { 507 /* 508 * Let GEM Manage all of the aperture. 509 * 510 * However, leave one page at the end still bound to the scratch page. 511 * There are a number of places where the hardware apparently prefetches 512 * past the end of the object, and we've seen multiple hangs with the 513 * GPU head pointer stuck in a batchbuffer bound at the last page of the 514 * aperture. One page should be enough to keep any prefetching inside 515 * of the aperture. 516 */ 517 unsigned long hole_start, hole_end; 518 struct drm_mm_node *entry; 519 int ret; 520 521 /* 522 * GuC requires all resources that we're sharing with it to be placed in 523 * non-WOPCM memory. If GuC is not present or not in use we still need a 524 * small bias as ring wraparound at offset 0 sometimes hangs. No idea 525 * why. 526 */ 527 ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE, 528 intel_wopcm_guc_size(&ggtt->vm.gt->wopcm)); 529 530 ret = intel_vgt_balloon(ggtt); 531 if (ret) 532 return ret; 533 534 mutex_init(&ggtt->error_mutex); 535 if (ggtt->mappable_end) { 536 /* 537 * Reserve a mappable slot for our lockless error capture. 538 * 539 * We strongly prefer taking address 0x0 in order to protect 540 * other critical buffers against accidental overwrites, 541 * as writing to address 0 is a very common mistake. 542 * 543 * Since 0 may already be in use by the system (e.g. the BIOS 544 * framebuffer), we let the reservation fail quietly and hope 545 * 0 remains reserved always. 546 * 547 * If we fail to reserve 0, and then fail to find any space 548 * for an error-capture, remain silent. We can afford not 549 * to reserve an error_capture node as we have fallback 550 * paths, and we trust that 0 will remain reserved. However, 551 * the only likely reason for failure to insert is a driver 552 * bug, which we expect to cause other failures... 553 */ 554 ggtt->error_capture.size = I915_GTT_PAGE_SIZE; 555 ggtt->error_capture.color = I915_COLOR_UNEVICTABLE; 556 if (drm_mm_reserve_node(&ggtt->vm.mm, &ggtt->error_capture)) 557 drm_mm_insert_node_in_range(&ggtt->vm.mm, 558 &ggtt->error_capture, 559 ggtt->error_capture.size, 0, 560 ggtt->error_capture.color, 561 0, ggtt->mappable_end, 562 DRM_MM_INSERT_LOW); 563 } 564 if (drm_mm_node_allocated(&ggtt->error_capture)) 565 drm_dbg(&ggtt->vm.i915->drm, 566 "Reserved GGTT:[%llx, %llx] for use by error capture\n", 567 ggtt->error_capture.start, 568 ggtt->error_capture.start + ggtt->error_capture.size); 569 570 /* 571 * The upper portion of the GuC address space has a sizeable hole 572 * (several MB) that is inaccessible by GuC. Reserve this range within 573 * GGTT as it can comfortably hold GuC/HuC firmware images. 574 */ 575 ret = ggtt_reserve_guc_top(ggtt); 576 if (ret) 577 goto err; 578 579 /* Clear any non-preallocated blocks */ 580 drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { 581 drm_dbg(&ggtt->vm.i915->drm, 582 "clearing unused GTT space: [%lx, %lx]\n", 583 hole_start, hole_end); 584 ggtt->vm.clear_range(&ggtt->vm, hole_start, 585 hole_end - hole_start); 586 } 587 588 /* And finally clear the reserved guard page */ 589 ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); 590 591 return 0; 592 593 err: 594 cleanup_init_ggtt(ggtt); 595 return ret; 596 } 597 598 static void aliasing_gtt_bind_vma(struct i915_address_space *vm, 599 struct i915_vm_pt_stash *stash, 600 struct i915_vma_resource *vma_res, 601 enum i915_cache_level cache_level, 602 u32 flags) 603 { 604 u32 pte_flags; 605 606 /* Currently applicable only to VLV */ 607 pte_flags = 0; 608 if (vma_res->bi.readonly) 609 pte_flags |= PTE_READ_ONLY; 610 611 if (flags & I915_VMA_LOCAL_BIND) 612 ppgtt_bind_vma(&i915_vm_to_ggtt(vm)->alias->vm, 613 stash, vma_res, cache_level, flags); 614 615 if (flags & I915_VMA_GLOBAL_BIND) 616 vm->insert_entries(vm, vma_res, cache_level, pte_flags); 617 618 vma_res->bound_flags |= flags; 619 } 620 621 static void aliasing_gtt_unbind_vma(struct i915_address_space *vm, 622 struct i915_vma_resource *vma_res) 623 { 624 if (vma_res->bound_flags & I915_VMA_GLOBAL_BIND) 625 vm->clear_range(vm, vma_res->start, vma_res->vma_size); 626 627 if (vma_res->bound_flags & I915_VMA_LOCAL_BIND) 628 ppgtt_unbind_vma(&i915_vm_to_ggtt(vm)->alias->vm, vma_res); 629 } 630 631 static int init_aliasing_ppgtt(struct i915_ggtt *ggtt) 632 { 633 struct i915_vm_pt_stash stash = {}; 634 struct i915_ppgtt *ppgtt; 635 int err; 636 637 ppgtt = i915_ppgtt_create(ggtt->vm.gt, 0); 638 if (IS_ERR(ppgtt)) 639 return PTR_ERR(ppgtt); 640 641 if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { 642 err = -ENODEV; 643 goto err_ppgtt; 644 } 645 646 err = i915_vm_alloc_pt_stash(&ppgtt->vm, &stash, ggtt->vm.total); 647 if (err) 648 goto err_ppgtt; 649 650 i915_gem_object_lock(ppgtt->vm.scratch[0], NULL); 651 err = i915_vm_map_pt_stash(&ppgtt->vm, &stash); 652 i915_gem_object_unlock(ppgtt->vm.scratch[0]); 653 if (err) 654 goto err_stash; 655 656 /* 657 * Note we only pre-allocate as far as the end of the global 658 * GTT. On 48b / 4-level page-tables, the difference is very, 659 * very significant! We have to preallocate as GVT/vgpu does 660 * not like the page directory disappearing. 661 */ 662 ppgtt->vm.allocate_va_range(&ppgtt->vm, &stash, 0, ggtt->vm.total); 663 664 ggtt->alias = ppgtt; 665 ggtt->vm.bind_async_flags |= ppgtt->vm.bind_async_flags; 666 667 GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != intel_ggtt_bind_vma); 668 ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; 669 670 GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != intel_ggtt_unbind_vma); 671 ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; 672 673 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 674 return 0; 675 676 err_stash: 677 i915_vm_free_pt_stash(&ppgtt->vm, &stash); 678 err_ppgtt: 679 i915_vm_put(&ppgtt->vm); 680 return err; 681 } 682 683 static void fini_aliasing_ppgtt(struct i915_ggtt *ggtt) 684 { 685 struct i915_ppgtt *ppgtt; 686 687 ppgtt = fetch_and_zero(&ggtt->alias); 688 if (!ppgtt) 689 return; 690 691 i915_vm_put(&ppgtt->vm); 692 693 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 694 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 695 } 696 697 int i915_init_ggtt(struct drm_i915_private *i915) 698 { 699 int ret; 700 701 ret = init_ggtt(to_gt(i915)->ggtt); 702 if (ret) 703 return ret; 704 705 if (INTEL_PPGTT(i915) == INTEL_PPGTT_ALIASING) { 706 ret = init_aliasing_ppgtt(to_gt(i915)->ggtt); 707 if (ret) 708 cleanup_init_ggtt(to_gt(i915)->ggtt); 709 } 710 711 return 0; 712 } 713 714 static void ggtt_cleanup_hw(struct i915_ggtt *ggtt) 715 { 716 struct i915_vma *vma, *vn; 717 718 flush_workqueue(ggtt->vm.i915->wq); 719 i915_gem_drain_freed_objects(ggtt->vm.i915); 720 721 mutex_lock(&ggtt->vm.mutex); 722 723 ggtt->vm.skip_pte_rewrite = true; 724 725 list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) { 726 struct drm_i915_gem_object *obj = vma->obj; 727 bool trylock; 728 729 trylock = i915_gem_object_trylock(obj, NULL); 730 WARN_ON(!trylock); 731 732 WARN_ON(__i915_vma_unbind(vma)); 733 if (trylock) 734 i915_gem_object_unlock(obj); 735 } 736 737 if (drm_mm_node_allocated(&ggtt->error_capture)) 738 drm_mm_remove_node(&ggtt->error_capture); 739 mutex_destroy(&ggtt->error_mutex); 740 741 ggtt_release_guc_top(ggtt); 742 intel_vgt_deballoon(ggtt); 743 744 ggtt->vm.cleanup(&ggtt->vm); 745 746 mutex_unlock(&ggtt->vm.mutex); 747 i915_address_space_fini(&ggtt->vm); 748 749 arch_phys_wc_del(ggtt->mtrr); 750 751 if (ggtt->iomap.size) 752 io_mapping_fini(&ggtt->iomap); 753 } 754 755 /** 756 * i915_ggtt_driver_release - Clean up GGTT hardware initialization 757 * @i915: i915 device 758 */ 759 void i915_ggtt_driver_release(struct drm_i915_private *i915) 760 { 761 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 762 763 fini_aliasing_ppgtt(ggtt); 764 765 intel_ggtt_fini_fences(ggtt); 766 ggtt_cleanup_hw(ggtt); 767 } 768 769 /** 770 * i915_ggtt_driver_late_release - Cleanup of GGTT that needs to be done after 771 * all free objects have been drained. 772 * @i915: i915 device 773 */ 774 void i915_ggtt_driver_late_release(struct drm_i915_private *i915) 775 { 776 struct i915_ggtt *ggtt = to_gt(i915)->ggtt; 777 778 GEM_WARN_ON(kref_read(&ggtt->vm.resv_ref) != 1); 779 dma_resv_fini(&ggtt->vm._resv); 780 } 781 782 static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) 783 { 784 snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; 785 snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; 786 return snb_gmch_ctl << 20; 787 } 788 789 static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) 790 { 791 bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; 792 bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; 793 if (bdw_gmch_ctl) 794 bdw_gmch_ctl = 1 << bdw_gmch_ctl; 795 796 #ifdef CONFIG_X86_32 797 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ 798 if (bdw_gmch_ctl > 4) 799 bdw_gmch_ctl = 4; 800 #endif 801 802 return bdw_gmch_ctl << 20; 803 } 804 805 static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) 806 { 807 gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; 808 gmch_ctrl &= SNB_GMCH_GGMS_MASK; 809 810 if (gmch_ctrl) 811 return 1 << (20 + gmch_ctrl); 812 813 return 0; 814 } 815 816 static unsigned int gen6_gttmmadr_size(struct drm_i915_private *i915) 817 { 818 /* 819 * GEN6: GTTMMADR size is 4MB and GTTADR starts at 2MB offset 820 * GEN8: GTTMMADR size is 16MB and GTTADR starts at 8MB offset 821 */ 822 GEM_BUG_ON(GRAPHICS_VER(i915) < 6); 823 return (GRAPHICS_VER(i915) < 8) ? SZ_4M : SZ_16M; 824 } 825 826 static unsigned int gen6_gttadr_offset(struct drm_i915_private *i915) 827 { 828 return gen6_gttmmadr_size(i915) / 2; 829 } 830 831 static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) 832 { 833 struct drm_i915_private *i915 = ggtt->vm.i915; 834 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 835 phys_addr_t phys_addr; 836 u32 pte_flags; 837 int ret; 838 839 GEM_WARN_ON(pci_resource_len(pdev, GEN4_GTTMMADR_BAR) != gen6_gttmmadr_size(i915)); 840 phys_addr = pci_resource_start(pdev, GEN4_GTTMMADR_BAR) + gen6_gttadr_offset(i915); 841 842 /* 843 * On BXT+/ICL+ writes larger than 64 bit to the GTT pagetable range 844 * will be dropped. For WC mappings in general we have 64 byte burst 845 * writes when the WC buffer is flushed, so we can't use it, but have to 846 * resort to an uncached mapping. The WC issue is easily caught by the 847 * readback check when writing GTT PTE entries. 848 */ 849 if (IS_GEN9_LP(i915) || GRAPHICS_VER(i915) >= 11) 850 ggtt->gsm = ioremap(phys_addr, size); 851 else 852 ggtt->gsm = ioremap_wc(phys_addr, size); 853 if (!ggtt->gsm) { 854 drm_err(&i915->drm, "Failed to map the ggtt page table\n"); 855 return -ENOMEM; 856 } 857 858 kref_init(&ggtt->vm.resv_ref); 859 ret = setup_scratch_page(&ggtt->vm); 860 if (ret) { 861 drm_err(&i915->drm, "Scratch setup failed\n"); 862 /* iounmap will also get called at remove, but meh */ 863 iounmap(ggtt->gsm); 864 return ret; 865 } 866 867 pte_flags = 0; 868 if (i915_gem_object_is_lmem(ggtt->vm.scratch[0])) 869 pte_flags |= PTE_LM; 870 871 ggtt->vm.scratch[0]->encode = 872 ggtt->vm.pte_encode(px_dma(ggtt->vm.scratch[0]), 873 I915_CACHE_NONE, pte_flags); 874 875 return 0; 876 } 877 878 static void gen6_gmch_remove(struct i915_address_space *vm) 879 { 880 struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); 881 882 iounmap(ggtt->gsm); 883 free_scratch(vm); 884 } 885 886 static struct resource pci_resource(struct pci_dev *pdev, int bar) 887 { 888 return (struct resource)DEFINE_RES_MEM(pci_resource_start(pdev, bar), 889 pci_resource_len(pdev, bar)); 890 } 891 892 static int gen8_gmch_probe(struct i915_ggtt *ggtt) 893 { 894 struct drm_i915_private *i915 = ggtt->vm.i915; 895 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 896 unsigned int size; 897 u16 snb_gmch_ctl; 898 899 if (!HAS_LMEM(i915) && !HAS_LMEMBAR_SMEM_STOLEN(i915)) { 900 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 901 return -ENXIO; 902 903 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 904 ggtt->mappable_end = resource_size(&ggtt->gmadr); 905 } 906 907 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 908 if (IS_CHERRYVIEW(i915)) 909 size = chv_get_total_gtt_size(snb_gmch_ctl); 910 else 911 size = gen8_get_total_gtt_size(snb_gmch_ctl); 912 913 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 914 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 915 ggtt->vm.lmem_pt_obj_flags = I915_BO_ALLOC_PM_EARLY; 916 917 ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE; 918 ggtt->vm.cleanup = gen6_gmch_remove; 919 ggtt->vm.insert_page = gen8_ggtt_insert_page; 920 ggtt->vm.clear_range = nop_clear_range; 921 922 ggtt->vm.insert_entries = gen8_ggtt_insert_entries; 923 924 /* 925 * Serialize GTT updates with aperture access on BXT if VT-d is on, 926 * and always on CHV. 927 */ 928 if (intel_vm_no_concurrent_access_wa(i915)) { 929 ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; 930 ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; 931 932 /* 933 * Calling stop_machine() version of GGTT update function 934 * at error capture/reset path will raise lockdep warning. 935 * Allow calling gen8_ggtt_insert_* directly at reset path 936 * which is safe from parallel GGTT updates. 937 */ 938 ggtt->vm.raw_insert_page = gen8_ggtt_insert_page; 939 ggtt->vm.raw_insert_entries = gen8_ggtt_insert_entries; 940 941 ggtt->vm.bind_async_flags = 942 I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; 943 } 944 945 if (intel_uc_wants_guc(&ggtt->vm.gt->uc)) 946 ggtt->invalidate = guc_ggtt_invalidate; 947 else 948 ggtt->invalidate = gen8_ggtt_invalidate; 949 950 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 951 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 952 953 ggtt->vm.pte_encode = gen8_ggtt_pte_encode; 954 955 return ggtt_probe_common(ggtt, size); 956 } 957 958 static u64 snb_pte_encode(dma_addr_t addr, 959 enum i915_cache_level level, 960 u32 flags) 961 { 962 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 963 964 switch (level) { 965 case I915_CACHE_L3_LLC: 966 case I915_CACHE_LLC: 967 pte |= GEN6_PTE_CACHE_LLC; 968 break; 969 case I915_CACHE_NONE: 970 pte |= GEN6_PTE_UNCACHED; 971 break; 972 default: 973 MISSING_CASE(level); 974 } 975 976 return pte; 977 } 978 979 static u64 ivb_pte_encode(dma_addr_t addr, 980 enum i915_cache_level level, 981 u32 flags) 982 { 983 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 984 985 switch (level) { 986 case I915_CACHE_L3_LLC: 987 pte |= GEN7_PTE_CACHE_L3_LLC; 988 break; 989 case I915_CACHE_LLC: 990 pte |= GEN6_PTE_CACHE_LLC; 991 break; 992 case I915_CACHE_NONE: 993 pte |= GEN6_PTE_UNCACHED; 994 break; 995 default: 996 MISSING_CASE(level); 997 } 998 999 return pte; 1000 } 1001 1002 static u64 byt_pte_encode(dma_addr_t addr, 1003 enum i915_cache_level level, 1004 u32 flags) 1005 { 1006 gen6_pte_t pte = GEN6_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1007 1008 if (!(flags & PTE_READ_ONLY)) 1009 pte |= BYT_PTE_WRITEABLE; 1010 1011 if (level != I915_CACHE_NONE) 1012 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; 1013 1014 return pte; 1015 } 1016 1017 static u64 hsw_pte_encode(dma_addr_t addr, 1018 enum i915_cache_level level, 1019 u32 flags) 1020 { 1021 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1022 1023 if (level != I915_CACHE_NONE) 1024 pte |= HSW_WB_LLC_AGE3; 1025 1026 return pte; 1027 } 1028 1029 static u64 iris_pte_encode(dma_addr_t addr, 1030 enum i915_cache_level level, 1031 u32 flags) 1032 { 1033 gen6_pte_t pte = HSW_PTE_ADDR_ENCODE(addr) | GEN6_PTE_VALID; 1034 1035 switch (level) { 1036 case I915_CACHE_NONE: 1037 break; 1038 case I915_CACHE_WT: 1039 pte |= HSW_WT_ELLC_LLC_AGE3; 1040 break; 1041 default: 1042 pte |= HSW_WB_ELLC_LLC_AGE3; 1043 break; 1044 } 1045 1046 return pte; 1047 } 1048 1049 static int gen6_gmch_probe(struct i915_ggtt *ggtt) 1050 { 1051 struct drm_i915_private *i915 = ggtt->vm.i915; 1052 struct pci_dev *pdev = to_pci_dev(i915->drm.dev); 1053 unsigned int size; 1054 u16 snb_gmch_ctl; 1055 1056 if (!i915_pci_resource_valid(pdev, GEN4_GMADR_BAR)) 1057 return -ENXIO; 1058 1059 ggtt->gmadr = pci_resource(pdev, GEN4_GMADR_BAR); 1060 ggtt->mappable_end = resource_size(&ggtt->gmadr); 1061 1062 /* 1063 * 64/512MB is the current min/max we actually know of, but this is 1064 * just a coarse sanity check. 1065 */ 1066 if (ggtt->mappable_end < (64 << 20) || 1067 ggtt->mappable_end > (512 << 20)) { 1068 drm_err(&i915->drm, "Unknown GMADR size (%pa)\n", 1069 &ggtt->mappable_end); 1070 return -ENXIO; 1071 } 1072 1073 pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); 1074 1075 size = gen6_get_total_gtt_size(snb_gmch_ctl); 1076 ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE; 1077 1078 ggtt->vm.alloc_pt_dma = alloc_pt_dma; 1079 ggtt->vm.alloc_scratch_dma = alloc_pt_dma; 1080 1081 ggtt->vm.clear_range = nop_clear_range; 1082 if (!HAS_FULL_PPGTT(i915)) 1083 ggtt->vm.clear_range = gen6_ggtt_clear_range; 1084 ggtt->vm.insert_page = gen6_ggtt_insert_page; 1085 ggtt->vm.insert_entries = gen6_ggtt_insert_entries; 1086 ggtt->vm.cleanup = gen6_gmch_remove; 1087 1088 ggtt->invalidate = gen6_ggtt_invalidate; 1089 1090 if (HAS_EDRAM(i915)) 1091 ggtt->vm.pte_encode = iris_pte_encode; 1092 else if (IS_HASWELL(i915)) 1093 ggtt->vm.pte_encode = hsw_pte_encode; 1094 else if (IS_VALLEYVIEW(i915)) 1095 ggtt->vm.pte_encode = byt_pte_encode; 1096 else if (GRAPHICS_VER(i915) >= 7) 1097 ggtt->vm.pte_encode = ivb_pte_encode; 1098 else 1099 ggtt->vm.pte_encode = snb_pte_encode; 1100 1101 ggtt->vm.vma_ops.bind_vma = intel_ggtt_bind_vma; 1102 ggtt->vm.vma_ops.unbind_vma = intel_ggtt_unbind_vma; 1103 1104 return ggtt_probe_common(ggtt, size); 1105 } 1106 1107 static int ggtt_probe_hw(struct i915_ggtt *ggtt, struct intel_gt *gt) 1108 { 1109 struct drm_i915_private *i915 = gt->i915; 1110 int ret; 1111 1112 ggtt->vm.gt = gt; 1113 ggtt->vm.i915 = i915; 1114 ggtt->vm.dma = i915->drm.dev; 1115 dma_resv_init(&ggtt->vm._resv); 1116 1117 if (GRAPHICS_VER(i915) >= 8) 1118 ret = gen8_gmch_probe(ggtt); 1119 else if (GRAPHICS_VER(i915) >= 6) 1120 ret = gen6_gmch_probe(ggtt); 1121 else 1122 ret = intel_ggtt_gmch_probe(ggtt); 1123 1124 if (ret) { 1125 dma_resv_fini(&ggtt->vm._resv); 1126 return ret; 1127 } 1128 1129 if ((ggtt->vm.total - 1) >> 32) { 1130 drm_err(&i915->drm, 1131 "We never expected a Global GTT with more than 32bits" 1132 " of address space! Found %lldM!\n", 1133 ggtt->vm.total >> 20); 1134 ggtt->vm.total = 1ULL << 32; 1135 ggtt->mappable_end = 1136 min_t(u64, ggtt->mappable_end, ggtt->vm.total); 1137 } 1138 1139 if (ggtt->mappable_end > ggtt->vm.total) { 1140 drm_err(&i915->drm, 1141 "mappable aperture extends past end of GGTT," 1142 " aperture=%pa, total=%llx\n", 1143 &ggtt->mappable_end, ggtt->vm.total); 1144 ggtt->mappable_end = ggtt->vm.total; 1145 } 1146 1147 /* GMADR is the PCI mmio aperture into the global GTT. */ 1148 drm_dbg(&i915->drm, "GGTT size = %lluM\n", ggtt->vm.total >> 20); 1149 drm_dbg(&i915->drm, "GMADR size = %lluM\n", 1150 (u64)ggtt->mappable_end >> 20); 1151 drm_dbg(&i915->drm, "DSM size = %lluM\n", 1152 (u64)resource_size(&intel_graphics_stolen_res) >> 20); 1153 1154 return 0; 1155 } 1156 1157 /** 1158 * i915_ggtt_probe_hw - Probe GGTT hardware location 1159 * @i915: i915 device 1160 */ 1161 int i915_ggtt_probe_hw(struct drm_i915_private *i915) 1162 { 1163 struct intel_gt *gt; 1164 int ret, i; 1165 1166 for_each_gt(gt, i915, i) { 1167 ret = intel_gt_assign_ggtt(gt); 1168 if (ret) 1169 return ret; 1170 } 1171 1172 ret = ggtt_probe_hw(to_gt(i915)->ggtt, to_gt(i915)); 1173 if (ret) 1174 return ret; 1175 1176 if (i915_vtd_active(i915)) 1177 drm_info(&i915->drm, "VT-d active for gfx access\n"); 1178 1179 return 0; 1180 } 1181 1182 struct i915_ggtt *i915_ggtt_create(struct drm_i915_private *i915) 1183 { 1184 struct i915_ggtt *ggtt; 1185 1186 ggtt = drmm_kzalloc(&i915->drm, sizeof(*ggtt), GFP_KERNEL); 1187 if (!ggtt) 1188 return ERR_PTR(-ENOMEM); 1189 1190 INIT_LIST_HEAD(&ggtt->gt_list); 1191 1192 return ggtt; 1193 } 1194 1195 int i915_ggtt_enable_hw(struct drm_i915_private *i915) 1196 { 1197 if (GRAPHICS_VER(i915) < 6) 1198 return intel_ggtt_gmch_enable_hw(i915); 1199 1200 return 0; 1201 } 1202 1203 /** 1204 * i915_ggtt_resume_vm - Restore the memory mappings for a GGTT or DPT VM 1205 * @vm: The VM to restore the mappings for 1206 * 1207 * Restore the memory mappings for all objects mapped to HW via the GGTT or a 1208 * DPT page table. 1209 * 1210 * Returns %true if restoring the mapping for any object that was in a write 1211 * domain before suspend. 1212 */ 1213 bool i915_ggtt_resume_vm(struct i915_address_space *vm) 1214 { 1215 struct i915_vma *vma; 1216 bool write_domain_objs = false; 1217 1218 drm_WARN_ON(&vm->i915->drm, !vm->is_ggtt && !vm->is_dpt); 1219 1220 /* First fill our portion of the GTT with scratch pages */ 1221 vm->clear_range(vm, 0, vm->total); 1222 1223 /* clflush objects bound into the GGTT and rebind them. */ 1224 list_for_each_entry(vma, &vm->bound_list, vm_link) { 1225 struct drm_i915_gem_object *obj = vma->obj; 1226 unsigned int was_bound = 1227 atomic_read(&vma->flags) & I915_VMA_BIND_MASK; 1228 1229 GEM_BUG_ON(!was_bound); 1230 1231 /* 1232 * Clear the bound flags of the vma resource to allow 1233 * ptes to be repopulated. 1234 */ 1235 vma->resource->bound_flags = 0; 1236 vma->ops->bind_vma(vm, NULL, vma->resource, 1237 obj ? obj->cache_level : 0, 1238 was_bound); 1239 1240 if (obj) { /* only used during resume => exclusive access */ 1241 write_domain_objs |= fetch_and_zero(&obj->write_domain); 1242 obj->read_domains |= I915_GEM_DOMAIN_GTT; 1243 } 1244 } 1245 1246 return write_domain_objs; 1247 } 1248 1249 void i915_ggtt_resume(struct i915_ggtt *ggtt) 1250 { 1251 struct intel_gt *gt; 1252 bool flush; 1253 1254 list_for_each_entry(gt, &ggtt->gt_list, ggtt_link) 1255 intel_gt_check_and_clear_faults(gt); 1256 1257 flush = i915_ggtt_resume_vm(&ggtt->vm); 1258 1259 ggtt->invalidate(ggtt); 1260 1261 if (flush) 1262 wbinvd_on_all_cpus(); 1263 1264 intel_ggtt_restore_fences(ggtt); 1265 } 1266