1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 
111 #include "i915_drv.h"
112 #include "i915_trace.h"
113 #include "i915_vgpu.h"
114 #include "gen8_engine_cs.h"
115 #include "intel_breadcrumbs.h"
116 #include "intel_context.h"
117 #include "intel_engine_pm.h"
118 #include "intel_engine_stats.h"
119 #include "intel_execlists_submission.h"
120 #include "intel_gt.h"
121 #include "intel_gt_irq.h"
122 #include "intel_gt_pm.h"
123 #include "intel_gt_requests.h"
124 #include "intel_lrc.h"
125 #include "intel_lrc_reg.h"
126 #include "intel_mocs.h"
127 #include "intel_reset.h"
128 #include "intel_ring.h"
129 #include "intel_workarounds.h"
130 #include "shmem_utils.h"
131 
132 #define RING_EXECLIST_QFULL		(1 << 0x2)
133 #define RING_EXECLIST1_VALID		(1 << 0x3)
134 #define RING_EXECLIST0_VALID		(1 << 0x4)
135 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
136 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
137 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
138 
139 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
140 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
141 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
142 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
143 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
144 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
145 
146 #define GEN8_CTX_STATUS_COMPLETED_MASK \
147 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
148 
149 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
150 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
151 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
152 #define GEN12_IDLE_CTX_ID		0x7FF
153 #define GEN12_CSB_CTX_VALID(csb_dw) \
154 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
155 
156 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
157 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
158 
159 struct virtual_engine {
160 	struct intel_engine_cs base;
161 	struct intel_context context;
162 	struct rcu_work rcu;
163 
164 	/*
165 	 * We allow only a single request through the virtual engine at a time
166 	 * (each request in the timeline waits for the completion fence of
167 	 * the previous before being submitted). By restricting ourselves to
168 	 * only submitting a single request, each request is placed on to a
169 	 * physical to maximise load spreading (by virtue of the late greedy
170 	 * scheduling -- each real engine takes the next available request
171 	 * upon idling).
172 	 */
173 	struct i915_request *request;
174 
175 	/*
176 	 * We keep a rbtree of available virtual engines inside each physical
177 	 * engine, sorted by priority. Here we preallocate the nodes we need
178 	 * for the virtual engine, indexed by physical_engine->id.
179 	 */
180 	struct ve_node {
181 		struct rb_node rb;
182 		int prio;
183 	} nodes[I915_NUM_ENGINES];
184 
185 	/*
186 	 * Keep track of bonded pairs -- restrictions upon on our selection
187 	 * of physical engines any particular request may be submitted to.
188 	 * If we receive a submit-fence from a master engine, we will only
189 	 * use one of sibling_mask physical engines.
190 	 */
191 	struct ve_bond {
192 		const struct intel_engine_cs *master;
193 		intel_engine_mask_t sibling_mask;
194 	} *bonds;
195 	unsigned int num_bonds;
196 
197 	/* And finally, which physical engines this virtual engine maps onto. */
198 	unsigned int num_siblings;
199 	struct intel_engine_cs *siblings[];
200 };
201 
202 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
203 {
204 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
205 	return container_of(engine, struct virtual_engine, base);
206 }
207 
208 static struct i915_request *
209 __active_request(const struct intel_timeline * const tl,
210 		 struct i915_request *rq,
211 		 int error)
212 {
213 	struct i915_request *active = rq;
214 
215 	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
216 		if (__i915_request_is_complete(rq))
217 			break;
218 
219 		if (error) {
220 			i915_request_set_error_once(rq, error);
221 			__i915_request_skip(rq);
222 		}
223 		active = rq;
224 	}
225 
226 	return active;
227 }
228 
229 static struct i915_request *
230 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
231 {
232 	return __active_request(tl, rq, 0);
233 }
234 
235 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
236 {
237 	/*
238 	 * We inspect HWS_PREEMPT with a semaphore inside
239 	 * engine->emit_fini_breadcrumb. If the dword is true,
240 	 * the ring is paused as the semaphore will busywait
241 	 * until the dword is false.
242 	 */
243 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
244 	if (state)
245 		wmb();
246 }
247 
248 static struct i915_priolist *to_priolist(struct rb_node *rb)
249 {
250 	return rb_entry(rb, struct i915_priolist, node);
251 }
252 
253 static int rq_prio(const struct i915_request *rq)
254 {
255 	return READ_ONCE(rq->sched.attr.priority);
256 }
257 
258 static int effective_prio(const struct i915_request *rq)
259 {
260 	int prio = rq_prio(rq);
261 
262 	/*
263 	 * If this request is special and must not be interrupted at any
264 	 * cost, so be it. Note we are only checking the most recent request
265 	 * in the context and so may be masking an earlier vip request. It
266 	 * is hoped that under the conditions where nopreempt is used, this
267 	 * will not matter (i.e. all requests to that context will be
268 	 * nopreempt for as long as desired).
269 	 */
270 	if (i915_request_has_nopreempt(rq))
271 		prio = I915_PRIORITY_UNPREEMPTABLE;
272 
273 	return prio;
274 }
275 
276 static int queue_prio(const struct intel_engine_execlists *execlists)
277 {
278 	struct rb_node *rb;
279 
280 	rb = rb_first_cached(&execlists->queue);
281 	if (!rb)
282 		return INT_MIN;
283 
284 	return to_priolist(rb)->priority;
285 }
286 
287 static int virtual_prio(const struct intel_engine_execlists *el)
288 {
289 	struct rb_node *rb = rb_first_cached(&el->virtual);
290 
291 	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
292 }
293 
294 static bool need_preempt(const struct intel_engine_cs *engine,
295 			 const struct i915_request *rq)
296 {
297 	int last_prio;
298 
299 	if (!intel_engine_has_semaphores(engine))
300 		return false;
301 
302 	/*
303 	 * Check if the current priority hint merits a preemption attempt.
304 	 *
305 	 * We record the highest value priority we saw during rescheduling
306 	 * prior to this dequeue, therefore we know that if it is strictly
307 	 * less than the current tail of ESLP[0], we do not need to force
308 	 * a preempt-to-idle cycle.
309 	 *
310 	 * However, the priority hint is a mere hint that we may need to
311 	 * preempt. If that hint is stale or we may be trying to preempt
312 	 * ourselves, ignore the request.
313 	 *
314 	 * More naturally we would write
315 	 *      prio >= max(0, last);
316 	 * except that we wish to prevent triggering preemption at the same
317 	 * priority level: the task that is running should remain running
318 	 * to preserve FIFO ordering of dependencies.
319 	 */
320 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
321 	if (engine->execlists.queue_priority_hint <= last_prio)
322 		return false;
323 
324 	/*
325 	 * Check against the first request in ELSP[1], it will, thanks to the
326 	 * power of PI, be the highest priority of that context.
327 	 */
328 	if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
329 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
330 		return true;
331 
332 	/*
333 	 * If the inflight context did not trigger the preemption, then maybe
334 	 * it was the set of queued requests? Pick the highest priority in
335 	 * the queue (the first active priolist) and see if it deserves to be
336 	 * running instead of ELSP[0].
337 	 *
338 	 * The highest priority request in the queue can not be either
339 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
340 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
341 	 */
342 	return max(virtual_prio(&engine->execlists),
343 		   queue_prio(&engine->execlists)) > last_prio;
344 }
345 
346 __maybe_unused static bool
347 assert_priority_queue(const struct i915_request *prev,
348 		      const struct i915_request *next)
349 {
350 	/*
351 	 * Without preemption, the prev may refer to the still active element
352 	 * which we refuse to let go.
353 	 *
354 	 * Even with preemption, there are times when we think it is better not
355 	 * to preempt and leave an ostensibly lower priority request in flight.
356 	 */
357 	if (i915_request_is_active(prev))
358 		return true;
359 
360 	return rq_prio(prev) >= rq_prio(next);
361 }
362 
363 static struct i915_request *
364 __unwind_incomplete_requests(struct intel_engine_cs *engine)
365 {
366 	struct i915_request *rq, *rn, *active = NULL;
367 	struct list_head *pl;
368 	int prio = I915_PRIORITY_INVALID;
369 
370 	lockdep_assert_held(&engine->active.lock);
371 
372 	list_for_each_entry_safe_reverse(rq, rn,
373 					 &engine->active.requests,
374 					 sched.link) {
375 		if (__i915_request_is_complete(rq)) {
376 			list_del_init(&rq->sched.link);
377 			continue;
378 		}
379 
380 		__i915_request_unsubmit(rq);
381 
382 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
383 		if (rq_prio(rq) != prio) {
384 			prio = rq_prio(rq);
385 			pl = i915_sched_lookup_priolist(engine, prio);
386 		}
387 		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
388 
389 		list_move(&rq->sched.link, pl);
390 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
391 
392 		/* Check in case we rollback so far we wrap [size/2] */
393 		if (intel_ring_direction(rq->ring,
394 					 rq->tail,
395 					 rq->ring->tail + 8) > 0)
396 			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
397 
398 		active = rq;
399 	}
400 
401 	return active;
402 }
403 
404 struct i915_request *
405 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
406 {
407 	struct intel_engine_cs *engine =
408 		container_of(execlists, typeof(*engine), execlists);
409 
410 	return __unwind_incomplete_requests(engine);
411 }
412 
413 static void
414 execlists_context_status_change(struct i915_request *rq, unsigned long status)
415 {
416 	/*
417 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
418 	 * The compiler should eliminate this function as dead-code.
419 	 */
420 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
421 		return;
422 
423 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
424 				   status, rq);
425 }
426 
427 static void reset_active(struct i915_request *rq,
428 			 struct intel_engine_cs *engine)
429 {
430 	struct intel_context * const ce = rq->context;
431 	u32 head;
432 
433 	/*
434 	 * The executing context has been cancelled. We want to prevent
435 	 * further execution along this context and propagate the error on
436 	 * to anything depending on its results.
437 	 *
438 	 * In __i915_request_submit(), we apply the -EIO and remove the
439 	 * requests' payloads for any banned requests. But first, we must
440 	 * rewind the context back to the start of the incomplete request so
441 	 * that we do not jump back into the middle of the batch.
442 	 *
443 	 * We preserve the breadcrumbs and semaphores of the incomplete
444 	 * requests so that inter-timeline dependencies (i.e other timelines)
445 	 * remain correctly ordered. And we defer to __i915_request_submit()
446 	 * so that all asynchronous waits are correctly handled.
447 	 */
448 	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
449 		     rq->fence.context, rq->fence.seqno);
450 
451 	/* On resubmission of the active request, payload will be scrubbed */
452 	if (__i915_request_is_complete(rq))
453 		head = rq->tail;
454 	else
455 		head = __active_request(ce->timeline, rq, -EIO)->head;
456 	head = intel_ring_wrap(ce->ring, head);
457 
458 	/* Scrub the context image to prevent replaying the previous batch */
459 	lrc_init_regs(ce, engine, true);
460 
461 	/* We've switched away, so this should be a no-op, but intent matters */
462 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
463 }
464 
465 static bool bad_request(const struct i915_request *rq)
466 {
467 	return rq->fence.error && i915_request_started(rq);
468 }
469 
470 static struct intel_engine_cs *
471 __execlists_schedule_in(struct i915_request *rq)
472 {
473 	struct intel_engine_cs * const engine = rq->engine;
474 	struct intel_context * const ce = rq->context;
475 
476 	intel_context_get(ce);
477 
478 	if (unlikely(intel_context_is_closed(ce) &&
479 		     !intel_engine_has_heartbeat(engine)))
480 		intel_context_set_banned(ce);
481 
482 	if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
483 		reset_active(rq, engine);
484 
485 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
486 		lrc_check_regs(ce, engine, "before");
487 
488 	if (ce->tag) {
489 		/* Use a fixed tag for OA and friends */
490 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
491 		ce->lrc.ccid = ce->tag;
492 	} else {
493 		/* We don't need a strict matching tag, just different values */
494 		unsigned int tag = __ffs(engine->context_tag);
495 
496 		GEM_BUG_ON(tag >= BITS_PER_LONG);
497 		__clear_bit(tag, &engine->context_tag);
498 		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
499 
500 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
501 	}
502 
503 	ce->lrc.ccid |= engine->execlists.ccid;
504 
505 	__intel_gt_pm_get(engine->gt);
506 	if (engine->fw_domain && !engine->fw_active++)
507 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
508 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
509 	intel_engine_context_in(engine);
510 
511 	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
512 
513 	return engine;
514 }
515 
516 static void execlists_schedule_in(struct i915_request *rq, int idx)
517 {
518 	struct intel_context * const ce = rq->context;
519 	struct intel_engine_cs *old;
520 
521 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
522 	trace_i915_request_in(rq, idx);
523 
524 	old = ce->inflight;
525 	if (!old)
526 		old = __execlists_schedule_in(rq);
527 	WRITE_ONCE(ce->inflight, ptr_inc(old));
528 
529 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
530 }
531 
532 static void
533 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
534 {
535 	struct intel_engine_cs *engine = rq->engine;
536 
537 	spin_lock_irq(&engine->active.lock);
538 
539 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
540 	WRITE_ONCE(rq->engine, &ve->base);
541 	ve->base.submit_request(rq);
542 
543 	spin_unlock_irq(&engine->active.lock);
544 }
545 
546 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
547 {
548 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
549 	struct intel_engine_cs *engine = rq->engine;
550 
551 	/*
552 	 * After this point, the rq may be transferred to a new sibling, so
553 	 * before we clear ce->inflight make sure that the context has been
554 	 * removed from the b->signalers and furthermore we need to make sure
555 	 * that the concurrent iterator in signal_irq_work is no longer
556 	 * following ce->signal_link.
557 	 */
558 	if (!list_empty(&ce->signals))
559 		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
560 
561 	/*
562 	 * This engine is now too busy to run this virtual request, so
563 	 * see if we can find an alternative engine for it to execute on.
564 	 * Once a request has become bonded to this engine, we treat it the
565 	 * same as other native request.
566 	 */
567 	if (i915_request_in_priority_queue(rq) &&
568 	    rq->execution_mask != engine->mask)
569 		resubmit_virtual_request(rq, ve);
570 
571 	if (READ_ONCE(ve->request))
572 		tasklet_hi_schedule(&ve->base.execlists.tasklet);
573 }
574 
575 static void __execlists_schedule_out(struct i915_request * const rq,
576 				     struct intel_context * const ce)
577 {
578 	struct intel_engine_cs * const engine = rq->engine;
579 	unsigned int ccid;
580 
581 	/*
582 	 * NB process_csb() is not under the engine->active.lock and hence
583 	 * schedule_out can race with schedule_in meaning that we should
584 	 * refrain from doing non-trivial work here.
585 	 */
586 
587 	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
588 	GEM_BUG_ON(ce->inflight != engine);
589 
590 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
591 		lrc_check_regs(ce, engine, "after");
592 
593 	/*
594 	 * If we have just completed this context, the engine may now be
595 	 * idle and we want to re-enter powersaving.
596 	 */
597 	if (intel_timeline_is_last(ce->timeline, rq) &&
598 	    __i915_request_is_complete(rq))
599 		intel_engine_add_retire(engine, ce->timeline);
600 
601 	ccid = ce->lrc.ccid;
602 	ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
603 	ccid &= GEN12_MAX_CONTEXT_HW_ID;
604 	if (ccid < BITS_PER_LONG) {
605 		GEM_BUG_ON(ccid == 0);
606 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
607 		__set_bit(ccid - 1, &engine->context_tag);
608 	}
609 
610 	lrc_update_runtime(ce);
611 	intel_engine_context_out(engine);
612 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
613 	if (engine->fw_domain && !--engine->fw_active)
614 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
615 	intel_gt_pm_put_async(engine->gt);
616 
617 	/*
618 	 * If this is part of a virtual engine, its next request may
619 	 * have been blocked waiting for access to the active context.
620 	 * We have to kick all the siblings again in case we need to
621 	 * switch (e.g. the next request is not runnable on this
622 	 * engine). Hopefully, we will already have submitted the next
623 	 * request before the tasklet runs and do not need to rebuild
624 	 * each virtual tree and kick everyone again.
625 	 */
626 	if (ce->engine != engine)
627 		kick_siblings(rq, ce);
628 
629 	WRITE_ONCE(ce->inflight, NULL);
630 	intel_context_put(ce);
631 }
632 
633 static inline void execlists_schedule_out(struct i915_request *rq)
634 {
635 	struct intel_context * const ce = rq->context;
636 
637 	trace_i915_request_out(rq);
638 
639 	GEM_BUG_ON(!ce->inflight);
640 	ce->inflight = ptr_dec(ce->inflight);
641 	if (!__intel_context_inflight_count(ce->inflight))
642 		__execlists_schedule_out(rq, ce);
643 
644 	i915_request_put(rq);
645 }
646 
647 static u64 execlists_update_context(struct i915_request *rq)
648 {
649 	struct intel_context *ce = rq->context;
650 	u64 desc = ce->lrc.desc;
651 	u32 tail, prev;
652 
653 	/*
654 	 * WaIdleLiteRestore:bdw,skl
655 	 *
656 	 * We should never submit the context with the same RING_TAIL twice
657 	 * just in case we submit an empty ring, which confuses the HW.
658 	 *
659 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
660 	 * the normal request to be able to always advance the RING_TAIL on
661 	 * subsequent resubmissions (for lite restore). Should that fail us,
662 	 * and we try and submit the same tail again, force the context
663 	 * reload.
664 	 *
665 	 * If we need to return to a preempted context, we need to skip the
666 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
667 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
668 	 * an earlier request.
669 	 */
670 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
671 	prev = rq->ring->tail;
672 	tail = intel_ring_set_tail(rq->ring, rq->tail);
673 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
674 		desc |= CTX_DESC_FORCE_RESTORE;
675 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
676 	rq->tail = rq->wa_tail;
677 
678 	/*
679 	 * Make sure the context image is complete before we submit it to HW.
680 	 *
681 	 * Ostensibly, writes (including the WCB) should be flushed prior to
682 	 * an uncached write such as our mmio register access, the empirical
683 	 * evidence (esp. on Braswell) suggests that the WC write into memory
684 	 * may not be visible to the HW prior to the completion of the UC
685 	 * register write and that we may begin execution from the context
686 	 * before its image is complete leading to invalid PD chasing.
687 	 */
688 	wmb();
689 
690 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
691 	return desc;
692 }
693 
694 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
695 {
696 	if (execlists->ctrl_reg) {
697 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
698 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
699 	} else {
700 		writel(upper_32_bits(desc), execlists->submit_reg);
701 		writel(lower_32_bits(desc), execlists->submit_reg);
702 	}
703 }
704 
705 static __maybe_unused char *
706 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
707 {
708 	if (!rq)
709 		return "";
710 
711 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
712 		 prefix,
713 		 rq->context->lrc.ccid,
714 		 rq->fence.context, rq->fence.seqno,
715 		 __i915_request_is_complete(rq) ? "!" :
716 		 __i915_request_has_started(rq) ? "*" :
717 		 "",
718 		 rq_prio(rq));
719 
720 	return buf;
721 }
722 
723 static __maybe_unused noinline void
724 trace_ports(const struct intel_engine_execlists *execlists,
725 	    const char *msg,
726 	    struct i915_request * const *ports)
727 {
728 	const struct intel_engine_cs *engine =
729 		container_of(execlists, typeof(*engine), execlists);
730 	char __maybe_unused p0[40], p1[40];
731 
732 	if (!ports[0])
733 		return;
734 
735 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
736 		     dump_port(p0, sizeof(p0), "", ports[0]),
737 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
738 }
739 
740 static bool
741 reset_in_progress(const struct intel_engine_execlists *execlists)
742 {
743 	return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
744 }
745 
746 static __maybe_unused noinline bool
747 assert_pending_valid(const struct intel_engine_execlists *execlists,
748 		     const char *msg)
749 {
750 	struct intel_engine_cs *engine =
751 		container_of(execlists, typeof(*engine), execlists);
752 	struct i915_request * const *port, *rq, *prev = NULL;
753 	struct intel_context *ce = NULL;
754 	u32 ccid = -1;
755 
756 	trace_ports(execlists, msg, execlists->pending);
757 
758 	/* We may be messing around with the lists during reset, lalala */
759 	if (reset_in_progress(execlists))
760 		return true;
761 
762 	if (!execlists->pending[0]) {
763 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
764 			      engine->name);
765 		return false;
766 	}
767 
768 	if (execlists->pending[execlists_num_ports(execlists)]) {
769 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
770 			      engine->name, execlists_num_ports(execlists));
771 		return false;
772 	}
773 
774 	for (port = execlists->pending; (rq = *port); port++) {
775 		unsigned long flags;
776 		bool ok = true;
777 
778 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
779 		GEM_BUG_ON(!i915_request_is_active(rq));
780 
781 		if (ce == rq->context) {
782 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
783 				      engine->name,
784 				      ce->timeline->fence_context,
785 				      port - execlists->pending);
786 			return false;
787 		}
788 		ce = rq->context;
789 
790 		if (ccid == ce->lrc.ccid) {
791 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
792 				      engine->name,
793 				      ccid, ce->timeline->fence_context,
794 				      port - execlists->pending);
795 			return false;
796 		}
797 		ccid = ce->lrc.ccid;
798 
799 		/*
800 		 * Sentinels are supposed to be the last request so they flush
801 		 * the current execution off the HW. Check that they are the only
802 		 * request in the pending submission.
803 		 *
804 		 * NB: Due to the async nature of preempt-to-busy and request
805 		 * cancellation we need to handle the case where request
806 		 * becomes a sentinel in parallel to CSB processing.
807 		 */
808 		if (prev && i915_request_has_sentinel(prev) &&
809 		    !READ_ONCE(prev->fence.error)) {
810 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
811 				      engine->name,
812 				      ce->timeline->fence_context,
813 				      port - execlists->pending);
814 			return false;
815 		}
816 		prev = rq;
817 
818 		/*
819 		 * We want virtual requests to only be in the first slot so
820 		 * that they are never stuck behind a hog and can be immediately
821 		 * transferred onto the next idle engine.
822 		 */
823 		if (rq->execution_mask != engine->mask &&
824 		    port != execlists->pending) {
825 			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
826 				      engine->name,
827 				      ce->timeline->fence_context,
828 				      port - execlists->pending);
829 			return false;
830 		}
831 
832 		/* Hold tightly onto the lock to prevent concurrent retires! */
833 		if (!spin_trylock_irqsave(&rq->lock, flags))
834 			continue;
835 
836 		if (__i915_request_is_complete(rq))
837 			goto unlock;
838 
839 		if (i915_active_is_idle(&ce->active) &&
840 		    !intel_context_is_barrier(ce)) {
841 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
842 				      engine->name,
843 				      ce->timeline->fence_context,
844 				      port - execlists->pending);
845 			ok = false;
846 			goto unlock;
847 		}
848 
849 		if (!i915_vma_is_pinned(ce->state)) {
850 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
851 				      engine->name,
852 				      ce->timeline->fence_context,
853 				      port - execlists->pending);
854 			ok = false;
855 			goto unlock;
856 		}
857 
858 		if (!i915_vma_is_pinned(ce->ring->vma)) {
859 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
860 				      engine->name,
861 				      ce->timeline->fence_context,
862 				      port - execlists->pending);
863 			ok = false;
864 			goto unlock;
865 		}
866 
867 unlock:
868 		spin_unlock_irqrestore(&rq->lock, flags);
869 		if (!ok)
870 			return false;
871 	}
872 
873 	return ce;
874 }
875 
876 static void execlists_submit_ports(struct intel_engine_cs *engine)
877 {
878 	struct intel_engine_execlists *execlists = &engine->execlists;
879 	unsigned int n;
880 
881 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
882 
883 	/*
884 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
885 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
886 	 * not be relinquished until the device is idle (see
887 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
888 	 * that all ELSP are drained i.e. we have processed the CSB,
889 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
890 	 */
891 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
892 
893 	/*
894 	 * ELSQ note: the submit queue is not cleared after being submitted
895 	 * to the HW so we need to make sure we always clean it up. This is
896 	 * currently ensured by the fact that we always write the same number
897 	 * of elsq entries, keep this in mind before changing the loop below.
898 	 */
899 	for (n = execlists_num_ports(execlists); n--; ) {
900 		struct i915_request *rq = execlists->pending[n];
901 
902 		write_desc(execlists,
903 			   rq ? execlists_update_context(rq) : 0,
904 			   n);
905 	}
906 
907 	/* we need to manually load the submit queue */
908 	if (execlists->ctrl_reg)
909 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
910 }
911 
912 static bool ctx_single_port_submission(const struct intel_context *ce)
913 {
914 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
915 		intel_context_force_single_submission(ce));
916 }
917 
918 static bool can_merge_ctx(const struct intel_context *prev,
919 			  const struct intel_context *next)
920 {
921 	if (prev != next)
922 		return false;
923 
924 	if (ctx_single_port_submission(prev))
925 		return false;
926 
927 	return true;
928 }
929 
930 static unsigned long i915_request_flags(const struct i915_request *rq)
931 {
932 	return READ_ONCE(rq->fence.flags);
933 }
934 
935 static bool can_merge_rq(const struct i915_request *prev,
936 			 const struct i915_request *next)
937 {
938 	GEM_BUG_ON(prev == next);
939 	GEM_BUG_ON(!assert_priority_queue(prev, next));
940 
941 	/*
942 	 * We do not submit known completed requests. Therefore if the next
943 	 * request is already completed, we can pretend to merge it in
944 	 * with the previous context (and we will skip updating the ELSP
945 	 * and tracking). Thus hopefully keeping the ELSP full with active
946 	 * contexts, despite the best efforts of preempt-to-busy to confuse
947 	 * us.
948 	 */
949 	if (__i915_request_is_complete(next))
950 		return true;
951 
952 	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
953 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
954 		      BIT(I915_FENCE_FLAG_SENTINEL))))
955 		return false;
956 
957 	if (!can_merge_ctx(prev->context, next->context))
958 		return false;
959 
960 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
961 	return true;
962 }
963 
964 static bool virtual_matches(const struct virtual_engine *ve,
965 			    const struct i915_request *rq,
966 			    const struct intel_engine_cs *engine)
967 {
968 	const struct intel_engine_cs *inflight;
969 
970 	if (!rq)
971 		return false;
972 
973 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
974 		return false;
975 
976 	/*
977 	 * We track when the HW has completed saving the context image
978 	 * (i.e. when we have seen the final CS event switching out of
979 	 * the context) and must not overwrite the context image before
980 	 * then. This restricts us to only using the active engine
981 	 * while the previous virtualized request is inflight (so
982 	 * we reuse the register offsets). This is a very small
983 	 * hystersis on the greedy seelction algorithm.
984 	 */
985 	inflight = intel_context_inflight(&ve->context);
986 	if (inflight && inflight != engine)
987 		return false;
988 
989 	return true;
990 }
991 
992 static struct virtual_engine *
993 first_virtual_engine(struct intel_engine_cs *engine)
994 {
995 	struct intel_engine_execlists *el = &engine->execlists;
996 	struct rb_node *rb = rb_first_cached(&el->virtual);
997 
998 	while (rb) {
999 		struct virtual_engine *ve =
1000 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1001 		struct i915_request *rq = READ_ONCE(ve->request);
1002 
1003 		/* lazily cleanup after another engine handled rq */
1004 		if (!rq || !virtual_matches(ve, rq, engine)) {
1005 			rb_erase_cached(rb, &el->virtual);
1006 			RB_CLEAR_NODE(rb);
1007 			rb = rb_first_cached(&el->virtual);
1008 			continue;
1009 		}
1010 
1011 		return ve;
1012 	}
1013 
1014 	return NULL;
1015 }
1016 
1017 static void virtual_xfer_context(struct virtual_engine *ve,
1018 				 struct intel_engine_cs *engine)
1019 {
1020 	unsigned int n;
1021 
1022 	if (likely(engine == ve->siblings[0]))
1023 		return;
1024 
1025 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1026 	if (!intel_engine_has_relative_mmio(engine))
1027 		lrc_update_offsets(&ve->context, engine);
1028 
1029 	/*
1030 	 * Move the bound engine to the top of the list for
1031 	 * future execution. We then kick this tasklet first
1032 	 * before checking others, so that we preferentially
1033 	 * reuse this set of bound registers.
1034 	 */
1035 	for (n = 1; n < ve->num_siblings; n++) {
1036 		if (ve->siblings[n] == engine) {
1037 			swap(ve->siblings[n], ve->siblings[0]);
1038 			break;
1039 		}
1040 	}
1041 }
1042 
1043 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1044 {
1045 	LIST_HEAD(list);
1046 
1047 	/*
1048 	 * We want to move the interrupted request to the back of
1049 	 * the round-robin list (i.e. its priority level), but
1050 	 * in doing so, we must then move all requests that were in
1051 	 * flight and were waiting for the interrupted request to
1052 	 * be run after it again.
1053 	 */
1054 	do {
1055 		struct i915_dependency *p;
1056 
1057 		GEM_BUG_ON(i915_request_is_active(rq));
1058 		list_move_tail(&rq->sched.link, pl);
1059 
1060 		for_each_waiter(p, rq) {
1061 			struct i915_request *w =
1062 				container_of(p->waiter, typeof(*w), sched);
1063 
1064 			if (p->flags & I915_DEPENDENCY_WEAK)
1065 				continue;
1066 
1067 			/* Leave semaphores spinning on the other engines */
1068 			if (w->engine != rq->engine)
1069 				continue;
1070 
1071 			/* No waiter should start before its signaler */
1072 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1073 				   __i915_request_has_started(w) &&
1074 				   !__i915_request_is_complete(rq));
1075 
1076 			if (!i915_request_is_ready(w))
1077 				continue;
1078 
1079 			if (rq_prio(w) < rq_prio(rq))
1080 				continue;
1081 
1082 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1083 			GEM_BUG_ON(i915_request_is_active(w));
1084 			list_move_tail(&w->sched.link, &list);
1085 		}
1086 
1087 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1088 	} while (rq);
1089 }
1090 
1091 static void defer_active(struct intel_engine_cs *engine)
1092 {
1093 	struct i915_request *rq;
1094 
1095 	rq = __unwind_incomplete_requests(engine);
1096 	if (!rq)
1097 		return;
1098 
1099 	defer_request(rq, i915_sched_lookup_priolist(engine, rq_prio(rq)));
1100 }
1101 
1102 static bool
1103 timeslice_yield(const struct intel_engine_execlists *el,
1104 		const struct i915_request *rq)
1105 {
1106 	/*
1107 	 * Once bitten, forever smitten!
1108 	 *
1109 	 * If the active context ever busy-waited on a semaphore,
1110 	 * it will be treated as a hog until the end of its timeslice (i.e.
1111 	 * until it is scheduled out and replaced by a new submission,
1112 	 * possibly even its own lite-restore). The HW only sends an interrupt
1113 	 * on the first miss, and we do know if that semaphore has been
1114 	 * signaled, or even if it is now stuck on another semaphore. Play
1115 	 * safe, yield if it might be stuck -- it will be given a fresh
1116 	 * timeslice in the near future.
1117 	 */
1118 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1119 }
1120 
1121 static bool needs_timeslice(const struct intel_engine_cs *engine,
1122 			    const struct i915_request *rq)
1123 {
1124 	if (!intel_engine_has_timeslices(engine))
1125 		return false;
1126 
1127 	/* If not currently active, or about to switch, wait for next event */
1128 	if (!rq || __i915_request_is_complete(rq))
1129 		return false;
1130 
1131 	/* We do not need to start the timeslice until after the ACK */
1132 	if (READ_ONCE(engine->execlists.pending[0]))
1133 		return false;
1134 
1135 	/* If ELSP[1] is occupied, always check to see if worth slicing */
1136 	if (!list_is_last_rcu(&rq->sched.link, &engine->active.requests)) {
1137 		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1138 		return true;
1139 	}
1140 
1141 	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1142 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) {
1143 		ENGINE_TRACE(engine, "timeslice required for queue\n");
1144 		return true;
1145 	}
1146 
1147 	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1148 		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1149 		return true;
1150 	}
1151 
1152 	return false;
1153 }
1154 
1155 static bool
1156 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1157 {
1158 	const struct intel_engine_execlists *el = &engine->execlists;
1159 
1160 	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1161 		return false;
1162 
1163 	if (!needs_timeslice(engine, rq))
1164 		return false;
1165 
1166 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1167 }
1168 
1169 static unsigned long timeslice(const struct intel_engine_cs *engine)
1170 {
1171 	return READ_ONCE(engine->props.timeslice_duration_ms);
1172 }
1173 
1174 static void start_timeslice(struct intel_engine_cs *engine)
1175 {
1176 	struct intel_engine_execlists *el = &engine->execlists;
1177 	unsigned long duration;
1178 
1179 	/* Disable the timer if there is nothing to switch to */
1180 	duration = 0;
1181 	if (needs_timeslice(engine, *el->active)) {
1182 		/* Avoid continually prolonging an active timeslice */
1183 		if (timer_active(&el->timer)) {
1184 			/*
1185 			 * If we just submitted a new ELSP after an old
1186 			 * context, that context may have already consumed
1187 			 * its timeslice, so recheck.
1188 			 */
1189 			if (!timer_pending(&el->timer))
1190 				tasklet_hi_schedule(&el->tasklet);
1191 			return;
1192 		}
1193 
1194 		duration = timeslice(engine);
1195 	}
1196 
1197 	set_timer_ms(&el->timer, duration);
1198 }
1199 
1200 static void record_preemption(struct intel_engine_execlists *execlists)
1201 {
1202 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1203 }
1204 
1205 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1206 					    const struct i915_request *rq)
1207 {
1208 	if (!rq)
1209 		return 0;
1210 
1211 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1212 	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1213 		return 1;
1214 
1215 	return READ_ONCE(engine->props.preempt_timeout_ms);
1216 }
1217 
1218 static void set_preempt_timeout(struct intel_engine_cs *engine,
1219 				const struct i915_request *rq)
1220 {
1221 	if (!intel_engine_has_preempt_reset(engine))
1222 		return;
1223 
1224 	set_timer_ms(&engine->execlists.preempt,
1225 		     active_preempt_timeout(engine, rq));
1226 }
1227 
1228 static bool completed(const struct i915_request *rq)
1229 {
1230 	if (i915_request_has_sentinel(rq))
1231 		return false;
1232 
1233 	return __i915_request_is_complete(rq);
1234 }
1235 
1236 static void execlists_dequeue(struct intel_engine_cs *engine)
1237 {
1238 	struct intel_engine_execlists * const execlists = &engine->execlists;
1239 	struct i915_request **port = execlists->pending;
1240 	struct i915_request ** const last_port = port + execlists->port_mask;
1241 	struct i915_request *last, * const *active;
1242 	struct virtual_engine *ve;
1243 	struct rb_node *rb;
1244 	bool submit = false;
1245 
1246 	/*
1247 	 * Hardware submission is through 2 ports. Conceptually each port
1248 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1249 	 * static for a context, and unique to each, so we only execute
1250 	 * requests belonging to a single context from each ring. RING_HEAD
1251 	 * is maintained by the CS in the context image, it marks the place
1252 	 * where it got up to last time, and through RING_TAIL we tell the CS
1253 	 * where we want to execute up to this time.
1254 	 *
1255 	 * In this list the requests are in order of execution. Consecutive
1256 	 * requests from the same context are adjacent in the ringbuffer. We
1257 	 * can combine these requests into a single RING_TAIL update:
1258 	 *
1259 	 *              RING_HEAD...req1...req2
1260 	 *                                    ^- RING_TAIL
1261 	 * since to execute req2 the CS must first execute req1.
1262 	 *
1263 	 * Our goal then is to point each port to the end of a consecutive
1264 	 * sequence of requests as being the most optimal (fewest wake ups
1265 	 * and context switches) submission.
1266 	 */
1267 
1268 	spin_lock(&engine->active.lock);
1269 
1270 	/*
1271 	 * If the queue is higher priority than the last
1272 	 * request in the currently active context, submit afresh.
1273 	 * We will resubmit again afterwards in case we need to split
1274 	 * the active context to interject the preemption request,
1275 	 * i.e. we will retrigger preemption following the ack in case
1276 	 * of trouble.
1277 	 *
1278 	 */
1279 	active = execlists->active;
1280 	while ((last = *active) && completed(last))
1281 		active++;
1282 
1283 	if (last) {
1284 		if (need_preempt(engine, last)) {
1285 			ENGINE_TRACE(engine,
1286 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1287 				     last->fence.context,
1288 				     last->fence.seqno,
1289 				     last->sched.attr.priority,
1290 				     execlists->queue_priority_hint);
1291 			record_preemption(execlists);
1292 
1293 			/*
1294 			 * Don't let the RING_HEAD advance past the breadcrumb
1295 			 * as we unwind (and until we resubmit) so that we do
1296 			 * not accidentally tell it to go backwards.
1297 			 */
1298 			ring_set_paused(engine, 1);
1299 
1300 			/*
1301 			 * Note that we have not stopped the GPU at this point,
1302 			 * so we are unwinding the incomplete requests as they
1303 			 * remain inflight and so by the time we do complete
1304 			 * the preemption, some of the unwound requests may
1305 			 * complete!
1306 			 */
1307 			__unwind_incomplete_requests(engine);
1308 
1309 			last = NULL;
1310 		} else if (timeslice_expired(engine, last)) {
1311 			ENGINE_TRACE(engine,
1312 				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1313 				     yesno(timer_expired(&execlists->timer)),
1314 				     last->fence.context, last->fence.seqno,
1315 				     rq_prio(last),
1316 				     execlists->queue_priority_hint,
1317 				     yesno(timeslice_yield(execlists, last)));
1318 
1319 			/*
1320 			 * Consume this timeslice; ensure we start a new one.
1321 			 *
1322 			 * The timeslice expired, and we will unwind the
1323 			 * running contexts and recompute the next ELSP.
1324 			 * If that submit will be the same pair of contexts
1325 			 * (due to dependency ordering), we will skip the
1326 			 * submission. If we don't cancel the timer now,
1327 			 * we will see that the timer has expired and
1328 			 * reschedule the tasklet; continually until the
1329 			 * next context switch or other preeemption event.
1330 			 *
1331 			 * Since we have decided to reschedule based on
1332 			 * consumption of this timeslice, if we submit the
1333 			 * same context again, grant it a full timeslice.
1334 			 */
1335 			cancel_timer(&execlists->timer);
1336 			ring_set_paused(engine, 1);
1337 			defer_active(engine);
1338 
1339 			/*
1340 			 * Unlike for preemption, if we rewind and continue
1341 			 * executing the same context as previously active,
1342 			 * the order of execution will remain the same and
1343 			 * the tail will only advance. We do not need to
1344 			 * force a full context restore, as a lite-restore
1345 			 * is sufficient to resample the monotonic TAIL.
1346 			 *
1347 			 * If we switch to any other context, similarly we
1348 			 * will not rewind TAIL of current context, and
1349 			 * normal save/restore will preserve state and allow
1350 			 * us to later continue executing the same request.
1351 			 */
1352 			last = NULL;
1353 		} else {
1354 			/*
1355 			 * Otherwise if we already have a request pending
1356 			 * for execution after the current one, we can
1357 			 * just wait until the next CS event before
1358 			 * queuing more. In either case we will force a
1359 			 * lite-restore preemption event, but if we wait
1360 			 * we hopefully coalesce several updates into a single
1361 			 * submission.
1362 			 */
1363 			if (active[1]) {
1364 				/*
1365 				 * Even if ELSP[1] is occupied and not worthy
1366 				 * of timeslices, our queue might be.
1367 				 */
1368 				spin_unlock(&engine->active.lock);
1369 				return;
1370 			}
1371 		}
1372 	}
1373 
1374 	/* XXX virtual is always taking precedence */
1375 	while ((ve = first_virtual_engine(engine))) {
1376 		struct i915_request *rq;
1377 
1378 		spin_lock(&ve->base.active.lock);
1379 
1380 		rq = ve->request;
1381 		if (unlikely(!virtual_matches(ve, rq, engine)))
1382 			goto unlock; /* lost the race to a sibling */
1383 
1384 		GEM_BUG_ON(rq->engine != &ve->base);
1385 		GEM_BUG_ON(rq->context != &ve->context);
1386 
1387 		if (unlikely(rq_prio(rq) < queue_prio(execlists))) {
1388 			spin_unlock(&ve->base.active.lock);
1389 			break;
1390 		}
1391 
1392 		if (last && !can_merge_rq(last, rq)) {
1393 			spin_unlock(&ve->base.active.lock);
1394 			spin_unlock(&engine->active.lock);
1395 			return; /* leave this for another sibling */
1396 		}
1397 
1398 		ENGINE_TRACE(engine,
1399 			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1400 			     rq->fence.context,
1401 			     rq->fence.seqno,
1402 			     __i915_request_is_complete(rq) ? "!" :
1403 			     __i915_request_has_started(rq) ? "*" :
1404 			     "",
1405 			     yesno(engine != ve->siblings[0]));
1406 
1407 		WRITE_ONCE(ve->request, NULL);
1408 		WRITE_ONCE(ve->base.execlists.queue_priority_hint, INT_MIN);
1409 
1410 		rb = &ve->nodes[engine->id].rb;
1411 		rb_erase_cached(rb, &execlists->virtual);
1412 		RB_CLEAR_NODE(rb);
1413 
1414 		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1415 		WRITE_ONCE(rq->engine, engine);
1416 
1417 		if (__i915_request_submit(rq)) {
1418 			/*
1419 			 * Only after we confirm that we will submit
1420 			 * this request (i.e. it has not already
1421 			 * completed), do we want to update the context.
1422 			 *
1423 			 * This serves two purposes. It avoids
1424 			 * unnecessary work if we are resubmitting an
1425 			 * already completed request after timeslicing.
1426 			 * But more importantly, it prevents us altering
1427 			 * ve->siblings[] on an idle context, where
1428 			 * we may be using ve->siblings[] in
1429 			 * virtual_context_enter / virtual_context_exit.
1430 			 */
1431 			virtual_xfer_context(ve, engine);
1432 			GEM_BUG_ON(ve->siblings[0] != engine);
1433 
1434 			submit = true;
1435 			last = rq;
1436 		}
1437 
1438 		i915_request_put(rq);
1439 unlock:
1440 		spin_unlock(&ve->base.active.lock);
1441 
1442 		/*
1443 		 * Hmm, we have a bunch of virtual engine requests,
1444 		 * but the first one was already completed (thanks
1445 		 * preempt-to-busy!). Keep looking at the veng queue
1446 		 * until we have no more relevant requests (i.e.
1447 		 * the normal submit queue has higher priority).
1448 		 */
1449 		if (submit)
1450 			break;
1451 	}
1452 
1453 	while ((rb = rb_first_cached(&execlists->queue))) {
1454 		struct i915_priolist *p = to_priolist(rb);
1455 		struct i915_request *rq, *rn;
1456 
1457 		priolist_for_each_request_consume(rq, rn, p) {
1458 			bool merge = true;
1459 
1460 			/*
1461 			 * Can we combine this request with the current port?
1462 			 * It has to be the same context/ringbuffer and not
1463 			 * have any exceptions (e.g. GVT saying never to
1464 			 * combine contexts).
1465 			 *
1466 			 * If we can combine the requests, we can execute both
1467 			 * by updating the RING_TAIL to point to the end of the
1468 			 * second request, and so we never need to tell the
1469 			 * hardware about the first.
1470 			 */
1471 			if (last && !can_merge_rq(last, rq)) {
1472 				/*
1473 				 * If we are on the second port and cannot
1474 				 * combine this request with the last, then we
1475 				 * are done.
1476 				 */
1477 				if (port == last_port)
1478 					goto done;
1479 
1480 				/*
1481 				 * We must not populate both ELSP[] with the
1482 				 * same LRCA, i.e. we must submit 2 different
1483 				 * contexts if we submit 2 ELSP.
1484 				 */
1485 				if (last->context == rq->context)
1486 					goto done;
1487 
1488 				if (i915_request_has_sentinel(last))
1489 					goto done;
1490 
1491 				/*
1492 				 * We avoid submitting virtual requests into
1493 				 * the secondary ports so that we can migrate
1494 				 * the request immediately to another engine
1495 				 * rather than wait for the primary request.
1496 				 */
1497 				if (rq->execution_mask != engine->mask)
1498 					goto done;
1499 
1500 				/*
1501 				 * If GVT overrides us we only ever submit
1502 				 * port[0], leaving port[1] empty. Note that we
1503 				 * also have to be careful that we don't queue
1504 				 * the same context (even though a different
1505 				 * request) to the second port.
1506 				 */
1507 				if (ctx_single_port_submission(last->context) ||
1508 				    ctx_single_port_submission(rq->context))
1509 					goto done;
1510 
1511 				merge = false;
1512 			}
1513 
1514 			if (__i915_request_submit(rq)) {
1515 				if (!merge) {
1516 					*port++ = i915_request_get(last);
1517 					last = NULL;
1518 				}
1519 
1520 				GEM_BUG_ON(last &&
1521 					   !can_merge_ctx(last->context,
1522 							  rq->context));
1523 				GEM_BUG_ON(last &&
1524 					   i915_seqno_passed(last->fence.seqno,
1525 							     rq->fence.seqno));
1526 
1527 				submit = true;
1528 				last = rq;
1529 			}
1530 		}
1531 
1532 		rb_erase_cached(&p->node, &execlists->queue);
1533 		i915_priolist_free(p);
1534 	}
1535 done:
1536 	*port++ = i915_request_get(last);
1537 
1538 	/*
1539 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1540 	 *
1541 	 * We choose the priority hint such that if we add a request of greater
1542 	 * priority than this, we kick the submission tasklet to decide on
1543 	 * the right order of submitting the requests to hardware. We must
1544 	 * also be prepared to reorder requests as they are in-flight on the
1545 	 * HW. We derive the priority hint then as the first "hole" in
1546 	 * the HW submission ports and if there are no available slots,
1547 	 * the priority of the lowest executing request, i.e. last.
1548 	 *
1549 	 * When we do receive a higher priority request ready to run from the
1550 	 * user, see queue_request(), the priority hint is bumped to that
1551 	 * request triggering preemption on the next dequeue (or subsequent
1552 	 * interrupt for secondary ports).
1553 	 */
1554 	execlists->queue_priority_hint = queue_prio(execlists);
1555 	spin_unlock(&engine->active.lock);
1556 
1557 	/*
1558 	 * We can skip poking the HW if we ended up with exactly the same set
1559 	 * of requests as currently running, e.g. trying to timeslice a pair
1560 	 * of ordered contexts.
1561 	 */
1562 	if (submit &&
1563 	    memcmp(active,
1564 		   execlists->pending,
1565 		   (port - execlists->pending) * sizeof(*port))) {
1566 		*port = NULL;
1567 		while (port-- != execlists->pending)
1568 			execlists_schedule_in(*port, port - execlists->pending);
1569 
1570 		WRITE_ONCE(execlists->yield, -1);
1571 		set_preempt_timeout(engine, *active);
1572 		execlists_submit_ports(engine);
1573 	} else {
1574 		ring_set_paused(engine, 0);
1575 		while (port-- != execlists->pending)
1576 			i915_request_put(*port);
1577 		*execlists->pending = NULL;
1578 	}
1579 }
1580 
1581 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1582 {
1583 	local_irq_disable(); /* Suspend interrupts across request submission */
1584 	execlists_dequeue(engine);
1585 	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1586 }
1587 
1588 static void clear_ports(struct i915_request **ports, int count)
1589 {
1590 	memset_p((void **)ports, NULL, count);
1591 }
1592 
1593 static void
1594 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1595 {
1596 	/* A memcpy_p() would be very useful here! */
1597 	while (count--)
1598 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1599 }
1600 
1601 static struct i915_request **
1602 cancel_port_requests(struct intel_engine_execlists * const execlists,
1603 		     struct i915_request **inactive)
1604 {
1605 	struct i915_request * const *port;
1606 
1607 	for (port = execlists->pending; *port; port++)
1608 		*inactive++ = *port;
1609 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1610 
1611 	/* Mark the end of active before we overwrite *active */
1612 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1613 		*inactive++ = *port;
1614 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1615 
1616 	smp_wmb(); /* complete the seqlock for execlists_active() */
1617 	WRITE_ONCE(execlists->active, execlists->inflight);
1618 
1619 	/* Having cancelled all outstanding process_csb(), stop their timers */
1620 	GEM_BUG_ON(execlists->pending[0]);
1621 	cancel_timer(&execlists->timer);
1622 	cancel_timer(&execlists->preempt);
1623 
1624 	return inactive;
1625 }
1626 
1627 static void invalidate_csb_entries(const u64 *first, const u64 *last)
1628 {
1629 	clflush((void *)first);
1630 	clflush((void *)last);
1631 }
1632 
1633 /*
1634  * Starting with Gen12, the status has a new format:
1635  *
1636  *     bit  0:     switched to new queue
1637  *     bit  1:     reserved
1638  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1639  *                 switch detail is set to "wait on semaphore"
1640  *     bits 3-5:   engine class
1641  *     bits 6-11:  engine instance
1642  *     bits 12-14: reserved
1643  *     bits 15-25: sw context id of the lrc the GT switched to
1644  *     bits 26-31: sw counter of the lrc the GT switched to
1645  *     bits 32-35: context switch detail
1646  *                  - 0: ctx complete
1647  *                  - 1: wait on sync flip
1648  *                  - 2: wait on vblank
1649  *                  - 3: wait on scanline
1650  *                  - 4: wait on semaphore
1651  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1652  *                       WAIT_FOR_EVENT)
1653  *     bit  36:    reserved
1654  *     bits 37-43: wait detail (for switch detail 1 to 4)
1655  *     bits 44-46: reserved
1656  *     bits 47-57: sw context id of the lrc the GT switched away from
1657  *     bits 58-63: sw counter of the lrc the GT switched away from
1658  */
1659 static bool gen12_csb_parse(const u64 csb)
1660 {
1661 	bool ctx_away_valid = GEN12_CSB_CTX_VALID(upper_32_bits(csb));
1662 	bool new_queue =
1663 		lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE;
1664 
1665 	/*
1666 	 * The context switch detail is not guaranteed to be 5 when a preemption
1667 	 * occurs, so we can't just check for that. The check below works for
1668 	 * all the cases we care about, including preemptions of WAIT
1669 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1670 	 * would require some extra handling, but we don't support that.
1671 	 */
1672 	if (!ctx_away_valid || new_queue) {
1673 		GEM_BUG_ON(!GEN12_CSB_CTX_VALID(lower_32_bits(csb)));
1674 		return true;
1675 	}
1676 
1677 	/*
1678 	 * switch detail = 5 is covered by the case above and we do not expect a
1679 	 * context switch on an unsuccessful wait instruction since we always
1680 	 * use polling mode.
1681 	 */
1682 	GEM_BUG_ON(GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1683 	return false;
1684 }
1685 
1686 static bool gen8_csb_parse(const u64 csb)
1687 {
1688 	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1689 }
1690 
1691 static noinline u64
1692 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1693 {
1694 	u64 entry;
1695 
1696 	/*
1697 	 * Reading from the HWSP has one particular advantage: we can detect
1698 	 * a stale entry. Since the write into HWSP is broken, we have no reason
1699 	 * to trust the HW at all, the mmio entry may equally be unordered, so
1700 	 * we prefer the path that is self-checking and as a last resort,
1701 	 * return the mmio value.
1702 	 *
1703 	 * tgl,dg1:HSDES#22011327657
1704 	 */
1705 	preempt_disable();
1706 	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1707 		int idx = csb - engine->execlists.csb_status;
1708 		int status;
1709 
1710 		status = GEN8_EXECLISTS_STATUS_BUF;
1711 		if (idx >= 6) {
1712 			status = GEN11_EXECLISTS_STATUS_BUF2;
1713 			idx -= 6;
1714 		}
1715 		status += sizeof(u64) * idx;
1716 
1717 		entry = intel_uncore_read64(engine->uncore,
1718 					    _MMIO(engine->mmio_base + status));
1719 	}
1720 	preempt_enable();
1721 
1722 	return entry;
1723 }
1724 
1725 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1726 {
1727 	u64 entry = READ_ONCE(*csb);
1728 
1729 	/*
1730 	 * Unfortunately, the GPU does not always serialise its write
1731 	 * of the CSB entries before its write of the CSB pointer, at least
1732 	 * from the perspective of the CPU, using what is known as a Global
1733 	 * Observation Point. We may read a new CSB tail pointer, but then
1734 	 * read the stale CSB entries, causing us to misinterpret the
1735 	 * context-switch events, and eventually declare the GPU hung.
1736 	 *
1737 	 * icl:HSDES#1806554093
1738 	 * tgl:HSDES#22011248461
1739 	 */
1740 	if (unlikely(entry == -1))
1741 		entry = wa_csb_read(engine, csb);
1742 
1743 	/* Consume this entry so that we can spot its future reuse. */
1744 	WRITE_ONCE(*csb, -1);
1745 
1746 	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1747 	return entry;
1748 }
1749 
1750 static void new_timeslice(struct intel_engine_execlists *el)
1751 {
1752 	/* By cancelling, we will start afresh in start_timeslice() */
1753 	cancel_timer(&el->timer);
1754 }
1755 
1756 static struct i915_request **
1757 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1758 {
1759 	struct intel_engine_execlists * const execlists = &engine->execlists;
1760 	u64 * const buf = execlists->csb_status;
1761 	const u8 num_entries = execlists->csb_size;
1762 	struct i915_request **prev;
1763 	u8 head, tail;
1764 
1765 	/*
1766 	 * As we modify our execlists state tracking we require exclusive
1767 	 * access. Either we are inside the tasklet, or the tasklet is disabled
1768 	 * and we assume that is only inside the reset paths and so serialised.
1769 	 */
1770 	GEM_BUG_ON(!tasklet_is_locked(&execlists->tasklet) &&
1771 		   !reset_in_progress(execlists));
1772 
1773 	/*
1774 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1775 	 * When reading from the csb_write mmio register, we have to be
1776 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1777 	 * the low 4bits. As it happens we know the next 4bits are always
1778 	 * zero and so we can simply masked off the low u8 of the register
1779 	 * and treat it identically to reading from the HWSP (without having
1780 	 * to use explicit shifting and masking, and probably bifurcating
1781 	 * the code to handle the legacy mmio read).
1782 	 */
1783 	head = execlists->csb_head;
1784 	tail = READ_ONCE(*execlists->csb_write);
1785 	if (unlikely(head == tail))
1786 		return inactive;
1787 
1788 	/*
1789 	 * We will consume all events from HW, or at least pretend to.
1790 	 *
1791 	 * The sequence of events from the HW is deterministic, and derived
1792 	 * from our writes to the ELSP, with a smidgen of variability for
1793 	 * the arrival of the asynchronous requests wrt to the inflight
1794 	 * execution. If the HW sends an event that does not correspond with
1795 	 * the one we are expecting, we have to abandon all hope as we lose
1796 	 * all tracking of what the engine is actually executing. We will
1797 	 * only detect we are out of sequence with the HW when we get an
1798 	 * 'impossible' event because we have already drained our own
1799 	 * preemption/promotion queue. If this occurs, we know that we likely
1800 	 * lost track of execution earlier and must unwind and restart, the
1801 	 * simplest way is by stop processing the event queue and force the
1802 	 * engine to reset.
1803 	 */
1804 	execlists->csb_head = tail;
1805 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1806 
1807 	/*
1808 	 * Hopefully paired with a wmb() in HW!
1809 	 *
1810 	 * We must complete the read of the write pointer before any reads
1811 	 * from the CSB, so that we do not see stale values. Without an rmb
1812 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1813 	 * we perform the READ_ONCE(*csb_write).
1814 	 */
1815 	rmb();
1816 
1817 	/* Remember who was last running under the timer */
1818 	prev = inactive;
1819 	*prev = NULL;
1820 
1821 	do {
1822 		bool promote;
1823 		u64 csb;
1824 
1825 		if (++head == num_entries)
1826 			head = 0;
1827 
1828 		/*
1829 		 * We are flying near dragons again.
1830 		 *
1831 		 * We hold a reference to the request in execlist_port[]
1832 		 * but no more than that. We are operating in softirq
1833 		 * context and so cannot hold any mutex or sleep. That
1834 		 * prevents us stopping the requests we are processing
1835 		 * in port[] from being retired simultaneously (the
1836 		 * breadcrumb will be complete before we see the
1837 		 * context-switch). As we only hold the reference to the
1838 		 * request, any pointer chasing underneath the request
1839 		 * is subject to a potential use-after-free. Thus we
1840 		 * store all of the bookkeeping within port[] as
1841 		 * required, and avoid using unguarded pointers beneath
1842 		 * request itself. The same applies to the atomic
1843 		 * status notifier.
1844 		 */
1845 
1846 		csb = csb_read(engine, buf + head);
1847 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1848 			     head, upper_32_bits(csb), lower_32_bits(csb));
1849 
1850 		if (GRAPHICS_VER(engine->i915) >= 12)
1851 			promote = gen12_csb_parse(csb);
1852 		else
1853 			promote = gen8_csb_parse(csb);
1854 		if (promote) {
1855 			struct i915_request * const *old = execlists->active;
1856 
1857 			if (GEM_WARN_ON(!*execlists->pending)) {
1858 				execlists->error_interrupt |= ERROR_CSB;
1859 				break;
1860 			}
1861 
1862 			ring_set_paused(engine, 0);
1863 
1864 			/* Point active to the new ELSP; prevent overwriting */
1865 			WRITE_ONCE(execlists->active, execlists->pending);
1866 			smp_wmb(); /* notify execlists_active() */
1867 
1868 			/* cancel old inflight, prepare for switch */
1869 			trace_ports(execlists, "preempted", old);
1870 			while (*old)
1871 				*inactive++ = *old++;
1872 
1873 			/* switch pending to inflight */
1874 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1875 			copy_ports(execlists->inflight,
1876 				   execlists->pending,
1877 				   execlists_num_ports(execlists));
1878 			smp_wmb(); /* complete the seqlock */
1879 			WRITE_ONCE(execlists->active, execlists->inflight);
1880 
1881 			/* XXX Magic delay for tgl */
1882 			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1883 
1884 			WRITE_ONCE(execlists->pending[0], NULL);
1885 		} else {
1886 			if (GEM_WARN_ON(!*execlists->active)) {
1887 				execlists->error_interrupt |= ERROR_CSB;
1888 				break;
1889 			}
1890 
1891 			/* port0 completed, advanced to port1 */
1892 			trace_ports(execlists, "completed", execlists->active);
1893 
1894 			/*
1895 			 * We rely on the hardware being strongly
1896 			 * ordered, that the breadcrumb write is
1897 			 * coherent (visible from the CPU) before the
1898 			 * user interrupt is processed. One might assume
1899 			 * that the breadcrumb write being before the
1900 			 * user interrupt and the CS event for the context
1901 			 * switch would therefore be before the CS event
1902 			 * itself...
1903 			 */
1904 			if (GEM_SHOW_DEBUG() &&
1905 			    !__i915_request_is_complete(*execlists->active)) {
1906 				struct i915_request *rq = *execlists->active;
1907 				const u32 *regs __maybe_unused =
1908 					rq->context->lrc_reg_state;
1909 
1910 				ENGINE_TRACE(engine,
1911 					     "context completed before request!\n");
1912 				ENGINE_TRACE(engine,
1913 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1914 					     ENGINE_READ(engine, RING_START),
1915 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1916 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1917 					     ENGINE_READ(engine, RING_CTL),
1918 					     ENGINE_READ(engine, RING_MI_MODE));
1919 				ENGINE_TRACE(engine,
1920 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1921 					     i915_ggtt_offset(rq->ring->vma),
1922 					     rq->head, rq->tail,
1923 					     rq->fence.context,
1924 					     lower_32_bits(rq->fence.seqno),
1925 					     hwsp_seqno(rq));
1926 				ENGINE_TRACE(engine,
1927 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1928 					     regs[CTX_RING_START],
1929 					     regs[CTX_RING_HEAD],
1930 					     regs[CTX_RING_TAIL]);
1931 			}
1932 
1933 			*inactive++ = *execlists->active++;
1934 
1935 			GEM_BUG_ON(execlists->active - execlists->inflight >
1936 				   execlists_num_ports(execlists));
1937 		}
1938 	} while (head != tail);
1939 
1940 	/*
1941 	 * Gen11 has proven to fail wrt global observation point between
1942 	 * entry and tail update, failing on the ordering and thus
1943 	 * we see an old entry in the context status buffer.
1944 	 *
1945 	 * Forcibly evict out entries for the next gpu csb update,
1946 	 * to increase the odds that we get a fresh entries with non
1947 	 * working hardware. The cost for doing so comes out mostly with
1948 	 * the wash as hardware, working or not, will need to do the
1949 	 * invalidation before.
1950 	 */
1951 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1952 
1953 	/*
1954 	 * We assume that any event reflects a change in context flow
1955 	 * and merits a fresh timeslice. We reinstall the timer after
1956 	 * inspecting the queue to see if we need to resumbit.
1957 	 */
1958 	if (*prev != *execlists->active) /* elide lite-restores */
1959 		new_timeslice(execlists);
1960 
1961 	return inactive;
1962 }
1963 
1964 static void post_process_csb(struct i915_request **port,
1965 			     struct i915_request **last)
1966 {
1967 	while (port != last)
1968 		execlists_schedule_out(*port++);
1969 }
1970 
1971 static void __execlists_hold(struct i915_request *rq)
1972 {
1973 	LIST_HEAD(list);
1974 
1975 	do {
1976 		struct i915_dependency *p;
1977 
1978 		if (i915_request_is_active(rq))
1979 			__i915_request_unsubmit(rq);
1980 
1981 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1982 		list_move_tail(&rq->sched.link, &rq->engine->active.hold);
1983 		i915_request_set_hold(rq);
1984 		RQ_TRACE(rq, "on hold\n");
1985 
1986 		for_each_waiter(p, rq) {
1987 			struct i915_request *w =
1988 				container_of(p->waiter, typeof(*w), sched);
1989 
1990 			if (p->flags & I915_DEPENDENCY_WEAK)
1991 				continue;
1992 
1993 			/* Leave semaphores spinning on the other engines */
1994 			if (w->engine != rq->engine)
1995 				continue;
1996 
1997 			if (!i915_request_is_ready(w))
1998 				continue;
1999 
2000 			if (__i915_request_is_complete(w))
2001 				continue;
2002 
2003 			if (i915_request_on_hold(w))
2004 				continue;
2005 
2006 			list_move_tail(&w->sched.link, &list);
2007 		}
2008 
2009 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2010 	} while (rq);
2011 }
2012 
2013 static bool execlists_hold(struct intel_engine_cs *engine,
2014 			   struct i915_request *rq)
2015 {
2016 	if (i915_request_on_hold(rq))
2017 		return false;
2018 
2019 	spin_lock_irq(&engine->active.lock);
2020 
2021 	if (__i915_request_is_complete(rq)) { /* too late! */
2022 		rq = NULL;
2023 		goto unlock;
2024 	}
2025 
2026 	/*
2027 	 * Transfer this request onto the hold queue to prevent it
2028 	 * being resumbitted to HW (and potentially completed) before we have
2029 	 * released it. Since we may have already submitted following
2030 	 * requests, we need to remove those as well.
2031 	 */
2032 	GEM_BUG_ON(i915_request_on_hold(rq));
2033 	GEM_BUG_ON(rq->engine != engine);
2034 	__execlists_hold(rq);
2035 	GEM_BUG_ON(list_empty(&engine->active.hold));
2036 
2037 unlock:
2038 	spin_unlock_irq(&engine->active.lock);
2039 	return rq;
2040 }
2041 
2042 static bool hold_request(const struct i915_request *rq)
2043 {
2044 	struct i915_dependency *p;
2045 	bool result = false;
2046 
2047 	/*
2048 	 * If one of our ancestors is on hold, we must also be on hold,
2049 	 * otherwise we will bypass it and execute before it.
2050 	 */
2051 	rcu_read_lock();
2052 	for_each_signaler(p, rq) {
2053 		const struct i915_request *s =
2054 			container_of(p->signaler, typeof(*s), sched);
2055 
2056 		if (s->engine != rq->engine)
2057 			continue;
2058 
2059 		result = i915_request_on_hold(s);
2060 		if (result)
2061 			break;
2062 	}
2063 	rcu_read_unlock();
2064 
2065 	return result;
2066 }
2067 
2068 static void __execlists_unhold(struct i915_request *rq)
2069 {
2070 	LIST_HEAD(list);
2071 
2072 	do {
2073 		struct i915_dependency *p;
2074 
2075 		RQ_TRACE(rq, "hold release\n");
2076 
2077 		GEM_BUG_ON(!i915_request_on_hold(rq));
2078 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2079 
2080 		i915_request_clear_hold(rq);
2081 		list_move_tail(&rq->sched.link,
2082 			       i915_sched_lookup_priolist(rq->engine,
2083 							  rq_prio(rq)));
2084 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2085 
2086 		/* Also release any children on this engine that are ready */
2087 		for_each_waiter(p, rq) {
2088 			struct i915_request *w =
2089 				container_of(p->waiter, typeof(*w), sched);
2090 
2091 			if (p->flags & I915_DEPENDENCY_WEAK)
2092 				continue;
2093 
2094 			/* Propagate any change in error status */
2095 			if (rq->fence.error)
2096 				i915_request_set_error_once(w, rq->fence.error);
2097 
2098 			if (w->engine != rq->engine)
2099 				continue;
2100 
2101 			if (!i915_request_on_hold(w))
2102 				continue;
2103 
2104 			/* Check that no other parents are also on hold */
2105 			if (hold_request(w))
2106 				continue;
2107 
2108 			list_move_tail(&w->sched.link, &list);
2109 		}
2110 
2111 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2112 	} while (rq);
2113 }
2114 
2115 static void execlists_unhold(struct intel_engine_cs *engine,
2116 			     struct i915_request *rq)
2117 {
2118 	spin_lock_irq(&engine->active.lock);
2119 
2120 	/*
2121 	 * Move this request back to the priority queue, and all of its
2122 	 * children and grandchildren that were suspended along with it.
2123 	 */
2124 	__execlists_unhold(rq);
2125 
2126 	if (rq_prio(rq) > engine->execlists.queue_priority_hint) {
2127 		engine->execlists.queue_priority_hint = rq_prio(rq);
2128 		tasklet_hi_schedule(&engine->execlists.tasklet);
2129 	}
2130 
2131 	spin_unlock_irq(&engine->active.lock);
2132 }
2133 
2134 struct execlists_capture {
2135 	struct work_struct work;
2136 	struct i915_request *rq;
2137 	struct i915_gpu_coredump *error;
2138 };
2139 
2140 static void execlists_capture_work(struct work_struct *work)
2141 {
2142 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2143 	const gfp_t gfp = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN;
2144 	struct intel_engine_cs *engine = cap->rq->engine;
2145 	struct intel_gt_coredump *gt = cap->error->gt;
2146 	struct intel_engine_capture_vma *vma;
2147 
2148 	/* Compress all the objects attached to the request, slow! */
2149 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2150 	if (vma) {
2151 		struct i915_vma_compress *compress =
2152 			i915_vma_capture_prepare(gt);
2153 
2154 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2155 		i915_vma_capture_finish(gt, compress);
2156 	}
2157 
2158 	gt->simulated = gt->engine->simulated;
2159 	cap->error->simulated = gt->simulated;
2160 
2161 	/* Publish the error state, and announce it to the world */
2162 	i915_error_state_store(cap->error);
2163 	i915_gpu_coredump_put(cap->error);
2164 
2165 	/* Return this request and all that depend upon it for signaling */
2166 	execlists_unhold(engine, cap->rq);
2167 	i915_request_put(cap->rq);
2168 
2169 	kfree(cap);
2170 }
2171 
2172 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2173 {
2174 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2175 	struct execlists_capture *cap;
2176 
2177 	cap = kmalloc(sizeof(*cap), gfp);
2178 	if (!cap)
2179 		return NULL;
2180 
2181 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2182 	if (!cap->error)
2183 		goto err_cap;
2184 
2185 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2186 	if (!cap->error->gt)
2187 		goto err_gpu;
2188 
2189 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2190 	if (!cap->error->gt->engine)
2191 		goto err_gt;
2192 
2193 	cap->error->gt->engine->hung = true;
2194 
2195 	return cap;
2196 
2197 err_gt:
2198 	kfree(cap->error->gt);
2199 err_gpu:
2200 	kfree(cap->error);
2201 err_cap:
2202 	kfree(cap);
2203 	return NULL;
2204 }
2205 
2206 static struct i915_request *
2207 active_context(struct intel_engine_cs *engine, u32 ccid)
2208 {
2209 	const struct intel_engine_execlists * const el = &engine->execlists;
2210 	struct i915_request * const *port, *rq;
2211 
2212 	/*
2213 	 * Use the most recent result from process_csb(), but just in case
2214 	 * we trigger an error (via interrupt) before the first CS event has
2215 	 * been written, peek at the next submission.
2216 	 */
2217 
2218 	for (port = el->active; (rq = *port); port++) {
2219 		if (rq->context->lrc.ccid == ccid) {
2220 			ENGINE_TRACE(engine,
2221 				     "ccid:%x found at active:%zd\n",
2222 				     ccid, port - el->active);
2223 			return rq;
2224 		}
2225 	}
2226 
2227 	for (port = el->pending; (rq = *port); port++) {
2228 		if (rq->context->lrc.ccid == ccid) {
2229 			ENGINE_TRACE(engine,
2230 				     "ccid:%x found at pending:%zd\n",
2231 				     ccid, port - el->pending);
2232 			return rq;
2233 		}
2234 	}
2235 
2236 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2237 	return NULL;
2238 }
2239 
2240 static u32 active_ccid(struct intel_engine_cs *engine)
2241 {
2242 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2243 }
2244 
2245 static void execlists_capture(struct intel_engine_cs *engine)
2246 {
2247 	struct execlists_capture *cap;
2248 
2249 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2250 		return;
2251 
2252 	/*
2253 	 * We need to _quickly_ capture the engine state before we reset.
2254 	 * We are inside an atomic section (softirq) here and we are delaying
2255 	 * the forced preemption event.
2256 	 */
2257 	cap = capture_regs(engine);
2258 	if (!cap)
2259 		return;
2260 
2261 	spin_lock_irq(&engine->active.lock);
2262 	cap->rq = active_context(engine, active_ccid(engine));
2263 	if (cap->rq) {
2264 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2265 		cap->rq = i915_request_get_rcu(cap->rq);
2266 	}
2267 	spin_unlock_irq(&engine->active.lock);
2268 	if (!cap->rq)
2269 		goto err_free;
2270 
2271 	/*
2272 	 * Remove the request from the execlists queue, and take ownership
2273 	 * of the request. We pass it to our worker who will _slowly_ compress
2274 	 * all the pages the _user_ requested for debugging their batch, after
2275 	 * which we return it to the queue for signaling.
2276 	 *
2277 	 * By removing them from the execlists queue, we also remove the
2278 	 * requests from being processed by __unwind_incomplete_requests()
2279 	 * during the intel_engine_reset(), and so they will *not* be replayed
2280 	 * afterwards.
2281 	 *
2282 	 * Note that because we have not yet reset the engine at this point,
2283 	 * it is possible for the request that we have identified as being
2284 	 * guilty, did in fact complete and we will then hit an arbitration
2285 	 * point allowing the outstanding preemption to succeed. The likelihood
2286 	 * of that is very low (as capturing of the engine registers should be
2287 	 * fast enough to run inside an irq-off atomic section!), so we will
2288 	 * simply hold that request accountable for being non-preemptible
2289 	 * long enough to force the reset.
2290 	 */
2291 	if (!execlists_hold(engine, cap->rq))
2292 		goto err_rq;
2293 
2294 	INIT_WORK(&cap->work, execlists_capture_work);
2295 	schedule_work(&cap->work);
2296 	return;
2297 
2298 err_rq:
2299 	i915_request_put(cap->rq);
2300 err_free:
2301 	i915_gpu_coredump_put(cap->error);
2302 	kfree(cap);
2303 }
2304 
2305 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2306 {
2307 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2308 	unsigned long *lock = &engine->gt->reset.flags;
2309 
2310 	if (!intel_has_reset_engine(engine->gt))
2311 		return;
2312 
2313 	if (test_and_set_bit(bit, lock))
2314 		return;
2315 
2316 	ENGINE_TRACE(engine, "reset for %s\n", msg);
2317 
2318 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2319 	tasklet_disable_nosync(&engine->execlists.tasklet);
2320 
2321 	ring_set_paused(engine, 1); /* Freeze the current request in place */
2322 	execlists_capture(engine);
2323 	intel_engine_reset(engine, msg);
2324 
2325 	tasklet_enable(&engine->execlists.tasklet);
2326 	clear_and_wake_up_bit(bit, lock);
2327 }
2328 
2329 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2330 {
2331 	const struct timer_list *t = &engine->execlists.preempt;
2332 
2333 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2334 		return false;
2335 
2336 	if (!timer_expired(t))
2337 		return false;
2338 
2339 	return engine->execlists.pending[0];
2340 }
2341 
2342 /*
2343  * Check the unread Context Status Buffers and manage the submission of new
2344  * contexts to the ELSP accordingly.
2345  */
2346 static void execlists_submission_tasklet(struct tasklet_struct *t)
2347 {
2348 	struct intel_engine_cs * const engine =
2349 		from_tasklet(engine, t, execlists.tasklet);
2350 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2351 	struct i915_request **inactive;
2352 
2353 	rcu_read_lock();
2354 	inactive = process_csb(engine, post);
2355 	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2356 
2357 	if (unlikely(preempt_timeout(engine))) {
2358 		cancel_timer(&engine->execlists.preempt);
2359 		engine->execlists.error_interrupt |= ERROR_PREEMPT;
2360 	}
2361 
2362 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2363 		const char *msg;
2364 
2365 		/* Generate the error message in priority wrt to the user! */
2366 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2367 			msg = "CS error"; /* thrown by a user payload */
2368 		else if (engine->execlists.error_interrupt & ERROR_CSB)
2369 			msg = "invalid CSB event";
2370 		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2371 			msg = "preemption time out";
2372 		else
2373 			msg = "internal error";
2374 
2375 		engine->execlists.error_interrupt = 0;
2376 		execlists_reset(engine, msg);
2377 	}
2378 
2379 	if (!engine->execlists.pending[0]) {
2380 		execlists_dequeue_irq(engine);
2381 		start_timeslice(engine);
2382 	}
2383 
2384 	post_process_csb(post, inactive);
2385 	rcu_read_unlock();
2386 }
2387 
2388 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2389 {
2390 	bool tasklet = false;
2391 
2392 	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2393 		u32 eir;
2394 
2395 		/* Upper 16b are the enabling mask, rsvd for internal errors */
2396 		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2397 		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2398 
2399 		/* Disable the error interrupt until after the reset */
2400 		if (likely(eir)) {
2401 			ENGINE_WRITE(engine, RING_EMR, ~0u);
2402 			ENGINE_WRITE(engine, RING_EIR, eir);
2403 			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2404 			tasklet = true;
2405 		}
2406 	}
2407 
2408 	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2409 		WRITE_ONCE(engine->execlists.yield,
2410 			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2411 		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2412 			     engine->execlists.yield);
2413 		if (del_timer(&engine->execlists.timer))
2414 			tasklet = true;
2415 	}
2416 
2417 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2418 		tasklet = true;
2419 
2420 	if (iir & GT_RENDER_USER_INTERRUPT)
2421 		intel_engine_signal_breadcrumbs(engine);
2422 
2423 	if (tasklet)
2424 		tasklet_hi_schedule(&engine->execlists.tasklet);
2425 }
2426 
2427 static void __execlists_kick(struct intel_engine_execlists *execlists)
2428 {
2429 	/* Kick the tasklet for some interrupt coalescing and reset handling */
2430 	tasklet_hi_schedule(&execlists->tasklet);
2431 }
2432 
2433 #define execlists_kick(t, member) \
2434 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2435 
2436 static void execlists_timeslice(struct timer_list *timer)
2437 {
2438 	execlists_kick(timer, timer);
2439 }
2440 
2441 static void execlists_preempt(struct timer_list *timer)
2442 {
2443 	execlists_kick(timer, preempt);
2444 }
2445 
2446 static void queue_request(struct intel_engine_cs *engine,
2447 			  struct i915_request *rq)
2448 {
2449 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2450 	list_add_tail(&rq->sched.link,
2451 		      i915_sched_lookup_priolist(engine, rq_prio(rq)));
2452 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2453 }
2454 
2455 static bool submit_queue(struct intel_engine_cs *engine,
2456 			 const struct i915_request *rq)
2457 {
2458 	struct intel_engine_execlists *execlists = &engine->execlists;
2459 
2460 	if (rq_prio(rq) <= execlists->queue_priority_hint)
2461 		return false;
2462 
2463 	execlists->queue_priority_hint = rq_prio(rq);
2464 	return true;
2465 }
2466 
2467 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2468 			     const struct i915_request *rq)
2469 {
2470 	GEM_BUG_ON(i915_request_on_hold(rq));
2471 	return !list_empty(&engine->active.hold) && hold_request(rq);
2472 }
2473 
2474 static void execlists_submit_request(struct i915_request *request)
2475 {
2476 	struct intel_engine_cs *engine = request->engine;
2477 	unsigned long flags;
2478 
2479 	/* Will be called from irq-context when using foreign fences. */
2480 	spin_lock_irqsave(&engine->active.lock, flags);
2481 
2482 	if (unlikely(ancestor_on_hold(engine, request))) {
2483 		RQ_TRACE(request, "ancestor on hold\n");
2484 		list_add_tail(&request->sched.link, &engine->active.hold);
2485 		i915_request_set_hold(request);
2486 	} else {
2487 		queue_request(engine, request);
2488 
2489 		GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
2490 		GEM_BUG_ON(list_empty(&request->sched.link));
2491 
2492 		if (submit_queue(engine, request))
2493 			__execlists_kick(&engine->execlists);
2494 	}
2495 
2496 	spin_unlock_irqrestore(&engine->active.lock, flags);
2497 }
2498 
2499 static int
2500 __execlists_context_pre_pin(struct intel_context *ce,
2501 			    struct intel_engine_cs *engine,
2502 			    struct i915_gem_ww_ctx *ww, void **vaddr)
2503 {
2504 	int err;
2505 
2506 	err = lrc_pre_pin(ce, engine, ww, vaddr);
2507 	if (err)
2508 		return err;
2509 
2510 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2511 		lrc_init_state(ce, engine, *vaddr);
2512 
2513 		 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2514 	}
2515 
2516 	return 0;
2517 }
2518 
2519 static int execlists_context_pre_pin(struct intel_context *ce,
2520 				     struct i915_gem_ww_ctx *ww,
2521 				     void **vaddr)
2522 {
2523 	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2524 }
2525 
2526 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2527 {
2528 	return lrc_pin(ce, ce->engine, vaddr);
2529 }
2530 
2531 static int execlists_context_alloc(struct intel_context *ce)
2532 {
2533 	return lrc_alloc(ce, ce->engine);
2534 }
2535 
2536 static const struct intel_context_ops execlists_context_ops = {
2537 	.flags = COPS_HAS_INFLIGHT,
2538 
2539 	.alloc = execlists_context_alloc,
2540 
2541 	.pre_pin = execlists_context_pre_pin,
2542 	.pin = execlists_context_pin,
2543 	.unpin = lrc_unpin,
2544 	.post_unpin = lrc_post_unpin,
2545 
2546 	.enter = intel_context_enter_engine,
2547 	.exit = intel_context_exit_engine,
2548 
2549 	.reset = lrc_reset,
2550 	.destroy = lrc_destroy,
2551 };
2552 
2553 static int emit_pdps(struct i915_request *rq)
2554 {
2555 	const struct intel_engine_cs * const engine = rq->engine;
2556 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2557 	int err, i;
2558 	u32 *cs;
2559 
2560 	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2561 
2562 	/*
2563 	 * Beware ye of the dragons, this sequence is magic!
2564 	 *
2565 	 * Small changes to this sequence can cause anything from
2566 	 * GPU hangs to forcewake errors and machine lockups!
2567 	 */
2568 
2569 	cs = intel_ring_begin(rq, 2);
2570 	if (IS_ERR(cs))
2571 		return PTR_ERR(cs);
2572 
2573 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2574 	*cs++ = MI_NOOP;
2575 	intel_ring_advance(rq, cs);
2576 
2577 	/* Flush any residual operations from the context load */
2578 	err = engine->emit_flush(rq, EMIT_FLUSH);
2579 	if (err)
2580 		return err;
2581 
2582 	/* Magic required to prevent forcewake errors! */
2583 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2584 	if (err)
2585 		return err;
2586 
2587 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2588 	if (IS_ERR(cs))
2589 		return PTR_ERR(cs);
2590 
2591 	/* Ensure the LRI have landed before we invalidate & continue */
2592 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2593 	for (i = GEN8_3LVL_PDPES; i--; ) {
2594 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2595 		u32 base = engine->mmio_base;
2596 
2597 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2598 		*cs++ = upper_32_bits(pd_daddr);
2599 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2600 		*cs++ = lower_32_bits(pd_daddr);
2601 	}
2602 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2603 	intel_ring_advance(rq, cs);
2604 
2605 	intel_ring_advance(rq, cs);
2606 
2607 	return 0;
2608 }
2609 
2610 static int execlists_request_alloc(struct i915_request *request)
2611 {
2612 	int ret;
2613 
2614 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2615 
2616 	/*
2617 	 * Flush enough space to reduce the likelihood of waiting after
2618 	 * we start building the request - in which case we will just
2619 	 * have to repeat work.
2620 	 */
2621 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2622 
2623 	/*
2624 	 * Note that after this point, we have committed to using
2625 	 * this request as it is being used to both track the
2626 	 * state of engine initialisation and liveness of the
2627 	 * golden renderstate above. Think twice before you try
2628 	 * to cancel/unwind this request now.
2629 	 */
2630 
2631 	if (!i915_vm_is_4lvl(request->context->vm)) {
2632 		ret = emit_pdps(request);
2633 		if (ret)
2634 			return ret;
2635 	}
2636 
2637 	/* Unconditionally invalidate GPU caches and TLBs. */
2638 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2639 	if (ret)
2640 		return ret;
2641 
2642 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2643 	return 0;
2644 }
2645 
2646 static void reset_csb_pointers(struct intel_engine_cs *engine)
2647 {
2648 	struct intel_engine_execlists * const execlists = &engine->execlists;
2649 	const unsigned int reset_value = execlists->csb_size - 1;
2650 
2651 	ring_set_paused(engine, 0);
2652 
2653 	/*
2654 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2655 	 * Bludgeon them with a mmio update to be sure.
2656 	 */
2657 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2658 		     0xffff << 16 | reset_value << 8 | reset_value);
2659 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2660 
2661 	/*
2662 	 * After a reset, the HW starts writing into CSB entry [0]. We
2663 	 * therefore have to set our HEAD pointer back one entry so that
2664 	 * the *first* entry we check is entry 0. To complicate this further,
2665 	 * as we don't wait for the first interrupt after reset, we have to
2666 	 * fake the HW write to point back to the last entry so that our
2667 	 * inline comparison of our cached head position against the last HW
2668 	 * write works even before the first interrupt.
2669 	 */
2670 	execlists->csb_head = reset_value;
2671 	WRITE_ONCE(*execlists->csb_write, reset_value);
2672 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2673 
2674 	/* Check that the GPU does indeed update the CSB entries! */
2675 	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2676 	invalidate_csb_entries(&execlists->csb_status[0],
2677 			       &execlists->csb_status[reset_value]);
2678 
2679 	/* Once more for luck and our trusty paranoia */
2680 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2681 		     0xffff << 16 | reset_value << 8 | reset_value);
2682 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2683 
2684 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2685 }
2686 
2687 static void sanitize_hwsp(struct intel_engine_cs *engine)
2688 {
2689 	struct intel_timeline *tl;
2690 
2691 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2692 		intel_timeline_reset_seqno(tl);
2693 }
2694 
2695 static void execlists_sanitize(struct intel_engine_cs *engine)
2696 {
2697 	GEM_BUG_ON(execlists_active(&engine->execlists));
2698 
2699 	/*
2700 	 * Poison residual state on resume, in case the suspend didn't!
2701 	 *
2702 	 * We have to assume that across suspend/resume (or other loss
2703 	 * of control) that the contents of our pinned buffers has been
2704 	 * lost, replaced by garbage. Since this doesn't always happen,
2705 	 * let's poison such state so that we more quickly spot when
2706 	 * we falsely assume it has been preserved.
2707 	 */
2708 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2709 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2710 
2711 	reset_csb_pointers(engine);
2712 
2713 	/*
2714 	 * The kernel_context HWSP is stored in the status_page. As above,
2715 	 * that may be lost on resume/initialisation, and so we need to
2716 	 * reset the value in the HWSP.
2717 	 */
2718 	sanitize_hwsp(engine);
2719 
2720 	/* And scrub the dirty cachelines for the HWSP */
2721 	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2722 }
2723 
2724 static void enable_error_interrupt(struct intel_engine_cs *engine)
2725 {
2726 	u32 status;
2727 
2728 	engine->execlists.error_interrupt = 0;
2729 	ENGINE_WRITE(engine, RING_EMR, ~0u);
2730 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2731 
2732 	status = ENGINE_READ(engine, RING_ESR);
2733 	if (unlikely(status)) {
2734 		drm_err(&engine->i915->drm,
2735 			"engine '%s' resumed still in error: %08x\n",
2736 			engine->name, status);
2737 		__intel_gt_reset(engine->gt, engine->mask);
2738 	}
2739 
2740 	/*
2741 	 * On current gen8+, we have 2 signals to play with
2742 	 *
2743 	 * - I915_ERROR_INSTUCTION (bit 0)
2744 	 *
2745 	 *    Generate an error if the command parser encounters an invalid
2746 	 *    instruction
2747 	 *
2748 	 *    This is a fatal error.
2749 	 *
2750 	 * - CP_PRIV (bit 2)
2751 	 *
2752 	 *    Generate an error on privilege violation (where the CP replaces
2753 	 *    the instruction with a no-op). This also fires for writes into
2754 	 *    read-only scratch pages.
2755 	 *
2756 	 *    This is a non-fatal error, parsing continues.
2757 	 *
2758 	 * * there are a few others defined for odd HW that we do not use
2759 	 *
2760 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2761 	 * error (as the HW is validating and suppressing the mistakes), we
2762 	 * only unmask the instruction error bit.
2763 	 */
2764 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2765 }
2766 
2767 static void enable_execlists(struct intel_engine_cs *engine)
2768 {
2769 	u32 mode;
2770 
2771 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2772 
2773 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2774 
2775 	if (GRAPHICS_VER(engine->i915) >= 11)
2776 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2777 	else
2778 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2779 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2780 
2781 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2782 
2783 	ENGINE_WRITE_FW(engine,
2784 			RING_HWS_PGA,
2785 			i915_ggtt_offset(engine->status_page.vma));
2786 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2787 
2788 	enable_error_interrupt(engine);
2789 }
2790 
2791 static int execlists_resume(struct intel_engine_cs *engine)
2792 {
2793 	intel_mocs_init_engine(engine);
2794 	intel_breadcrumbs_reset(engine->breadcrumbs);
2795 
2796 	enable_execlists(engine);
2797 
2798 	return 0;
2799 }
2800 
2801 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2802 {
2803 	struct intel_engine_execlists * const execlists = &engine->execlists;
2804 
2805 	ENGINE_TRACE(engine, "depth<-%d\n",
2806 		     atomic_read(&execlists->tasklet.count));
2807 
2808 	/*
2809 	 * Prevent request submission to the hardware until we have
2810 	 * completed the reset in i915_gem_reset_finish(). If a request
2811 	 * is completed by one engine, it may then queue a request
2812 	 * to a second via its execlists->tasklet *just* as we are
2813 	 * calling engine->resume() and also writing the ELSP.
2814 	 * Turning off the execlists->tasklet until the reset is over
2815 	 * prevents the race.
2816 	 */
2817 	__tasklet_disable_sync_once(&execlists->tasklet);
2818 	GEM_BUG_ON(!reset_in_progress(execlists));
2819 
2820 	/*
2821 	 * We stop engines, otherwise we might get failed reset and a
2822 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2823 	 * from system hang if batchbuffer is progressing when
2824 	 * the reset is issued, regardless of READY_TO_RESET ack.
2825 	 * Thus assume it is best to stop engines on all gens
2826 	 * where we have a gpu reset.
2827 	 *
2828 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2829 	 *
2830 	 * FIXME: Wa for more modern gens needs to be validated
2831 	 */
2832 	ring_set_paused(engine, 1);
2833 	intel_engine_stop_cs(engine);
2834 
2835 	engine->execlists.reset_ccid = active_ccid(engine);
2836 }
2837 
2838 static struct i915_request **
2839 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2840 {
2841 	struct intel_engine_execlists * const execlists = &engine->execlists;
2842 
2843 	mb(); /* paranoia: read the CSB pointers from after the reset */
2844 	clflush(execlists->csb_write);
2845 	mb();
2846 
2847 	inactive = process_csb(engine, inactive); /* drain preemption events */
2848 
2849 	/* Following the reset, we need to reload the CSB read/write pointers */
2850 	reset_csb_pointers(engine);
2851 
2852 	return inactive;
2853 }
2854 
2855 static void
2856 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2857 {
2858 	struct intel_context *ce;
2859 	struct i915_request *rq;
2860 	u32 head;
2861 
2862 	/*
2863 	 * Save the currently executing context, even if we completed
2864 	 * its request, it was still running at the time of the
2865 	 * reset and will have been clobbered.
2866 	 */
2867 	rq = active_context(engine, engine->execlists.reset_ccid);
2868 	if (!rq)
2869 		return;
2870 
2871 	ce = rq->context;
2872 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2873 
2874 	if (__i915_request_is_complete(rq)) {
2875 		/* Idle context; tidy up the ring so we can restart afresh */
2876 		head = intel_ring_wrap(ce->ring, rq->tail);
2877 		goto out_replay;
2878 	}
2879 
2880 	/* We still have requests in-flight; the engine should be active */
2881 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2882 
2883 	/* Context has requests still in-flight; it should not be idle! */
2884 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
2885 
2886 	rq = active_request(ce->timeline, rq);
2887 	head = intel_ring_wrap(ce->ring, rq->head);
2888 	GEM_BUG_ON(head == ce->ring->tail);
2889 
2890 	/*
2891 	 * If this request hasn't started yet, e.g. it is waiting on a
2892 	 * semaphore, we need to avoid skipping the request or else we
2893 	 * break the signaling chain. However, if the context is corrupt
2894 	 * the request will not restart and we will be stuck with a wedged
2895 	 * device. It is quite often the case that if we issue a reset
2896 	 * while the GPU is loading the context image, that the context
2897 	 * image becomes corrupt.
2898 	 *
2899 	 * Otherwise, if we have not started yet, the request should replay
2900 	 * perfectly and we do not need to flag the result as being erroneous.
2901 	 */
2902 	if (!__i915_request_has_started(rq))
2903 		goto out_replay;
2904 
2905 	/*
2906 	 * If the request was innocent, we leave the request in the ELSP
2907 	 * and will try to replay it on restarting. The context image may
2908 	 * have been corrupted by the reset, in which case we may have
2909 	 * to service a new GPU hang, but more likely we can continue on
2910 	 * without impact.
2911 	 *
2912 	 * If the request was guilty, we presume the context is corrupt
2913 	 * and have to at least restore the RING register in the context
2914 	 * image back to the expected values to skip over the guilty request.
2915 	 */
2916 	__i915_request_reset(rq, stalled);
2917 
2918 	/*
2919 	 * We want a simple context + ring to execute the breadcrumb update.
2920 	 * We cannot rely on the context being intact across the GPU hang,
2921 	 * so clear it and rebuild just what we need for the breadcrumb.
2922 	 * All pending requests for this context will be zapped, and any
2923 	 * future request will be after userspace has had the opportunity
2924 	 * to recreate its own state.
2925 	 */
2926 out_replay:
2927 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
2928 		     head, ce->ring->tail);
2929 	lrc_reset_regs(ce, engine);
2930 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
2931 }
2932 
2933 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
2934 {
2935 	struct intel_engine_execlists * const execlists = &engine->execlists;
2936 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2937 	struct i915_request **inactive;
2938 
2939 	rcu_read_lock();
2940 	inactive = reset_csb(engine, post);
2941 
2942 	execlists_reset_active(engine, true);
2943 
2944 	inactive = cancel_port_requests(execlists, inactive);
2945 	post_process_csb(post, inactive);
2946 	rcu_read_unlock();
2947 }
2948 
2949 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
2950 {
2951 	unsigned long flags;
2952 
2953 	ENGINE_TRACE(engine, "\n");
2954 
2955 	/* Process the csb, find the guilty context and throw away */
2956 	execlists_reset_csb(engine, stalled);
2957 
2958 	/* Push back any incomplete requests for replay after the reset. */
2959 	rcu_read_lock();
2960 	spin_lock_irqsave(&engine->active.lock, flags);
2961 	__unwind_incomplete_requests(engine);
2962 	spin_unlock_irqrestore(&engine->active.lock, flags);
2963 	rcu_read_unlock();
2964 }
2965 
2966 static void nop_submission_tasklet(struct tasklet_struct *t)
2967 {
2968 	struct intel_engine_cs * const engine =
2969 		from_tasklet(engine, t, execlists.tasklet);
2970 
2971 	/* The driver is wedged; don't process any more events. */
2972 	WRITE_ONCE(engine->execlists.queue_priority_hint, INT_MIN);
2973 }
2974 
2975 static void execlists_reset_cancel(struct intel_engine_cs *engine)
2976 {
2977 	struct intel_engine_execlists * const execlists = &engine->execlists;
2978 	struct i915_request *rq, *rn;
2979 	struct rb_node *rb;
2980 	unsigned long flags;
2981 
2982 	ENGINE_TRACE(engine, "\n");
2983 
2984 	/*
2985 	 * Before we call engine->cancel_requests(), we should have exclusive
2986 	 * access to the submission state. This is arranged for us by the
2987 	 * caller disabling the interrupt generation, the tasklet and other
2988 	 * threads that may then access the same state, giving us a free hand
2989 	 * to reset state. However, we still need to let lockdep be aware that
2990 	 * we know this state may be accessed in hardirq context, so we
2991 	 * disable the irq around this manipulation and we want to keep
2992 	 * the spinlock focused on its duties and not accidentally conflate
2993 	 * coverage to the submission's irq state. (Similarly, although we
2994 	 * shouldn't need to disable irq around the manipulation of the
2995 	 * submission's irq state, we also wish to remind ourselves that
2996 	 * it is irq state.)
2997 	 */
2998 	execlists_reset_csb(engine, true);
2999 
3000 	rcu_read_lock();
3001 	spin_lock_irqsave(&engine->active.lock, flags);
3002 
3003 	/* Mark all executing requests as skipped. */
3004 	list_for_each_entry(rq, &engine->active.requests, sched.link)
3005 		i915_request_put(i915_request_mark_eio(rq));
3006 	intel_engine_signal_breadcrumbs(engine);
3007 
3008 	/* Flush the queued requests to the timeline list (for retiring). */
3009 	while ((rb = rb_first_cached(&execlists->queue))) {
3010 		struct i915_priolist *p = to_priolist(rb);
3011 
3012 		priolist_for_each_request_consume(rq, rn, p) {
3013 			if (i915_request_mark_eio(rq)) {
3014 				__i915_request_submit(rq);
3015 				i915_request_put(rq);
3016 			}
3017 		}
3018 
3019 		rb_erase_cached(&p->node, &execlists->queue);
3020 		i915_priolist_free(p);
3021 	}
3022 
3023 	/* On-hold requests will be flushed to timeline upon their release */
3024 	list_for_each_entry(rq, &engine->active.hold, sched.link)
3025 		i915_request_put(i915_request_mark_eio(rq));
3026 
3027 	/* Cancel all attached virtual engines */
3028 	while ((rb = rb_first_cached(&execlists->virtual))) {
3029 		struct virtual_engine *ve =
3030 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3031 
3032 		rb_erase_cached(rb, &execlists->virtual);
3033 		RB_CLEAR_NODE(rb);
3034 
3035 		spin_lock(&ve->base.active.lock);
3036 		rq = fetch_and_zero(&ve->request);
3037 		if (rq) {
3038 			if (i915_request_mark_eio(rq)) {
3039 				rq->engine = engine;
3040 				__i915_request_submit(rq);
3041 				i915_request_put(rq);
3042 			}
3043 			i915_request_put(rq);
3044 
3045 			ve->base.execlists.queue_priority_hint = INT_MIN;
3046 		}
3047 		spin_unlock(&ve->base.active.lock);
3048 	}
3049 
3050 	/* Remaining _unready_ requests will be nop'ed when submitted */
3051 
3052 	execlists->queue_priority_hint = INT_MIN;
3053 	execlists->queue = RB_ROOT_CACHED;
3054 
3055 	GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
3056 	execlists->tasklet.callback = nop_submission_tasklet;
3057 
3058 	spin_unlock_irqrestore(&engine->active.lock, flags);
3059 	rcu_read_unlock();
3060 }
3061 
3062 static void execlists_reset_finish(struct intel_engine_cs *engine)
3063 {
3064 	struct intel_engine_execlists * const execlists = &engine->execlists;
3065 
3066 	/*
3067 	 * After a GPU reset, we may have requests to replay. Do so now while
3068 	 * we still have the forcewake to be sure that the GPU is not allowed
3069 	 * to sleep before we restart and reload a context.
3070 	 *
3071 	 * If the GPU reset fails, the engine may still be alive with requests
3072 	 * inflight. We expect those to complete, or for the device to be
3073 	 * reset as the next level of recovery, and as a final resort we
3074 	 * will declare the device wedged.
3075 	 */
3076 	GEM_BUG_ON(!reset_in_progress(execlists));
3077 
3078 	/* And kick in case we missed a new request submission. */
3079 	if (__tasklet_enable(&execlists->tasklet))
3080 		__execlists_kick(execlists);
3081 
3082 	ENGINE_TRACE(engine, "depth->%d\n",
3083 		     atomic_read(&execlists->tasklet.count));
3084 }
3085 
3086 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3087 {
3088 	ENGINE_WRITE(engine, RING_IMR,
3089 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3090 	ENGINE_POSTING_READ(engine, RING_IMR);
3091 }
3092 
3093 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3094 {
3095 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3096 }
3097 
3098 static void execlists_park(struct intel_engine_cs *engine)
3099 {
3100 	cancel_timer(&engine->execlists.timer);
3101 	cancel_timer(&engine->execlists.preempt);
3102 }
3103 
3104 static bool can_preempt(struct intel_engine_cs *engine)
3105 {
3106 	if (GRAPHICS_VER(engine->i915) > 8)
3107 		return true;
3108 
3109 	/* GPGPU on bdw requires extra w/a; not implemented */
3110 	return engine->class != RENDER_CLASS;
3111 }
3112 
3113 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3114 {
3115 	engine->submit_request = execlists_submit_request;
3116 	engine->schedule = i915_schedule;
3117 	engine->execlists.tasklet.callback = execlists_submission_tasklet;
3118 }
3119 
3120 static void execlists_shutdown(struct intel_engine_cs *engine)
3121 {
3122 	/* Synchronise with residual timers and any softirq they raise */
3123 	del_timer_sync(&engine->execlists.timer);
3124 	del_timer_sync(&engine->execlists.preempt);
3125 	tasklet_kill(&engine->execlists.tasklet);
3126 }
3127 
3128 static void execlists_release(struct intel_engine_cs *engine)
3129 {
3130 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3131 
3132 	execlists_shutdown(engine);
3133 
3134 	intel_engine_cleanup_common(engine);
3135 	lrc_fini_wa_ctx(engine);
3136 }
3137 
3138 static void
3139 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3140 {
3141 	/* Default vfuncs which can be overridden by each engine. */
3142 
3143 	engine->resume = execlists_resume;
3144 
3145 	engine->cops = &execlists_context_ops;
3146 	engine->request_alloc = execlists_request_alloc;
3147 
3148 	engine->reset.prepare = execlists_reset_prepare;
3149 	engine->reset.rewind = execlists_reset_rewind;
3150 	engine->reset.cancel = execlists_reset_cancel;
3151 	engine->reset.finish = execlists_reset_finish;
3152 
3153 	engine->park = execlists_park;
3154 	engine->unpark = NULL;
3155 
3156 	engine->emit_flush = gen8_emit_flush_xcs;
3157 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3158 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3159 	if (GRAPHICS_VER(engine->i915) >= 12) {
3160 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3161 		engine->emit_flush = gen12_emit_flush_xcs;
3162 	}
3163 	engine->set_default_submission = execlists_set_default_submission;
3164 
3165 	if (GRAPHICS_VER(engine->i915) < 11) {
3166 		engine->irq_enable = gen8_logical_ring_enable_irq;
3167 		engine->irq_disable = gen8_logical_ring_disable_irq;
3168 	} else {
3169 		/*
3170 		 * TODO: On Gen11 interrupt masks need to be clear
3171 		 * to allow C6 entry. Keep interrupts enabled at
3172 		 * and take the hit of generating extra interrupts
3173 		 * until a more refined solution exists.
3174 		 */
3175 	}
3176 	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3177 
3178 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3179 	if (!intel_vgpu_active(engine->i915)) {
3180 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3181 		if (can_preempt(engine)) {
3182 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3183 			if (IS_ACTIVE(CONFIG_DRM_I915_TIMESLICE_DURATION))
3184 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3185 		}
3186 	}
3187 
3188 	if (intel_engine_has_preemption(engine))
3189 		engine->emit_bb_start = gen8_emit_bb_start;
3190 	else
3191 		engine->emit_bb_start = gen8_emit_bb_start_noarb;
3192 }
3193 
3194 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3195 {
3196 	unsigned int shift = 0;
3197 
3198 	if (GRAPHICS_VER(engine->i915) < 11) {
3199 		const u8 irq_shifts[] = {
3200 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3201 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3202 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3203 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3204 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3205 		};
3206 
3207 		shift = irq_shifts[engine->id];
3208 	}
3209 
3210 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3211 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3212 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3213 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3214 }
3215 
3216 static void rcs_submission_override(struct intel_engine_cs *engine)
3217 {
3218 	switch (GRAPHICS_VER(engine->i915)) {
3219 	case 12:
3220 		engine->emit_flush = gen12_emit_flush_rcs;
3221 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3222 		break;
3223 	case 11:
3224 		engine->emit_flush = gen11_emit_flush_rcs;
3225 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3226 		break;
3227 	default:
3228 		engine->emit_flush = gen8_emit_flush_rcs;
3229 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3230 		break;
3231 	}
3232 }
3233 
3234 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3235 {
3236 	struct intel_engine_execlists * const execlists = &engine->execlists;
3237 	struct drm_i915_private *i915 = engine->i915;
3238 	struct intel_uncore *uncore = engine->uncore;
3239 	u32 base = engine->mmio_base;
3240 
3241 	tasklet_setup(&engine->execlists.tasklet, execlists_submission_tasklet);
3242 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3243 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3244 
3245 	logical_ring_default_vfuncs(engine);
3246 	logical_ring_default_irqs(engine);
3247 
3248 	if (engine->class == RENDER_CLASS)
3249 		rcs_submission_override(engine);
3250 
3251 	lrc_init_wa_ctx(engine);
3252 
3253 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3254 		execlists->submit_reg = uncore->regs +
3255 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3256 		execlists->ctrl_reg = uncore->regs +
3257 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3258 	} else {
3259 		execlists->submit_reg = uncore->regs +
3260 			i915_mmio_reg_offset(RING_ELSP(base));
3261 	}
3262 
3263 	execlists->csb_status =
3264 		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3265 
3266 	execlists->csb_write =
3267 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
3268 
3269 	if (GRAPHICS_VER(i915) < 11)
3270 		execlists->csb_size = GEN8_CSB_ENTRIES;
3271 	else
3272 		execlists->csb_size = GEN11_CSB_ENTRIES;
3273 
3274 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3275 	if (GRAPHICS_VER(engine->i915) >= 11) {
3276 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3277 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3278 	}
3279 
3280 	/* Finally, take ownership and responsibility for cleanup! */
3281 	engine->sanitize = execlists_sanitize;
3282 	engine->release = execlists_release;
3283 
3284 	return 0;
3285 }
3286 
3287 static struct list_head *virtual_queue(struct virtual_engine *ve)
3288 {
3289 	return &ve->base.execlists.default_priolist.requests;
3290 }
3291 
3292 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3293 {
3294 	struct virtual_engine *ve =
3295 		container_of(wrk, typeof(*ve), rcu.work);
3296 	unsigned int n;
3297 
3298 	GEM_BUG_ON(ve->context.inflight);
3299 
3300 	/* Preempt-to-busy may leave a stale request behind. */
3301 	if (unlikely(ve->request)) {
3302 		struct i915_request *old;
3303 
3304 		spin_lock_irq(&ve->base.active.lock);
3305 
3306 		old = fetch_and_zero(&ve->request);
3307 		if (old) {
3308 			GEM_BUG_ON(!__i915_request_is_complete(old));
3309 			__i915_request_submit(old);
3310 			i915_request_put(old);
3311 		}
3312 
3313 		spin_unlock_irq(&ve->base.active.lock);
3314 	}
3315 
3316 	/*
3317 	 * Flush the tasklet in case it is still running on another core.
3318 	 *
3319 	 * This needs to be done before we remove ourselves from the siblings'
3320 	 * rbtrees as in the case it is running in parallel, it may reinsert
3321 	 * the rb_node into a sibling.
3322 	 */
3323 	tasklet_kill(&ve->base.execlists.tasklet);
3324 
3325 	/* Decouple ourselves from the siblings, no more access allowed. */
3326 	for (n = 0; n < ve->num_siblings; n++) {
3327 		struct intel_engine_cs *sibling = ve->siblings[n];
3328 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3329 
3330 		if (RB_EMPTY_NODE(node))
3331 			continue;
3332 
3333 		spin_lock_irq(&sibling->active.lock);
3334 
3335 		/* Detachment is lazily performed in the execlists tasklet */
3336 		if (!RB_EMPTY_NODE(node))
3337 			rb_erase_cached(node, &sibling->execlists.virtual);
3338 
3339 		spin_unlock_irq(&sibling->active.lock);
3340 	}
3341 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3342 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3343 
3344 	lrc_fini(&ve->context);
3345 	intel_context_fini(&ve->context);
3346 
3347 	intel_breadcrumbs_free(ve->base.breadcrumbs);
3348 	intel_engine_free_request_pool(&ve->base);
3349 
3350 	kfree(ve->bonds);
3351 	kfree(ve);
3352 }
3353 
3354 static void virtual_context_destroy(struct kref *kref)
3355 {
3356 	struct virtual_engine *ve =
3357 		container_of(kref, typeof(*ve), context.ref);
3358 
3359 	GEM_BUG_ON(!list_empty(&ve->context.signals));
3360 
3361 	/*
3362 	 * When destroying the virtual engine, we have to be aware that
3363 	 * it may still be in use from an hardirq/softirq context causing
3364 	 * the resubmission of a completed request (background completion
3365 	 * due to preempt-to-busy). Before we can free the engine, we need
3366 	 * to flush the submission code and tasklets that are still potentially
3367 	 * accessing the engine. Flushing the tasklets requires process context,
3368 	 * and since we can guard the resubmit onto the engine with an RCU read
3369 	 * lock, we can delegate the free of the engine to an RCU worker.
3370 	 */
3371 	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3372 	queue_rcu_work(system_wq, &ve->rcu);
3373 }
3374 
3375 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3376 {
3377 	int swp;
3378 
3379 	/*
3380 	 * Pick a random sibling on starting to help spread the load around.
3381 	 *
3382 	 * New contexts are typically created with exactly the same order
3383 	 * of siblings, and often started in batches. Due to the way we iterate
3384 	 * the array of sibling when submitting requests, sibling[0] is
3385 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3386 	 * randomised across the system, we also help spread the load by the
3387 	 * first engine we inspect being different each time.
3388 	 *
3389 	 * NB This does not force us to execute on this engine, it will just
3390 	 * typically be the first we inspect for submission.
3391 	 */
3392 	swp = prandom_u32_max(ve->num_siblings);
3393 	if (swp)
3394 		swap(ve->siblings[swp], ve->siblings[0]);
3395 }
3396 
3397 static int virtual_context_alloc(struct intel_context *ce)
3398 {
3399 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3400 
3401 	return lrc_alloc(ce, ve->siblings[0]);
3402 }
3403 
3404 static int virtual_context_pre_pin(struct intel_context *ce,
3405 				   struct i915_gem_ww_ctx *ww,
3406 				   void **vaddr)
3407 {
3408 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3409 
3410 	 /* Note: we must use a real engine class for setting up reg state */
3411 	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3412 }
3413 
3414 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3415 {
3416 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3417 
3418 	return lrc_pin(ce, ve->siblings[0], vaddr);
3419 }
3420 
3421 static void virtual_context_enter(struct intel_context *ce)
3422 {
3423 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3424 	unsigned int n;
3425 
3426 	for (n = 0; n < ve->num_siblings; n++)
3427 		intel_engine_pm_get(ve->siblings[n]);
3428 
3429 	intel_timeline_enter(ce->timeline);
3430 }
3431 
3432 static void virtual_context_exit(struct intel_context *ce)
3433 {
3434 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3435 	unsigned int n;
3436 
3437 	intel_timeline_exit(ce->timeline);
3438 
3439 	for (n = 0; n < ve->num_siblings; n++)
3440 		intel_engine_pm_put(ve->siblings[n]);
3441 }
3442 
3443 static const struct intel_context_ops virtual_context_ops = {
3444 	.flags = COPS_HAS_INFLIGHT,
3445 
3446 	.alloc = virtual_context_alloc,
3447 
3448 	.pre_pin = virtual_context_pre_pin,
3449 	.pin = virtual_context_pin,
3450 	.unpin = lrc_unpin,
3451 	.post_unpin = lrc_post_unpin,
3452 
3453 	.enter = virtual_context_enter,
3454 	.exit = virtual_context_exit,
3455 
3456 	.destroy = virtual_context_destroy,
3457 };
3458 
3459 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3460 {
3461 	struct i915_request *rq;
3462 	intel_engine_mask_t mask;
3463 
3464 	rq = READ_ONCE(ve->request);
3465 	if (!rq)
3466 		return 0;
3467 
3468 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3469 	mask = rq->execution_mask;
3470 	if (unlikely(!mask)) {
3471 		/* Invalid selection, submit to a random engine in error */
3472 		i915_request_set_error_once(rq, -ENODEV);
3473 		mask = ve->siblings[0]->mask;
3474 	}
3475 
3476 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3477 		     rq->fence.context, rq->fence.seqno,
3478 		     mask, ve->base.execlists.queue_priority_hint);
3479 
3480 	return mask;
3481 }
3482 
3483 static void virtual_submission_tasklet(struct tasklet_struct *t)
3484 {
3485 	struct virtual_engine * const ve =
3486 		from_tasklet(ve, t, base.execlists.tasklet);
3487 	const int prio = READ_ONCE(ve->base.execlists.queue_priority_hint);
3488 	intel_engine_mask_t mask;
3489 	unsigned int n;
3490 
3491 	rcu_read_lock();
3492 	mask = virtual_submission_mask(ve);
3493 	rcu_read_unlock();
3494 	if (unlikely(!mask))
3495 		return;
3496 
3497 	for (n = 0; n < ve->num_siblings; n++) {
3498 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3499 		struct ve_node * const node = &ve->nodes[sibling->id];
3500 		struct rb_node **parent, *rb;
3501 		bool first;
3502 
3503 		if (!READ_ONCE(ve->request))
3504 			break; /* already handled by a sibling's tasklet */
3505 
3506 		spin_lock_irq(&sibling->active.lock);
3507 
3508 		if (unlikely(!(mask & sibling->mask))) {
3509 			if (!RB_EMPTY_NODE(&node->rb)) {
3510 				rb_erase_cached(&node->rb,
3511 						&sibling->execlists.virtual);
3512 				RB_CLEAR_NODE(&node->rb);
3513 			}
3514 
3515 			goto unlock_engine;
3516 		}
3517 
3518 		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3519 			/*
3520 			 * Cheat and avoid rebalancing the tree if we can
3521 			 * reuse this node in situ.
3522 			 */
3523 			first = rb_first_cached(&sibling->execlists.virtual) ==
3524 				&node->rb;
3525 			if (prio == node->prio || (prio > node->prio && first))
3526 				goto submit_engine;
3527 
3528 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3529 		}
3530 
3531 		rb = NULL;
3532 		first = true;
3533 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3534 		while (*parent) {
3535 			struct ve_node *other;
3536 
3537 			rb = *parent;
3538 			other = rb_entry(rb, typeof(*other), rb);
3539 			if (prio > other->prio) {
3540 				parent = &rb->rb_left;
3541 			} else {
3542 				parent = &rb->rb_right;
3543 				first = false;
3544 			}
3545 		}
3546 
3547 		rb_link_node(&node->rb, rb, parent);
3548 		rb_insert_color_cached(&node->rb,
3549 				       &sibling->execlists.virtual,
3550 				       first);
3551 
3552 submit_engine:
3553 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3554 		node->prio = prio;
3555 		if (first && prio > sibling->execlists.queue_priority_hint)
3556 			tasklet_hi_schedule(&sibling->execlists.tasklet);
3557 
3558 unlock_engine:
3559 		spin_unlock_irq(&sibling->active.lock);
3560 
3561 		if (intel_context_inflight(&ve->context))
3562 			break;
3563 	}
3564 }
3565 
3566 static void virtual_submit_request(struct i915_request *rq)
3567 {
3568 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3569 	unsigned long flags;
3570 
3571 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3572 		     rq->fence.context,
3573 		     rq->fence.seqno);
3574 
3575 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3576 
3577 	spin_lock_irqsave(&ve->base.active.lock, flags);
3578 
3579 	/* By the time we resubmit a request, it may be completed */
3580 	if (__i915_request_is_complete(rq)) {
3581 		__i915_request_submit(rq);
3582 		goto unlock;
3583 	}
3584 
3585 	if (ve->request) { /* background completion from preempt-to-busy */
3586 		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3587 		__i915_request_submit(ve->request);
3588 		i915_request_put(ve->request);
3589 	}
3590 
3591 	ve->base.execlists.queue_priority_hint = rq_prio(rq);
3592 	ve->request = i915_request_get(rq);
3593 
3594 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3595 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3596 
3597 	tasklet_hi_schedule(&ve->base.execlists.tasklet);
3598 
3599 unlock:
3600 	spin_unlock_irqrestore(&ve->base.active.lock, flags);
3601 }
3602 
3603 static struct ve_bond *
3604 virtual_find_bond(struct virtual_engine *ve,
3605 		  const struct intel_engine_cs *master)
3606 {
3607 	int i;
3608 
3609 	for (i = 0; i < ve->num_bonds; i++) {
3610 		if (ve->bonds[i].master == master)
3611 			return &ve->bonds[i];
3612 	}
3613 
3614 	return NULL;
3615 }
3616 
3617 static void
3618 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3619 {
3620 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3621 	intel_engine_mask_t allowed, exec;
3622 	struct ve_bond *bond;
3623 
3624 	allowed = ~to_request(signal)->engine->mask;
3625 
3626 	bond = virtual_find_bond(ve, to_request(signal)->engine);
3627 	if (bond)
3628 		allowed &= bond->sibling_mask;
3629 
3630 	/* Restrict the bonded request to run on only the available engines */
3631 	exec = READ_ONCE(rq->execution_mask);
3632 	while (!try_cmpxchg(&rq->execution_mask, &exec, exec & allowed))
3633 		;
3634 
3635 	/* Prevent the master from being re-run on the bonded engines */
3636 	to_request(signal)->execution_mask &= ~allowed;
3637 }
3638 
3639 struct intel_context *
3640 intel_execlists_create_virtual(struct intel_engine_cs **siblings,
3641 			       unsigned int count)
3642 {
3643 	struct virtual_engine *ve;
3644 	unsigned int n;
3645 	int err;
3646 
3647 	if (count == 0)
3648 		return ERR_PTR(-EINVAL);
3649 
3650 	if (count == 1)
3651 		return intel_context_create(siblings[0]);
3652 
3653 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3654 	if (!ve)
3655 		return ERR_PTR(-ENOMEM);
3656 
3657 	ve->base.i915 = siblings[0]->i915;
3658 	ve->base.gt = siblings[0]->gt;
3659 	ve->base.uncore = siblings[0]->uncore;
3660 	ve->base.id = -1;
3661 
3662 	ve->base.class = OTHER_CLASS;
3663 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3664 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3665 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3666 
3667 	/*
3668 	 * The decision on whether to submit a request using semaphores
3669 	 * depends on the saturated state of the engine. We only compute
3670 	 * this during HW submission of the request, and we need for this
3671 	 * state to be globally applied to all requests being submitted
3672 	 * to this engine. Virtual engines encompass more than one physical
3673 	 * engine and so we cannot accurately tell in advance if one of those
3674 	 * engines is already saturated and so cannot afford to use a semaphore
3675 	 * and be pessimized in priority for doing so -- if we are the only
3676 	 * context using semaphores after all other clients have stopped, we
3677 	 * will be starved on the saturated system. Such a global switch for
3678 	 * semaphores is less than ideal, but alas is the current compromise.
3679 	 */
3680 	ve->base.saturated = ALL_ENGINES;
3681 
3682 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3683 
3684 	intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3685 	intel_engine_init_execlists(&ve->base);
3686 
3687 	ve->base.cops = &virtual_context_ops;
3688 	ve->base.request_alloc = execlists_request_alloc;
3689 
3690 	ve->base.schedule = i915_schedule;
3691 	ve->base.submit_request = virtual_submit_request;
3692 	ve->base.bond_execute = virtual_bond_execute;
3693 
3694 	INIT_LIST_HEAD(virtual_queue(ve));
3695 	ve->base.execlists.queue_priority_hint = INT_MIN;
3696 	tasklet_setup(&ve->base.execlists.tasklet, virtual_submission_tasklet);
3697 
3698 	intel_context_init(&ve->context, &ve->base);
3699 
3700 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3701 	if (!ve->base.breadcrumbs) {
3702 		err = -ENOMEM;
3703 		goto err_put;
3704 	}
3705 
3706 	for (n = 0; n < count; n++) {
3707 		struct intel_engine_cs *sibling = siblings[n];
3708 
3709 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3710 		if (sibling->mask & ve->base.mask) {
3711 			DRM_DEBUG("duplicate %s entry in load balancer\n",
3712 				  sibling->name);
3713 			err = -EINVAL;
3714 			goto err_put;
3715 		}
3716 
3717 		/*
3718 		 * The virtual engine implementation is tightly coupled to
3719 		 * the execlists backend -- we push out request directly
3720 		 * into a tree inside each physical engine. We could support
3721 		 * layering if we handle cloning of the requests and
3722 		 * submitting a copy into each backend.
3723 		 */
3724 		if (sibling->execlists.tasklet.callback !=
3725 		    execlists_submission_tasklet) {
3726 			err = -ENODEV;
3727 			goto err_put;
3728 		}
3729 
3730 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3731 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3732 
3733 		ve->siblings[ve->num_siblings++] = sibling;
3734 		ve->base.mask |= sibling->mask;
3735 
3736 		/*
3737 		 * All physical engines must be compatible for their emission
3738 		 * functions (as we build the instructions during request
3739 		 * construction and do not alter them before submission
3740 		 * on the physical engine). We use the engine class as a guide
3741 		 * here, although that could be refined.
3742 		 */
3743 		if (ve->base.class != OTHER_CLASS) {
3744 			if (ve->base.class != sibling->class) {
3745 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3746 					  sibling->class, ve->base.class);
3747 				err = -EINVAL;
3748 				goto err_put;
3749 			}
3750 			continue;
3751 		}
3752 
3753 		ve->base.class = sibling->class;
3754 		ve->base.uabi_class = sibling->uabi_class;
3755 		snprintf(ve->base.name, sizeof(ve->base.name),
3756 			 "v%dx%d", ve->base.class, count);
3757 		ve->base.context_size = sibling->context_size;
3758 
3759 		ve->base.emit_bb_start = sibling->emit_bb_start;
3760 		ve->base.emit_flush = sibling->emit_flush;
3761 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3762 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3763 		ve->base.emit_fini_breadcrumb_dw =
3764 			sibling->emit_fini_breadcrumb_dw;
3765 
3766 		ve->base.flags = sibling->flags;
3767 	}
3768 
3769 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3770 
3771 	virtual_engine_initial_hint(ve);
3772 	return &ve->context;
3773 
3774 err_put:
3775 	intel_context_put(&ve->context);
3776 	return ERR_PTR(err);
3777 }
3778 
3779 struct intel_context *
3780 intel_execlists_clone_virtual(struct intel_engine_cs *src)
3781 {
3782 	struct virtual_engine *se = to_virtual_engine(src);
3783 	struct intel_context *dst;
3784 
3785 	dst = intel_execlists_create_virtual(se->siblings,
3786 					     se->num_siblings);
3787 	if (IS_ERR(dst))
3788 		return dst;
3789 
3790 	if (se->num_bonds) {
3791 		struct virtual_engine *de = to_virtual_engine(dst->engine);
3792 
3793 		de->bonds = kmemdup(se->bonds,
3794 				    sizeof(*se->bonds) * se->num_bonds,
3795 				    GFP_KERNEL);
3796 		if (!de->bonds) {
3797 			intel_context_put(dst);
3798 			return ERR_PTR(-ENOMEM);
3799 		}
3800 
3801 		de->num_bonds = se->num_bonds;
3802 	}
3803 
3804 	return dst;
3805 }
3806 
3807 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3808 				     const struct intel_engine_cs *master,
3809 				     const struct intel_engine_cs *sibling)
3810 {
3811 	struct virtual_engine *ve = to_virtual_engine(engine);
3812 	struct ve_bond *bond;
3813 	int n;
3814 
3815 	/* Sanity check the sibling is part of the virtual engine */
3816 	for (n = 0; n < ve->num_siblings; n++)
3817 		if (sibling == ve->siblings[n])
3818 			break;
3819 	if (n == ve->num_siblings)
3820 		return -EINVAL;
3821 
3822 	bond = virtual_find_bond(ve, master);
3823 	if (bond) {
3824 		bond->sibling_mask |= sibling->mask;
3825 		return 0;
3826 	}
3827 
3828 	bond = krealloc(ve->bonds,
3829 			sizeof(*bond) * (ve->num_bonds + 1),
3830 			GFP_KERNEL);
3831 	if (!bond)
3832 		return -ENOMEM;
3833 
3834 	bond[ve->num_bonds].master = master;
3835 	bond[ve->num_bonds].sibling_mask = sibling->mask;
3836 
3837 	ve->bonds = bond;
3838 	ve->num_bonds++;
3839 
3840 	return 0;
3841 }
3842 
3843 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3844 				   struct drm_printer *m,
3845 				   void (*show_request)(struct drm_printer *m,
3846 							const struct i915_request *rq,
3847 							const char *prefix,
3848 							int indent),
3849 				   unsigned int max)
3850 {
3851 	const struct intel_engine_execlists *execlists = &engine->execlists;
3852 	struct i915_request *rq, *last;
3853 	unsigned long flags;
3854 	unsigned int count;
3855 	struct rb_node *rb;
3856 
3857 	spin_lock_irqsave(&engine->active.lock, flags);
3858 
3859 	last = NULL;
3860 	count = 0;
3861 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
3862 		if (count++ < max - 1)
3863 			show_request(m, rq, "\t\t", 0);
3864 		else
3865 			last = rq;
3866 	}
3867 	if (last) {
3868 		if (count > max) {
3869 			drm_printf(m,
3870 				   "\t\t...skipping %d executing requests...\n",
3871 				   count - max);
3872 		}
3873 		show_request(m, last, "\t\t", 0);
3874 	}
3875 
3876 	if (execlists->queue_priority_hint != INT_MIN)
3877 		drm_printf(m, "\t\tQueue priority hint: %d\n",
3878 			   READ_ONCE(execlists->queue_priority_hint));
3879 
3880 	last = NULL;
3881 	count = 0;
3882 	for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3883 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3884 
3885 		priolist_for_each_request(rq, p) {
3886 			if (count++ < max - 1)
3887 				show_request(m, rq, "\t\t", 0);
3888 			else
3889 				last = rq;
3890 		}
3891 	}
3892 	if (last) {
3893 		if (count > max) {
3894 			drm_printf(m,
3895 				   "\t\t...skipping %d queued requests...\n",
3896 				   count - max);
3897 		}
3898 		show_request(m, last, "\t\t", 0);
3899 	}
3900 
3901 	last = NULL;
3902 	count = 0;
3903 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3904 		struct virtual_engine *ve =
3905 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3906 		struct i915_request *rq = READ_ONCE(ve->request);
3907 
3908 		if (rq) {
3909 			if (count++ < max - 1)
3910 				show_request(m, rq, "\t\t", 0);
3911 			else
3912 				last = rq;
3913 		}
3914 	}
3915 	if (last) {
3916 		if (count > max) {
3917 			drm_printf(m,
3918 				   "\t\t...skipping %d virtual requests...\n",
3919 				   count - max);
3920 		}
3921 		show_request(m, last, "\t\t", 0);
3922 	}
3923 
3924 	spin_unlock_irqrestore(&engine->active.lock, flags);
3925 }
3926 
3927 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3928 #include "selftest_execlists.c"
3929 #endif
3930