1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 
111 #include "i915_drv.h"
112 #include "i915_trace.h"
113 #include "i915_vgpu.h"
114 #include "gen8_engine_cs.h"
115 #include "intel_breadcrumbs.h"
116 #include "intel_context.h"
117 #include "intel_engine_heartbeat.h"
118 #include "intel_engine_pm.h"
119 #include "intel_engine_stats.h"
120 #include "intel_execlists_submission.h"
121 #include "intel_gt.h"
122 #include "intel_gt_irq.h"
123 #include "intel_gt_pm.h"
124 #include "intel_gt_requests.h"
125 #include "intel_lrc.h"
126 #include "intel_lrc_reg.h"
127 #include "intel_mocs.h"
128 #include "intel_reset.h"
129 #include "intel_ring.h"
130 #include "intel_workarounds.h"
131 #include "shmem_utils.h"
132 
133 #define RING_EXECLIST_QFULL		(1 << 0x2)
134 #define RING_EXECLIST1_VALID		(1 << 0x3)
135 #define RING_EXECLIST0_VALID		(1 << 0x4)
136 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
137 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
138 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
139 
140 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
141 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
142 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
143 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
144 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
145 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
146 
147 #define GEN8_CTX_STATUS_COMPLETED_MASK \
148 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
149 
150 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
151 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
152 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
153 #define GEN12_IDLE_CTX_ID		0x7FF
154 #define GEN12_CSB_CTX_VALID(csb_dw) \
155 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
156 
157 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	BIT(1) /* upper csb dword */
158 #define XEHP_CSB_SW_CTX_ID_MASK			GENMASK(31, 10)
159 #define XEHP_IDLE_CTX_ID			0xFFFF
160 #define XEHP_CSB_CTX_VALID(csb_dw) \
161 	(FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
162 
163 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
164 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
165 
166 struct virtual_engine {
167 	struct intel_engine_cs base;
168 	struct intel_context context;
169 	struct rcu_work rcu;
170 
171 	/*
172 	 * We allow only a single request through the virtual engine at a time
173 	 * (each request in the timeline waits for the completion fence of
174 	 * the previous before being submitted). By restricting ourselves to
175 	 * only submitting a single request, each request is placed on to a
176 	 * physical to maximise load spreading (by virtue of the late greedy
177 	 * scheduling -- each real engine takes the next available request
178 	 * upon idling).
179 	 */
180 	struct i915_request *request;
181 
182 	/*
183 	 * We keep a rbtree of available virtual engines inside each physical
184 	 * engine, sorted by priority. Here we preallocate the nodes we need
185 	 * for the virtual engine, indexed by physical_engine->id.
186 	 */
187 	struct ve_node {
188 		struct rb_node rb;
189 		int prio;
190 	} nodes[I915_NUM_ENGINES];
191 
192 	/* And finally, which physical engines this virtual engine maps onto. */
193 	unsigned int num_siblings;
194 	struct intel_engine_cs *siblings[];
195 };
196 
197 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
198 {
199 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
200 	return container_of(engine, struct virtual_engine, base);
201 }
202 
203 static struct intel_context *
204 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
205 			 unsigned long flags);
206 
207 static struct i915_request *
208 __active_request(const struct intel_timeline * const tl,
209 		 struct i915_request *rq,
210 		 int error)
211 {
212 	struct i915_request *active = rq;
213 
214 	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
215 		if (__i915_request_is_complete(rq))
216 			break;
217 
218 		if (error) {
219 			i915_request_set_error_once(rq, error);
220 			__i915_request_skip(rq);
221 		}
222 		active = rq;
223 	}
224 
225 	return active;
226 }
227 
228 static struct i915_request *
229 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
230 {
231 	return __active_request(tl, rq, 0);
232 }
233 
234 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
235 {
236 	/*
237 	 * We inspect HWS_PREEMPT with a semaphore inside
238 	 * engine->emit_fini_breadcrumb. If the dword is true,
239 	 * the ring is paused as the semaphore will busywait
240 	 * until the dword is false.
241 	 */
242 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
243 	if (state)
244 		wmb();
245 }
246 
247 static struct i915_priolist *to_priolist(struct rb_node *rb)
248 {
249 	return rb_entry(rb, struct i915_priolist, node);
250 }
251 
252 static int rq_prio(const struct i915_request *rq)
253 {
254 	return READ_ONCE(rq->sched.attr.priority);
255 }
256 
257 static int effective_prio(const struct i915_request *rq)
258 {
259 	int prio = rq_prio(rq);
260 
261 	/*
262 	 * If this request is special and must not be interrupted at any
263 	 * cost, so be it. Note we are only checking the most recent request
264 	 * in the context and so may be masking an earlier vip request. It
265 	 * is hoped that under the conditions where nopreempt is used, this
266 	 * will not matter (i.e. all requests to that context will be
267 	 * nopreempt for as long as desired).
268 	 */
269 	if (i915_request_has_nopreempt(rq))
270 		prio = I915_PRIORITY_UNPREEMPTABLE;
271 
272 	return prio;
273 }
274 
275 static int queue_prio(const struct i915_sched_engine *sched_engine)
276 {
277 	struct rb_node *rb;
278 
279 	rb = rb_first_cached(&sched_engine->queue);
280 	if (!rb)
281 		return INT_MIN;
282 
283 	return to_priolist(rb)->priority;
284 }
285 
286 static int virtual_prio(const struct intel_engine_execlists *el)
287 {
288 	struct rb_node *rb = rb_first_cached(&el->virtual);
289 
290 	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
291 }
292 
293 static bool need_preempt(const struct intel_engine_cs *engine,
294 			 const struct i915_request *rq)
295 {
296 	int last_prio;
297 
298 	if (!intel_engine_has_semaphores(engine))
299 		return false;
300 
301 	/*
302 	 * Check if the current priority hint merits a preemption attempt.
303 	 *
304 	 * We record the highest value priority we saw during rescheduling
305 	 * prior to this dequeue, therefore we know that if it is strictly
306 	 * less than the current tail of ESLP[0], we do not need to force
307 	 * a preempt-to-idle cycle.
308 	 *
309 	 * However, the priority hint is a mere hint that we may need to
310 	 * preempt. If that hint is stale or we may be trying to preempt
311 	 * ourselves, ignore the request.
312 	 *
313 	 * More naturally we would write
314 	 *      prio >= max(0, last);
315 	 * except that we wish to prevent triggering preemption at the same
316 	 * priority level: the task that is running should remain running
317 	 * to preserve FIFO ordering of dependencies.
318 	 */
319 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
320 	if (engine->sched_engine->queue_priority_hint <= last_prio)
321 		return false;
322 
323 	/*
324 	 * Check against the first request in ELSP[1], it will, thanks to the
325 	 * power of PI, be the highest priority of that context.
326 	 */
327 	if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
328 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
329 		return true;
330 
331 	/*
332 	 * If the inflight context did not trigger the preemption, then maybe
333 	 * it was the set of queued requests? Pick the highest priority in
334 	 * the queue (the first active priolist) and see if it deserves to be
335 	 * running instead of ELSP[0].
336 	 *
337 	 * The highest priority request in the queue can not be either
338 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
339 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
340 	 */
341 	return max(virtual_prio(&engine->execlists),
342 		   queue_prio(engine->sched_engine)) > last_prio;
343 }
344 
345 __maybe_unused static bool
346 assert_priority_queue(const struct i915_request *prev,
347 		      const struct i915_request *next)
348 {
349 	/*
350 	 * Without preemption, the prev may refer to the still active element
351 	 * which we refuse to let go.
352 	 *
353 	 * Even with preemption, there are times when we think it is better not
354 	 * to preempt and leave an ostensibly lower priority request in flight.
355 	 */
356 	if (i915_request_is_active(prev))
357 		return true;
358 
359 	return rq_prio(prev) >= rq_prio(next);
360 }
361 
362 static struct i915_request *
363 __unwind_incomplete_requests(struct intel_engine_cs *engine)
364 {
365 	struct i915_request *rq, *rn, *active = NULL;
366 	struct list_head *pl;
367 	int prio = I915_PRIORITY_INVALID;
368 
369 	lockdep_assert_held(&engine->sched_engine->lock);
370 
371 	list_for_each_entry_safe_reverse(rq, rn,
372 					 &engine->sched_engine->requests,
373 					 sched.link) {
374 		if (__i915_request_is_complete(rq)) {
375 			list_del_init(&rq->sched.link);
376 			continue;
377 		}
378 
379 		__i915_request_unsubmit(rq);
380 
381 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
382 		if (rq_prio(rq) != prio) {
383 			prio = rq_prio(rq);
384 			pl = i915_sched_lookup_priolist(engine->sched_engine,
385 							prio);
386 		}
387 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
388 
389 		list_move(&rq->sched.link, pl);
390 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
391 
392 		/* Check in case we rollback so far we wrap [size/2] */
393 		if (intel_ring_direction(rq->ring,
394 					 rq->tail,
395 					 rq->ring->tail + 8) > 0)
396 			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
397 
398 		active = rq;
399 	}
400 
401 	return active;
402 }
403 
404 struct i915_request *
405 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
406 {
407 	struct intel_engine_cs *engine =
408 		container_of(execlists, typeof(*engine), execlists);
409 
410 	return __unwind_incomplete_requests(engine);
411 }
412 
413 static void
414 execlists_context_status_change(struct i915_request *rq, unsigned long status)
415 {
416 	/*
417 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
418 	 * The compiler should eliminate this function as dead-code.
419 	 */
420 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
421 		return;
422 
423 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
424 				   status, rq);
425 }
426 
427 static void reset_active(struct i915_request *rq,
428 			 struct intel_engine_cs *engine)
429 {
430 	struct intel_context * const ce = rq->context;
431 	u32 head;
432 
433 	/*
434 	 * The executing context has been cancelled. We want to prevent
435 	 * further execution along this context and propagate the error on
436 	 * to anything depending on its results.
437 	 *
438 	 * In __i915_request_submit(), we apply the -EIO and remove the
439 	 * requests' payloads for any banned requests. But first, we must
440 	 * rewind the context back to the start of the incomplete request so
441 	 * that we do not jump back into the middle of the batch.
442 	 *
443 	 * We preserve the breadcrumbs and semaphores of the incomplete
444 	 * requests so that inter-timeline dependencies (i.e other timelines)
445 	 * remain correctly ordered. And we defer to __i915_request_submit()
446 	 * so that all asynchronous waits are correctly handled.
447 	 */
448 	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
449 		     rq->fence.context, rq->fence.seqno);
450 
451 	/* On resubmission of the active request, payload will be scrubbed */
452 	if (__i915_request_is_complete(rq))
453 		head = rq->tail;
454 	else
455 		head = __active_request(ce->timeline, rq, -EIO)->head;
456 	head = intel_ring_wrap(ce->ring, head);
457 
458 	/* Scrub the context image to prevent replaying the previous batch */
459 	lrc_init_regs(ce, engine, true);
460 
461 	/* We've switched away, so this should be a no-op, but intent matters */
462 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
463 }
464 
465 static bool bad_request(const struct i915_request *rq)
466 {
467 	return rq->fence.error && i915_request_started(rq);
468 }
469 
470 static struct intel_engine_cs *
471 __execlists_schedule_in(struct i915_request *rq)
472 {
473 	struct intel_engine_cs * const engine = rq->engine;
474 	struct intel_context * const ce = rq->context;
475 
476 	intel_context_get(ce);
477 
478 	if (unlikely(intel_context_is_closed(ce) &&
479 		     !intel_engine_has_heartbeat(engine)))
480 		intel_context_set_banned(ce);
481 
482 	if (unlikely(intel_context_is_banned(ce) || bad_request(rq)))
483 		reset_active(rq, engine);
484 
485 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
486 		lrc_check_regs(ce, engine, "before");
487 
488 	if (ce->tag) {
489 		/* Use a fixed tag for OA and friends */
490 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
491 		ce->lrc.ccid = ce->tag;
492 	} else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
493 		/* We don't need a strict matching tag, just different values */
494 		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
495 
496 		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
497 		clear_bit(tag - 1, &engine->context_tag);
498 		ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
499 
500 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
501 
502 	} else {
503 		/* We don't need a strict matching tag, just different values */
504 		unsigned int tag = __ffs(engine->context_tag);
505 
506 		GEM_BUG_ON(tag >= BITS_PER_LONG);
507 		__clear_bit(tag, &engine->context_tag);
508 		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
509 
510 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
511 	}
512 
513 	ce->lrc.ccid |= engine->execlists.ccid;
514 
515 	__intel_gt_pm_get(engine->gt);
516 	if (engine->fw_domain && !engine->fw_active++)
517 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
518 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
519 	intel_engine_context_in(engine);
520 
521 	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
522 
523 	return engine;
524 }
525 
526 static void execlists_schedule_in(struct i915_request *rq, int idx)
527 {
528 	struct intel_context * const ce = rq->context;
529 	struct intel_engine_cs *old;
530 
531 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
532 	trace_i915_request_in(rq, idx);
533 
534 	old = ce->inflight;
535 	if (!old)
536 		old = __execlists_schedule_in(rq);
537 	WRITE_ONCE(ce->inflight, ptr_inc(old));
538 
539 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
540 }
541 
542 static void
543 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
544 {
545 	struct intel_engine_cs *engine = rq->engine;
546 
547 	spin_lock_irq(&engine->sched_engine->lock);
548 
549 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
550 	WRITE_ONCE(rq->engine, &ve->base);
551 	ve->base.submit_request(rq);
552 
553 	spin_unlock_irq(&engine->sched_engine->lock);
554 }
555 
556 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
557 {
558 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
559 	struct intel_engine_cs *engine = rq->engine;
560 
561 	/*
562 	 * After this point, the rq may be transferred to a new sibling, so
563 	 * before we clear ce->inflight make sure that the context has been
564 	 * removed from the b->signalers and furthermore we need to make sure
565 	 * that the concurrent iterator in signal_irq_work is no longer
566 	 * following ce->signal_link.
567 	 */
568 	if (!list_empty(&ce->signals))
569 		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
570 
571 	/*
572 	 * This engine is now too busy to run this virtual request, so
573 	 * see if we can find an alternative engine for it to execute on.
574 	 * Once a request has become bonded to this engine, we treat it the
575 	 * same as other native request.
576 	 */
577 	if (i915_request_in_priority_queue(rq) &&
578 	    rq->execution_mask != engine->mask)
579 		resubmit_virtual_request(rq, ve);
580 
581 	if (READ_ONCE(ve->request))
582 		tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
583 }
584 
585 static void __execlists_schedule_out(struct i915_request * const rq,
586 				     struct intel_context * const ce)
587 {
588 	struct intel_engine_cs * const engine = rq->engine;
589 	unsigned int ccid;
590 
591 	/*
592 	 * NB process_csb() is not under the engine->sched_engine->lock and hence
593 	 * schedule_out can race with schedule_in meaning that we should
594 	 * refrain from doing non-trivial work here.
595 	 */
596 
597 	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
598 	GEM_BUG_ON(ce->inflight != engine);
599 
600 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
601 		lrc_check_regs(ce, engine, "after");
602 
603 	/*
604 	 * If we have just completed this context, the engine may now be
605 	 * idle and we want to re-enter powersaving.
606 	 */
607 	if (intel_timeline_is_last(ce->timeline, rq) &&
608 	    __i915_request_is_complete(rq))
609 		intel_engine_add_retire(engine, ce->timeline);
610 
611 	ccid = ce->lrc.ccid;
612 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
613 		ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
614 		ccid &= XEHP_MAX_CONTEXT_HW_ID;
615 	} else {
616 		ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
617 		ccid &= GEN12_MAX_CONTEXT_HW_ID;
618 	}
619 
620 	if (ccid < BITS_PER_LONG) {
621 		GEM_BUG_ON(ccid == 0);
622 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
623 		__set_bit(ccid - 1, &engine->context_tag);
624 	}
625 
626 	lrc_update_runtime(ce);
627 	intel_engine_context_out(engine);
628 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
629 	if (engine->fw_domain && !--engine->fw_active)
630 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
631 	intel_gt_pm_put_async(engine->gt);
632 
633 	/*
634 	 * If this is part of a virtual engine, its next request may
635 	 * have been blocked waiting for access to the active context.
636 	 * We have to kick all the siblings again in case we need to
637 	 * switch (e.g. the next request is not runnable on this
638 	 * engine). Hopefully, we will already have submitted the next
639 	 * request before the tasklet runs and do not need to rebuild
640 	 * each virtual tree and kick everyone again.
641 	 */
642 	if (ce->engine != engine)
643 		kick_siblings(rq, ce);
644 
645 	WRITE_ONCE(ce->inflight, NULL);
646 	intel_context_put(ce);
647 }
648 
649 static inline void execlists_schedule_out(struct i915_request *rq)
650 {
651 	struct intel_context * const ce = rq->context;
652 
653 	trace_i915_request_out(rq);
654 
655 	GEM_BUG_ON(!ce->inflight);
656 	ce->inflight = ptr_dec(ce->inflight);
657 	if (!__intel_context_inflight_count(ce->inflight))
658 		__execlists_schedule_out(rq, ce);
659 
660 	i915_request_put(rq);
661 }
662 
663 static u64 execlists_update_context(struct i915_request *rq)
664 {
665 	struct intel_context *ce = rq->context;
666 	u64 desc = ce->lrc.desc;
667 	u32 tail, prev;
668 
669 	/*
670 	 * WaIdleLiteRestore:bdw,skl
671 	 *
672 	 * We should never submit the context with the same RING_TAIL twice
673 	 * just in case we submit an empty ring, which confuses the HW.
674 	 *
675 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
676 	 * the normal request to be able to always advance the RING_TAIL on
677 	 * subsequent resubmissions (for lite restore). Should that fail us,
678 	 * and we try and submit the same tail again, force the context
679 	 * reload.
680 	 *
681 	 * If we need to return to a preempted context, we need to skip the
682 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
683 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
684 	 * an earlier request.
685 	 */
686 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
687 	prev = rq->ring->tail;
688 	tail = intel_ring_set_tail(rq->ring, rq->tail);
689 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
690 		desc |= CTX_DESC_FORCE_RESTORE;
691 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
692 	rq->tail = rq->wa_tail;
693 
694 	/*
695 	 * Make sure the context image is complete before we submit it to HW.
696 	 *
697 	 * Ostensibly, writes (including the WCB) should be flushed prior to
698 	 * an uncached write such as our mmio register access, the empirical
699 	 * evidence (esp. on Braswell) suggests that the WC write into memory
700 	 * may not be visible to the HW prior to the completion of the UC
701 	 * register write and that we may begin execution from the context
702 	 * before its image is complete leading to invalid PD chasing.
703 	 */
704 	wmb();
705 
706 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
707 	return desc;
708 }
709 
710 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
711 {
712 	if (execlists->ctrl_reg) {
713 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
714 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
715 	} else {
716 		writel(upper_32_bits(desc), execlists->submit_reg);
717 		writel(lower_32_bits(desc), execlists->submit_reg);
718 	}
719 }
720 
721 static __maybe_unused char *
722 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
723 {
724 	if (!rq)
725 		return "";
726 
727 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
728 		 prefix,
729 		 rq->context->lrc.ccid,
730 		 rq->fence.context, rq->fence.seqno,
731 		 __i915_request_is_complete(rq) ? "!" :
732 		 __i915_request_has_started(rq) ? "*" :
733 		 "",
734 		 rq_prio(rq));
735 
736 	return buf;
737 }
738 
739 static __maybe_unused noinline void
740 trace_ports(const struct intel_engine_execlists *execlists,
741 	    const char *msg,
742 	    struct i915_request * const *ports)
743 {
744 	const struct intel_engine_cs *engine =
745 		container_of(execlists, typeof(*engine), execlists);
746 	char __maybe_unused p0[40], p1[40];
747 
748 	if (!ports[0])
749 		return;
750 
751 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
752 		     dump_port(p0, sizeof(p0), "", ports[0]),
753 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
754 }
755 
756 static bool
757 reset_in_progress(const struct intel_engine_cs *engine)
758 {
759 	return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
760 }
761 
762 static __maybe_unused noinline bool
763 assert_pending_valid(const struct intel_engine_execlists *execlists,
764 		     const char *msg)
765 {
766 	struct intel_engine_cs *engine =
767 		container_of(execlists, typeof(*engine), execlists);
768 	struct i915_request * const *port, *rq, *prev = NULL;
769 	struct intel_context *ce = NULL;
770 	u32 ccid = -1;
771 
772 	trace_ports(execlists, msg, execlists->pending);
773 
774 	/* We may be messing around with the lists during reset, lalala */
775 	if (reset_in_progress(engine))
776 		return true;
777 
778 	if (!execlists->pending[0]) {
779 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
780 			      engine->name);
781 		return false;
782 	}
783 
784 	if (execlists->pending[execlists_num_ports(execlists)]) {
785 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
786 			      engine->name, execlists_num_ports(execlists));
787 		return false;
788 	}
789 
790 	for (port = execlists->pending; (rq = *port); port++) {
791 		unsigned long flags;
792 		bool ok = true;
793 
794 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
795 		GEM_BUG_ON(!i915_request_is_active(rq));
796 
797 		if (ce == rq->context) {
798 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
799 				      engine->name,
800 				      ce->timeline->fence_context,
801 				      port - execlists->pending);
802 			return false;
803 		}
804 		ce = rq->context;
805 
806 		if (ccid == ce->lrc.ccid) {
807 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
808 				      engine->name,
809 				      ccid, ce->timeline->fence_context,
810 				      port - execlists->pending);
811 			return false;
812 		}
813 		ccid = ce->lrc.ccid;
814 
815 		/*
816 		 * Sentinels are supposed to be the last request so they flush
817 		 * the current execution off the HW. Check that they are the only
818 		 * request in the pending submission.
819 		 *
820 		 * NB: Due to the async nature of preempt-to-busy and request
821 		 * cancellation we need to handle the case where request
822 		 * becomes a sentinel in parallel to CSB processing.
823 		 */
824 		if (prev && i915_request_has_sentinel(prev) &&
825 		    !READ_ONCE(prev->fence.error)) {
826 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
827 				      engine->name,
828 				      ce->timeline->fence_context,
829 				      port - execlists->pending);
830 			return false;
831 		}
832 		prev = rq;
833 
834 		/*
835 		 * We want virtual requests to only be in the first slot so
836 		 * that they are never stuck behind a hog and can be immediately
837 		 * transferred onto the next idle engine.
838 		 */
839 		if (rq->execution_mask != engine->mask &&
840 		    port != execlists->pending) {
841 			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
842 				      engine->name,
843 				      ce->timeline->fence_context,
844 				      port - execlists->pending);
845 			return false;
846 		}
847 
848 		/* Hold tightly onto the lock to prevent concurrent retires! */
849 		if (!spin_trylock_irqsave(&rq->lock, flags))
850 			continue;
851 
852 		if (__i915_request_is_complete(rq))
853 			goto unlock;
854 
855 		if (i915_active_is_idle(&ce->active) &&
856 		    !intel_context_is_barrier(ce)) {
857 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
858 				      engine->name,
859 				      ce->timeline->fence_context,
860 				      port - execlists->pending);
861 			ok = false;
862 			goto unlock;
863 		}
864 
865 		if (!i915_vma_is_pinned(ce->state)) {
866 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
867 				      engine->name,
868 				      ce->timeline->fence_context,
869 				      port - execlists->pending);
870 			ok = false;
871 			goto unlock;
872 		}
873 
874 		if (!i915_vma_is_pinned(ce->ring->vma)) {
875 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
876 				      engine->name,
877 				      ce->timeline->fence_context,
878 				      port - execlists->pending);
879 			ok = false;
880 			goto unlock;
881 		}
882 
883 unlock:
884 		spin_unlock_irqrestore(&rq->lock, flags);
885 		if (!ok)
886 			return false;
887 	}
888 
889 	return ce;
890 }
891 
892 static void execlists_submit_ports(struct intel_engine_cs *engine)
893 {
894 	struct intel_engine_execlists *execlists = &engine->execlists;
895 	unsigned int n;
896 
897 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
898 
899 	/*
900 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
901 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
902 	 * not be relinquished until the device is idle (see
903 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
904 	 * that all ELSP are drained i.e. we have processed the CSB,
905 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
906 	 */
907 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
908 
909 	/*
910 	 * ELSQ note: the submit queue is not cleared after being submitted
911 	 * to the HW so we need to make sure we always clean it up. This is
912 	 * currently ensured by the fact that we always write the same number
913 	 * of elsq entries, keep this in mind before changing the loop below.
914 	 */
915 	for (n = execlists_num_ports(execlists); n--; ) {
916 		struct i915_request *rq = execlists->pending[n];
917 
918 		write_desc(execlists,
919 			   rq ? execlists_update_context(rq) : 0,
920 			   n);
921 	}
922 
923 	/* we need to manually load the submit queue */
924 	if (execlists->ctrl_reg)
925 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
926 }
927 
928 static bool ctx_single_port_submission(const struct intel_context *ce)
929 {
930 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
931 		intel_context_force_single_submission(ce));
932 }
933 
934 static bool can_merge_ctx(const struct intel_context *prev,
935 			  const struct intel_context *next)
936 {
937 	if (prev != next)
938 		return false;
939 
940 	if (ctx_single_port_submission(prev))
941 		return false;
942 
943 	return true;
944 }
945 
946 static unsigned long i915_request_flags(const struct i915_request *rq)
947 {
948 	return READ_ONCE(rq->fence.flags);
949 }
950 
951 static bool can_merge_rq(const struct i915_request *prev,
952 			 const struct i915_request *next)
953 {
954 	GEM_BUG_ON(prev == next);
955 	GEM_BUG_ON(!assert_priority_queue(prev, next));
956 
957 	/*
958 	 * We do not submit known completed requests. Therefore if the next
959 	 * request is already completed, we can pretend to merge it in
960 	 * with the previous context (and we will skip updating the ELSP
961 	 * and tracking). Thus hopefully keeping the ELSP full with active
962 	 * contexts, despite the best efforts of preempt-to-busy to confuse
963 	 * us.
964 	 */
965 	if (__i915_request_is_complete(next))
966 		return true;
967 
968 	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
969 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
970 		      BIT(I915_FENCE_FLAG_SENTINEL))))
971 		return false;
972 
973 	if (!can_merge_ctx(prev->context, next->context))
974 		return false;
975 
976 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
977 	return true;
978 }
979 
980 static bool virtual_matches(const struct virtual_engine *ve,
981 			    const struct i915_request *rq,
982 			    const struct intel_engine_cs *engine)
983 {
984 	const struct intel_engine_cs *inflight;
985 
986 	if (!rq)
987 		return false;
988 
989 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
990 		return false;
991 
992 	/*
993 	 * We track when the HW has completed saving the context image
994 	 * (i.e. when we have seen the final CS event switching out of
995 	 * the context) and must not overwrite the context image before
996 	 * then. This restricts us to only using the active engine
997 	 * while the previous virtualized request is inflight (so
998 	 * we reuse the register offsets). This is a very small
999 	 * hystersis on the greedy seelction algorithm.
1000 	 */
1001 	inflight = intel_context_inflight(&ve->context);
1002 	if (inflight && inflight != engine)
1003 		return false;
1004 
1005 	return true;
1006 }
1007 
1008 static struct virtual_engine *
1009 first_virtual_engine(struct intel_engine_cs *engine)
1010 {
1011 	struct intel_engine_execlists *el = &engine->execlists;
1012 	struct rb_node *rb = rb_first_cached(&el->virtual);
1013 
1014 	while (rb) {
1015 		struct virtual_engine *ve =
1016 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1017 		struct i915_request *rq = READ_ONCE(ve->request);
1018 
1019 		/* lazily cleanup after another engine handled rq */
1020 		if (!rq || !virtual_matches(ve, rq, engine)) {
1021 			rb_erase_cached(rb, &el->virtual);
1022 			RB_CLEAR_NODE(rb);
1023 			rb = rb_first_cached(&el->virtual);
1024 			continue;
1025 		}
1026 
1027 		return ve;
1028 	}
1029 
1030 	return NULL;
1031 }
1032 
1033 static void virtual_xfer_context(struct virtual_engine *ve,
1034 				 struct intel_engine_cs *engine)
1035 {
1036 	unsigned int n;
1037 
1038 	if (likely(engine == ve->siblings[0]))
1039 		return;
1040 
1041 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1042 	if (!intel_engine_has_relative_mmio(engine))
1043 		lrc_update_offsets(&ve->context, engine);
1044 
1045 	/*
1046 	 * Move the bound engine to the top of the list for
1047 	 * future execution. We then kick this tasklet first
1048 	 * before checking others, so that we preferentially
1049 	 * reuse this set of bound registers.
1050 	 */
1051 	for (n = 1; n < ve->num_siblings; n++) {
1052 		if (ve->siblings[n] == engine) {
1053 			swap(ve->siblings[n], ve->siblings[0]);
1054 			break;
1055 		}
1056 	}
1057 }
1058 
1059 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1060 {
1061 	LIST_HEAD(list);
1062 
1063 	/*
1064 	 * We want to move the interrupted request to the back of
1065 	 * the round-robin list (i.e. its priority level), but
1066 	 * in doing so, we must then move all requests that were in
1067 	 * flight and were waiting for the interrupted request to
1068 	 * be run after it again.
1069 	 */
1070 	do {
1071 		struct i915_dependency *p;
1072 
1073 		GEM_BUG_ON(i915_request_is_active(rq));
1074 		list_move_tail(&rq->sched.link, pl);
1075 
1076 		for_each_waiter(p, rq) {
1077 			struct i915_request *w =
1078 				container_of(p->waiter, typeof(*w), sched);
1079 
1080 			if (p->flags & I915_DEPENDENCY_WEAK)
1081 				continue;
1082 
1083 			/* Leave semaphores spinning on the other engines */
1084 			if (w->engine != rq->engine)
1085 				continue;
1086 
1087 			/* No waiter should start before its signaler */
1088 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1089 				   __i915_request_has_started(w) &&
1090 				   !__i915_request_is_complete(rq));
1091 
1092 			if (!i915_request_is_ready(w))
1093 				continue;
1094 
1095 			if (rq_prio(w) < rq_prio(rq))
1096 				continue;
1097 
1098 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1099 			GEM_BUG_ON(i915_request_is_active(w));
1100 			list_move_tail(&w->sched.link, &list);
1101 		}
1102 
1103 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1104 	} while (rq);
1105 }
1106 
1107 static void defer_active(struct intel_engine_cs *engine)
1108 {
1109 	struct i915_request *rq;
1110 
1111 	rq = __unwind_incomplete_requests(engine);
1112 	if (!rq)
1113 		return;
1114 
1115 	defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1116 						     rq_prio(rq)));
1117 }
1118 
1119 static bool
1120 timeslice_yield(const struct intel_engine_execlists *el,
1121 		const struct i915_request *rq)
1122 {
1123 	/*
1124 	 * Once bitten, forever smitten!
1125 	 *
1126 	 * If the active context ever busy-waited on a semaphore,
1127 	 * it will be treated as a hog until the end of its timeslice (i.e.
1128 	 * until it is scheduled out and replaced by a new submission,
1129 	 * possibly even its own lite-restore). The HW only sends an interrupt
1130 	 * on the first miss, and we do know if that semaphore has been
1131 	 * signaled, or even if it is now stuck on another semaphore. Play
1132 	 * safe, yield if it might be stuck -- it will be given a fresh
1133 	 * timeslice in the near future.
1134 	 */
1135 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1136 }
1137 
1138 static bool needs_timeslice(const struct intel_engine_cs *engine,
1139 			    const struct i915_request *rq)
1140 {
1141 	if (!intel_engine_has_timeslices(engine))
1142 		return false;
1143 
1144 	/* If not currently active, or about to switch, wait for next event */
1145 	if (!rq || __i915_request_is_complete(rq))
1146 		return false;
1147 
1148 	/* We do not need to start the timeslice until after the ACK */
1149 	if (READ_ONCE(engine->execlists.pending[0]))
1150 		return false;
1151 
1152 	/* If ELSP[1] is occupied, always check to see if worth slicing */
1153 	if (!list_is_last_rcu(&rq->sched.link,
1154 			      &engine->sched_engine->requests)) {
1155 		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1156 		return true;
1157 	}
1158 
1159 	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1160 	if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1161 		ENGINE_TRACE(engine, "timeslice required for queue\n");
1162 		return true;
1163 	}
1164 
1165 	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1166 		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1167 		return true;
1168 	}
1169 
1170 	return false;
1171 }
1172 
1173 static bool
1174 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1175 {
1176 	const struct intel_engine_execlists *el = &engine->execlists;
1177 
1178 	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1179 		return false;
1180 
1181 	if (!needs_timeslice(engine, rq))
1182 		return false;
1183 
1184 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1185 }
1186 
1187 static unsigned long timeslice(const struct intel_engine_cs *engine)
1188 {
1189 	return READ_ONCE(engine->props.timeslice_duration_ms);
1190 }
1191 
1192 static void start_timeslice(struct intel_engine_cs *engine)
1193 {
1194 	struct intel_engine_execlists *el = &engine->execlists;
1195 	unsigned long duration;
1196 
1197 	/* Disable the timer if there is nothing to switch to */
1198 	duration = 0;
1199 	if (needs_timeslice(engine, *el->active)) {
1200 		/* Avoid continually prolonging an active timeslice */
1201 		if (timer_active(&el->timer)) {
1202 			/*
1203 			 * If we just submitted a new ELSP after an old
1204 			 * context, that context may have already consumed
1205 			 * its timeslice, so recheck.
1206 			 */
1207 			if (!timer_pending(&el->timer))
1208 				tasklet_hi_schedule(&engine->sched_engine->tasklet);
1209 			return;
1210 		}
1211 
1212 		duration = timeslice(engine);
1213 	}
1214 
1215 	set_timer_ms(&el->timer, duration);
1216 }
1217 
1218 static void record_preemption(struct intel_engine_execlists *execlists)
1219 {
1220 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1221 }
1222 
1223 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1224 					    const struct i915_request *rq)
1225 {
1226 	if (!rq)
1227 		return 0;
1228 
1229 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1230 	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1231 		return 1;
1232 
1233 	return READ_ONCE(engine->props.preempt_timeout_ms);
1234 }
1235 
1236 static void set_preempt_timeout(struct intel_engine_cs *engine,
1237 				const struct i915_request *rq)
1238 {
1239 	if (!intel_engine_has_preempt_reset(engine))
1240 		return;
1241 
1242 	set_timer_ms(&engine->execlists.preempt,
1243 		     active_preempt_timeout(engine, rq));
1244 }
1245 
1246 static bool completed(const struct i915_request *rq)
1247 {
1248 	if (i915_request_has_sentinel(rq))
1249 		return false;
1250 
1251 	return __i915_request_is_complete(rq);
1252 }
1253 
1254 static void execlists_dequeue(struct intel_engine_cs *engine)
1255 {
1256 	struct intel_engine_execlists * const execlists = &engine->execlists;
1257 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
1258 	struct i915_request **port = execlists->pending;
1259 	struct i915_request ** const last_port = port + execlists->port_mask;
1260 	struct i915_request *last, * const *active;
1261 	struct virtual_engine *ve;
1262 	struct rb_node *rb;
1263 	bool submit = false;
1264 
1265 	/*
1266 	 * Hardware submission is through 2 ports. Conceptually each port
1267 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1268 	 * static for a context, and unique to each, so we only execute
1269 	 * requests belonging to a single context from each ring. RING_HEAD
1270 	 * is maintained by the CS in the context image, it marks the place
1271 	 * where it got up to last time, and through RING_TAIL we tell the CS
1272 	 * where we want to execute up to this time.
1273 	 *
1274 	 * In this list the requests are in order of execution. Consecutive
1275 	 * requests from the same context are adjacent in the ringbuffer. We
1276 	 * can combine these requests into a single RING_TAIL update:
1277 	 *
1278 	 *              RING_HEAD...req1...req2
1279 	 *                                    ^- RING_TAIL
1280 	 * since to execute req2 the CS must first execute req1.
1281 	 *
1282 	 * Our goal then is to point each port to the end of a consecutive
1283 	 * sequence of requests as being the most optimal (fewest wake ups
1284 	 * and context switches) submission.
1285 	 */
1286 
1287 	spin_lock(&sched_engine->lock);
1288 
1289 	/*
1290 	 * If the queue is higher priority than the last
1291 	 * request in the currently active context, submit afresh.
1292 	 * We will resubmit again afterwards in case we need to split
1293 	 * the active context to interject the preemption request,
1294 	 * i.e. we will retrigger preemption following the ack in case
1295 	 * of trouble.
1296 	 *
1297 	 */
1298 	active = execlists->active;
1299 	while ((last = *active) && completed(last))
1300 		active++;
1301 
1302 	if (last) {
1303 		if (need_preempt(engine, last)) {
1304 			ENGINE_TRACE(engine,
1305 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1306 				     last->fence.context,
1307 				     last->fence.seqno,
1308 				     last->sched.attr.priority,
1309 				     sched_engine->queue_priority_hint);
1310 			record_preemption(execlists);
1311 
1312 			/*
1313 			 * Don't let the RING_HEAD advance past the breadcrumb
1314 			 * as we unwind (and until we resubmit) so that we do
1315 			 * not accidentally tell it to go backwards.
1316 			 */
1317 			ring_set_paused(engine, 1);
1318 
1319 			/*
1320 			 * Note that we have not stopped the GPU at this point,
1321 			 * so we are unwinding the incomplete requests as they
1322 			 * remain inflight and so by the time we do complete
1323 			 * the preemption, some of the unwound requests may
1324 			 * complete!
1325 			 */
1326 			__unwind_incomplete_requests(engine);
1327 
1328 			last = NULL;
1329 		} else if (timeslice_expired(engine, last)) {
1330 			ENGINE_TRACE(engine,
1331 				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1332 				     yesno(timer_expired(&execlists->timer)),
1333 				     last->fence.context, last->fence.seqno,
1334 				     rq_prio(last),
1335 				     sched_engine->queue_priority_hint,
1336 				     yesno(timeslice_yield(execlists, last)));
1337 
1338 			/*
1339 			 * Consume this timeslice; ensure we start a new one.
1340 			 *
1341 			 * The timeslice expired, and we will unwind the
1342 			 * running contexts and recompute the next ELSP.
1343 			 * If that submit will be the same pair of contexts
1344 			 * (due to dependency ordering), we will skip the
1345 			 * submission. If we don't cancel the timer now,
1346 			 * we will see that the timer has expired and
1347 			 * reschedule the tasklet; continually until the
1348 			 * next context switch or other preeemption event.
1349 			 *
1350 			 * Since we have decided to reschedule based on
1351 			 * consumption of this timeslice, if we submit the
1352 			 * same context again, grant it a full timeslice.
1353 			 */
1354 			cancel_timer(&execlists->timer);
1355 			ring_set_paused(engine, 1);
1356 			defer_active(engine);
1357 
1358 			/*
1359 			 * Unlike for preemption, if we rewind and continue
1360 			 * executing the same context as previously active,
1361 			 * the order of execution will remain the same and
1362 			 * the tail will only advance. We do not need to
1363 			 * force a full context restore, as a lite-restore
1364 			 * is sufficient to resample the monotonic TAIL.
1365 			 *
1366 			 * If we switch to any other context, similarly we
1367 			 * will not rewind TAIL of current context, and
1368 			 * normal save/restore will preserve state and allow
1369 			 * us to later continue executing the same request.
1370 			 */
1371 			last = NULL;
1372 		} else {
1373 			/*
1374 			 * Otherwise if we already have a request pending
1375 			 * for execution after the current one, we can
1376 			 * just wait until the next CS event before
1377 			 * queuing more. In either case we will force a
1378 			 * lite-restore preemption event, but if we wait
1379 			 * we hopefully coalesce several updates into a single
1380 			 * submission.
1381 			 */
1382 			if (active[1]) {
1383 				/*
1384 				 * Even if ELSP[1] is occupied and not worthy
1385 				 * of timeslices, our queue might be.
1386 				 */
1387 				spin_unlock(&sched_engine->lock);
1388 				return;
1389 			}
1390 		}
1391 	}
1392 
1393 	/* XXX virtual is always taking precedence */
1394 	while ((ve = first_virtual_engine(engine))) {
1395 		struct i915_request *rq;
1396 
1397 		spin_lock(&ve->base.sched_engine->lock);
1398 
1399 		rq = ve->request;
1400 		if (unlikely(!virtual_matches(ve, rq, engine)))
1401 			goto unlock; /* lost the race to a sibling */
1402 
1403 		GEM_BUG_ON(rq->engine != &ve->base);
1404 		GEM_BUG_ON(rq->context != &ve->context);
1405 
1406 		if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1407 			spin_unlock(&ve->base.sched_engine->lock);
1408 			break;
1409 		}
1410 
1411 		if (last && !can_merge_rq(last, rq)) {
1412 			spin_unlock(&ve->base.sched_engine->lock);
1413 			spin_unlock(&engine->sched_engine->lock);
1414 			return; /* leave this for another sibling */
1415 		}
1416 
1417 		ENGINE_TRACE(engine,
1418 			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1419 			     rq->fence.context,
1420 			     rq->fence.seqno,
1421 			     __i915_request_is_complete(rq) ? "!" :
1422 			     __i915_request_has_started(rq) ? "*" :
1423 			     "",
1424 			     yesno(engine != ve->siblings[0]));
1425 
1426 		WRITE_ONCE(ve->request, NULL);
1427 		WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1428 
1429 		rb = &ve->nodes[engine->id].rb;
1430 		rb_erase_cached(rb, &execlists->virtual);
1431 		RB_CLEAR_NODE(rb);
1432 
1433 		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1434 		WRITE_ONCE(rq->engine, engine);
1435 
1436 		if (__i915_request_submit(rq)) {
1437 			/*
1438 			 * Only after we confirm that we will submit
1439 			 * this request (i.e. it has not already
1440 			 * completed), do we want to update the context.
1441 			 *
1442 			 * This serves two purposes. It avoids
1443 			 * unnecessary work if we are resubmitting an
1444 			 * already completed request after timeslicing.
1445 			 * But more importantly, it prevents us altering
1446 			 * ve->siblings[] on an idle context, where
1447 			 * we may be using ve->siblings[] in
1448 			 * virtual_context_enter / virtual_context_exit.
1449 			 */
1450 			virtual_xfer_context(ve, engine);
1451 			GEM_BUG_ON(ve->siblings[0] != engine);
1452 
1453 			submit = true;
1454 			last = rq;
1455 		}
1456 
1457 		i915_request_put(rq);
1458 unlock:
1459 		spin_unlock(&ve->base.sched_engine->lock);
1460 
1461 		/*
1462 		 * Hmm, we have a bunch of virtual engine requests,
1463 		 * but the first one was already completed (thanks
1464 		 * preempt-to-busy!). Keep looking at the veng queue
1465 		 * until we have no more relevant requests (i.e.
1466 		 * the normal submit queue has higher priority).
1467 		 */
1468 		if (submit)
1469 			break;
1470 	}
1471 
1472 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1473 		struct i915_priolist *p = to_priolist(rb);
1474 		struct i915_request *rq, *rn;
1475 
1476 		priolist_for_each_request_consume(rq, rn, p) {
1477 			bool merge = true;
1478 
1479 			/*
1480 			 * Can we combine this request with the current port?
1481 			 * It has to be the same context/ringbuffer and not
1482 			 * have any exceptions (e.g. GVT saying never to
1483 			 * combine contexts).
1484 			 *
1485 			 * If we can combine the requests, we can execute both
1486 			 * by updating the RING_TAIL to point to the end of the
1487 			 * second request, and so we never need to tell the
1488 			 * hardware about the first.
1489 			 */
1490 			if (last && !can_merge_rq(last, rq)) {
1491 				/*
1492 				 * If we are on the second port and cannot
1493 				 * combine this request with the last, then we
1494 				 * are done.
1495 				 */
1496 				if (port == last_port)
1497 					goto done;
1498 
1499 				/*
1500 				 * We must not populate both ELSP[] with the
1501 				 * same LRCA, i.e. we must submit 2 different
1502 				 * contexts if we submit 2 ELSP.
1503 				 */
1504 				if (last->context == rq->context)
1505 					goto done;
1506 
1507 				if (i915_request_has_sentinel(last))
1508 					goto done;
1509 
1510 				/*
1511 				 * We avoid submitting virtual requests into
1512 				 * the secondary ports so that we can migrate
1513 				 * the request immediately to another engine
1514 				 * rather than wait for the primary request.
1515 				 */
1516 				if (rq->execution_mask != engine->mask)
1517 					goto done;
1518 
1519 				/*
1520 				 * If GVT overrides us we only ever submit
1521 				 * port[0], leaving port[1] empty. Note that we
1522 				 * also have to be careful that we don't queue
1523 				 * the same context (even though a different
1524 				 * request) to the second port.
1525 				 */
1526 				if (ctx_single_port_submission(last->context) ||
1527 				    ctx_single_port_submission(rq->context))
1528 					goto done;
1529 
1530 				merge = false;
1531 			}
1532 
1533 			if (__i915_request_submit(rq)) {
1534 				if (!merge) {
1535 					*port++ = i915_request_get(last);
1536 					last = NULL;
1537 				}
1538 
1539 				GEM_BUG_ON(last &&
1540 					   !can_merge_ctx(last->context,
1541 							  rq->context));
1542 				GEM_BUG_ON(last &&
1543 					   i915_seqno_passed(last->fence.seqno,
1544 							     rq->fence.seqno));
1545 
1546 				submit = true;
1547 				last = rq;
1548 			}
1549 		}
1550 
1551 		rb_erase_cached(&p->node, &sched_engine->queue);
1552 		i915_priolist_free(p);
1553 	}
1554 done:
1555 	*port++ = i915_request_get(last);
1556 
1557 	/*
1558 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1559 	 *
1560 	 * We choose the priority hint such that if we add a request of greater
1561 	 * priority than this, we kick the submission tasklet to decide on
1562 	 * the right order of submitting the requests to hardware. We must
1563 	 * also be prepared to reorder requests as they are in-flight on the
1564 	 * HW. We derive the priority hint then as the first "hole" in
1565 	 * the HW submission ports and if there are no available slots,
1566 	 * the priority of the lowest executing request, i.e. last.
1567 	 *
1568 	 * When we do receive a higher priority request ready to run from the
1569 	 * user, see queue_request(), the priority hint is bumped to that
1570 	 * request triggering preemption on the next dequeue (or subsequent
1571 	 * interrupt for secondary ports).
1572 	 */
1573 	sched_engine->queue_priority_hint = queue_prio(sched_engine);
1574 	i915_sched_engine_reset_on_empty(sched_engine);
1575 	spin_unlock(&sched_engine->lock);
1576 
1577 	/*
1578 	 * We can skip poking the HW if we ended up with exactly the same set
1579 	 * of requests as currently running, e.g. trying to timeslice a pair
1580 	 * of ordered contexts.
1581 	 */
1582 	if (submit &&
1583 	    memcmp(active,
1584 		   execlists->pending,
1585 		   (port - execlists->pending) * sizeof(*port))) {
1586 		*port = NULL;
1587 		while (port-- != execlists->pending)
1588 			execlists_schedule_in(*port, port - execlists->pending);
1589 
1590 		WRITE_ONCE(execlists->yield, -1);
1591 		set_preempt_timeout(engine, *active);
1592 		execlists_submit_ports(engine);
1593 	} else {
1594 		ring_set_paused(engine, 0);
1595 		while (port-- != execlists->pending)
1596 			i915_request_put(*port);
1597 		*execlists->pending = NULL;
1598 	}
1599 }
1600 
1601 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1602 {
1603 	local_irq_disable(); /* Suspend interrupts across request submission */
1604 	execlists_dequeue(engine);
1605 	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1606 }
1607 
1608 static void clear_ports(struct i915_request **ports, int count)
1609 {
1610 	memset_p((void **)ports, NULL, count);
1611 }
1612 
1613 static void
1614 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1615 {
1616 	/* A memcpy_p() would be very useful here! */
1617 	while (count--)
1618 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1619 }
1620 
1621 static struct i915_request **
1622 cancel_port_requests(struct intel_engine_execlists * const execlists,
1623 		     struct i915_request **inactive)
1624 {
1625 	struct i915_request * const *port;
1626 
1627 	for (port = execlists->pending; *port; port++)
1628 		*inactive++ = *port;
1629 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1630 
1631 	/* Mark the end of active before we overwrite *active */
1632 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1633 		*inactive++ = *port;
1634 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1635 
1636 	smp_wmb(); /* complete the seqlock for execlists_active() */
1637 	WRITE_ONCE(execlists->active, execlists->inflight);
1638 
1639 	/* Having cancelled all outstanding process_csb(), stop their timers */
1640 	GEM_BUG_ON(execlists->pending[0]);
1641 	cancel_timer(&execlists->timer);
1642 	cancel_timer(&execlists->preempt);
1643 
1644 	return inactive;
1645 }
1646 
1647 static void invalidate_csb_entries(const u64 *first, const u64 *last)
1648 {
1649 	clflush((void *)first);
1650 	clflush((void *)last);
1651 }
1652 
1653 /*
1654  * Starting with Gen12, the status has a new format:
1655  *
1656  *     bit  0:     switched to new queue
1657  *     bit  1:     reserved
1658  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1659  *                 switch detail is set to "wait on semaphore"
1660  *     bits 3-5:   engine class
1661  *     bits 6-11:  engine instance
1662  *     bits 12-14: reserved
1663  *     bits 15-25: sw context id of the lrc the GT switched to
1664  *     bits 26-31: sw counter of the lrc the GT switched to
1665  *     bits 32-35: context switch detail
1666  *                  - 0: ctx complete
1667  *                  - 1: wait on sync flip
1668  *                  - 2: wait on vblank
1669  *                  - 3: wait on scanline
1670  *                  - 4: wait on semaphore
1671  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1672  *                       WAIT_FOR_EVENT)
1673  *     bit  36:    reserved
1674  *     bits 37-43: wait detail (for switch detail 1 to 4)
1675  *     bits 44-46: reserved
1676  *     bits 47-57: sw context id of the lrc the GT switched away from
1677  *     bits 58-63: sw counter of the lrc the GT switched away from
1678  *
1679  * Xe_HP csb shuffles things around compared to TGL:
1680  *
1681  *     bits 0-3:   context switch detail (same possible values as TGL)
1682  *     bits 4-9:   engine instance
1683  *     bits 10-25: sw context id of the lrc the GT switched to
1684  *     bits 26-31: sw counter of the lrc the GT switched to
1685  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1686  *                 switch detail is set to "wait on semaphore"
1687  *     bit  33:    switched to new queue
1688  *     bits 34-41: wait detail (for switch detail 1 to 4)
1689  *     bits 42-57: sw context id of the lrc the GT switched away from
1690  *     bits 58-63: sw counter of the lrc the GT switched away from
1691  */
1692 static inline bool
1693 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1694 		  u8 switch_detail)
1695 {
1696 	/*
1697 	 * The context switch detail is not guaranteed to be 5 when a preemption
1698 	 * occurs, so we can't just check for that. The check below works for
1699 	 * all the cases we care about, including preemptions of WAIT
1700 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1701 	 * would require some extra handling, but we don't support that.
1702 	 */
1703 	if (!ctx_away_valid || new_queue) {
1704 		GEM_BUG_ON(!ctx_to_valid);
1705 		return true;
1706 	}
1707 
1708 	/*
1709 	 * switch detail = 5 is covered by the case above and we do not expect a
1710 	 * context switch on an unsuccessful wait instruction since we always
1711 	 * use polling mode.
1712 	 */
1713 	GEM_BUG_ON(switch_detail);
1714 	return false;
1715 }
1716 
1717 static bool xehp_csb_parse(const u64 csb)
1718 {
1719 	return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1720 				 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1721 				 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1722 				 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1723 }
1724 
1725 static bool gen12_csb_parse(const u64 csb)
1726 {
1727 	return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1728 				 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1729 				 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1730 				 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1731 }
1732 
1733 static bool gen8_csb_parse(const u64 csb)
1734 {
1735 	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1736 }
1737 
1738 static noinline u64
1739 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1740 {
1741 	u64 entry;
1742 
1743 	/*
1744 	 * Reading from the HWSP has one particular advantage: we can detect
1745 	 * a stale entry. Since the write into HWSP is broken, we have no reason
1746 	 * to trust the HW at all, the mmio entry may equally be unordered, so
1747 	 * we prefer the path that is self-checking and as a last resort,
1748 	 * return the mmio value.
1749 	 *
1750 	 * tgl,dg1:HSDES#22011327657
1751 	 */
1752 	preempt_disable();
1753 	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1754 		int idx = csb - engine->execlists.csb_status;
1755 		int status;
1756 
1757 		status = GEN8_EXECLISTS_STATUS_BUF;
1758 		if (idx >= 6) {
1759 			status = GEN11_EXECLISTS_STATUS_BUF2;
1760 			idx -= 6;
1761 		}
1762 		status += sizeof(u64) * idx;
1763 
1764 		entry = intel_uncore_read64(engine->uncore,
1765 					    _MMIO(engine->mmio_base + status));
1766 	}
1767 	preempt_enable();
1768 
1769 	return entry;
1770 }
1771 
1772 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1773 {
1774 	u64 entry = READ_ONCE(*csb);
1775 
1776 	/*
1777 	 * Unfortunately, the GPU does not always serialise its write
1778 	 * of the CSB entries before its write of the CSB pointer, at least
1779 	 * from the perspective of the CPU, using what is known as a Global
1780 	 * Observation Point. We may read a new CSB tail pointer, but then
1781 	 * read the stale CSB entries, causing us to misinterpret the
1782 	 * context-switch events, and eventually declare the GPU hung.
1783 	 *
1784 	 * icl:HSDES#1806554093
1785 	 * tgl:HSDES#22011248461
1786 	 */
1787 	if (unlikely(entry == -1))
1788 		entry = wa_csb_read(engine, csb);
1789 
1790 	/* Consume this entry so that we can spot its future reuse. */
1791 	WRITE_ONCE(*csb, -1);
1792 
1793 	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1794 	return entry;
1795 }
1796 
1797 static void new_timeslice(struct intel_engine_execlists *el)
1798 {
1799 	/* By cancelling, we will start afresh in start_timeslice() */
1800 	cancel_timer(&el->timer);
1801 }
1802 
1803 static struct i915_request **
1804 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1805 {
1806 	struct intel_engine_execlists * const execlists = &engine->execlists;
1807 	u64 * const buf = execlists->csb_status;
1808 	const u8 num_entries = execlists->csb_size;
1809 	struct i915_request **prev;
1810 	u8 head, tail;
1811 
1812 	/*
1813 	 * As we modify our execlists state tracking we require exclusive
1814 	 * access. Either we are inside the tasklet, or the tasklet is disabled
1815 	 * and we assume that is only inside the reset paths and so serialised.
1816 	 */
1817 	GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1818 		   !reset_in_progress(engine));
1819 
1820 	/*
1821 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1822 	 * When reading from the csb_write mmio register, we have to be
1823 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1824 	 * the low 4bits. As it happens we know the next 4bits are always
1825 	 * zero and so we can simply masked off the low u8 of the register
1826 	 * and treat it identically to reading from the HWSP (without having
1827 	 * to use explicit shifting and masking, and probably bifurcating
1828 	 * the code to handle the legacy mmio read).
1829 	 */
1830 	head = execlists->csb_head;
1831 	tail = READ_ONCE(*execlists->csb_write);
1832 	if (unlikely(head == tail))
1833 		return inactive;
1834 
1835 	/*
1836 	 * We will consume all events from HW, or at least pretend to.
1837 	 *
1838 	 * The sequence of events from the HW is deterministic, and derived
1839 	 * from our writes to the ELSP, with a smidgen of variability for
1840 	 * the arrival of the asynchronous requests wrt to the inflight
1841 	 * execution. If the HW sends an event that does not correspond with
1842 	 * the one we are expecting, we have to abandon all hope as we lose
1843 	 * all tracking of what the engine is actually executing. We will
1844 	 * only detect we are out of sequence with the HW when we get an
1845 	 * 'impossible' event because we have already drained our own
1846 	 * preemption/promotion queue. If this occurs, we know that we likely
1847 	 * lost track of execution earlier and must unwind and restart, the
1848 	 * simplest way is by stop processing the event queue and force the
1849 	 * engine to reset.
1850 	 */
1851 	execlists->csb_head = tail;
1852 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1853 
1854 	/*
1855 	 * Hopefully paired with a wmb() in HW!
1856 	 *
1857 	 * We must complete the read of the write pointer before any reads
1858 	 * from the CSB, so that we do not see stale values. Without an rmb
1859 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1860 	 * we perform the READ_ONCE(*csb_write).
1861 	 */
1862 	rmb();
1863 
1864 	/* Remember who was last running under the timer */
1865 	prev = inactive;
1866 	*prev = NULL;
1867 
1868 	do {
1869 		bool promote;
1870 		u64 csb;
1871 
1872 		if (++head == num_entries)
1873 			head = 0;
1874 
1875 		/*
1876 		 * We are flying near dragons again.
1877 		 *
1878 		 * We hold a reference to the request in execlist_port[]
1879 		 * but no more than that. We are operating in softirq
1880 		 * context and so cannot hold any mutex or sleep. That
1881 		 * prevents us stopping the requests we are processing
1882 		 * in port[] from being retired simultaneously (the
1883 		 * breadcrumb will be complete before we see the
1884 		 * context-switch). As we only hold the reference to the
1885 		 * request, any pointer chasing underneath the request
1886 		 * is subject to a potential use-after-free. Thus we
1887 		 * store all of the bookkeeping within port[] as
1888 		 * required, and avoid using unguarded pointers beneath
1889 		 * request itself. The same applies to the atomic
1890 		 * status notifier.
1891 		 */
1892 
1893 		csb = csb_read(engine, buf + head);
1894 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1895 			     head, upper_32_bits(csb), lower_32_bits(csb));
1896 
1897 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1898 			promote = xehp_csb_parse(csb);
1899 		else if (GRAPHICS_VER(engine->i915) >= 12)
1900 			promote = gen12_csb_parse(csb);
1901 		else
1902 			promote = gen8_csb_parse(csb);
1903 		if (promote) {
1904 			struct i915_request * const *old = execlists->active;
1905 
1906 			if (GEM_WARN_ON(!*execlists->pending)) {
1907 				execlists->error_interrupt |= ERROR_CSB;
1908 				break;
1909 			}
1910 
1911 			ring_set_paused(engine, 0);
1912 
1913 			/* Point active to the new ELSP; prevent overwriting */
1914 			WRITE_ONCE(execlists->active, execlists->pending);
1915 			smp_wmb(); /* notify execlists_active() */
1916 
1917 			/* cancel old inflight, prepare for switch */
1918 			trace_ports(execlists, "preempted", old);
1919 			while (*old)
1920 				*inactive++ = *old++;
1921 
1922 			/* switch pending to inflight */
1923 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1924 			copy_ports(execlists->inflight,
1925 				   execlists->pending,
1926 				   execlists_num_ports(execlists));
1927 			smp_wmb(); /* complete the seqlock */
1928 			WRITE_ONCE(execlists->active, execlists->inflight);
1929 
1930 			/* XXX Magic delay for tgl */
1931 			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1932 
1933 			WRITE_ONCE(execlists->pending[0], NULL);
1934 		} else {
1935 			if (GEM_WARN_ON(!*execlists->active)) {
1936 				execlists->error_interrupt |= ERROR_CSB;
1937 				break;
1938 			}
1939 
1940 			/* port0 completed, advanced to port1 */
1941 			trace_ports(execlists, "completed", execlists->active);
1942 
1943 			/*
1944 			 * We rely on the hardware being strongly
1945 			 * ordered, that the breadcrumb write is
1946 			 * coherent (visible from the CPU) before the
1947 			 * user interrupt is processed. One might assume
1948 			 * that the breadcrumb write being before the
1949 			 * user interrupt and the CS event for the context
1950 			 * switch would therefore be before the CS event
1951 			 * itself...
1952 			 */
1953 			if (GEM_SHOW_DEBUG() &&
1954 			    !__i915_request_is_complete(*execlists->active)) {
1955 				struct i915_request *rq = *execlists->active;
1956 				const u32 *regs __maybe_unused =
1957 					rq->context->lrc_reg_state;
1958 
1959 				ENGINE_TRACE(engine,
1960 					     "context completed before request!\n");
1961 				ENGINE_TRACE(engine,
1962 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1963 					     ENGINE_READ(engine, RING_START),
1964 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1965 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1966 					     ENGINE_READ(engine, RING_CTL),
1967 					     ENGINE_READ(engine, RING_MI_MODE));
1968 				ENGINE_TRACE(engine,
1969 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1970 					     i915_ggtt_offset(rq->ring->vma),
1971 					     rq->head, rq->tail,
1972 					     rq->fence.context,
1973 					     lower_32_bits(rq->fence.seqno),
1974 					     hwsp_seqno(rq));
1975 				ENGINE_TRACE(engine,
1976 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1977 					     regs[CTX_RING_START],
1978 					     regs[CTX_RING_HEAD],
1979 					     regs[CTX_RING_TAIL]);
1980 			}
1981 
1982 			*inactive++ = *execlists->active++;
1983 
1984 			GEM_BUG_ON(execlists->active - execlists->inflight >
1985 				   execlists_num_ports(execlists));
1986 		}
1987 	} while (head != tail);
1988 
1989 	/*
1990 	 * Gen11 has proven to fail wrt global observation point between
1991 	 * entry and tail update, failing on the ordering and thus
1992 	 * we see an old entry in the context status buffer.
1993 	 *
1994 	 * Forcibly evict out entries for the next gpu csb update,
1995 	 * to increase the odds that we get a fresh entries with non
1996 	 * working hardware. The cost for doing so comes out mostly with
1997 	 * the wash as hardware, working or not, will need to do the
1998 	 * invalidation before.
1999 	 */
2000 	invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
2001 
2002 	/*
2003 	 * We assume that any event reflects a change in context flow
2004 	 * and merits a fresh timeslice. We reinstall the timer after
2005 	 * inspecting the queue to see if we need to resumbit.
2006 	 */
2007 	if (*prev != *execlists->active) /* elide lite-restores */
2008 		new_timeslice(execlists);
2009 
2010 	return inactive;
2011 }
2012 
2013 static void post_process_csb(struct i915_request **port,
2014 			     struct i915_request **last)
2015 {
2016 	while (port != last)
2017 		execlists_schedule_out(*port++);
2018 }
2019 
2020 static void __execlists_hold(struct i915_request *rq)
2021 {
2022 	LIST_HEAD(list);
2023 
2024 	do {
2025 		struct i915_dependency *p;
2026 
2027 		if (i915_request_is_active(rq))
2028 			__i915_request_unsubmit(rq);
2029 
2030 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2031 		list_move_tail(&rq->sched.link,
2032 			       &rq->engine->sched_engine->hold);
2033 		i915_request_set_hold(rq);
2034 		RQ_TRACE(rq, "on hold\n");
2035 
2036 		for_each_waiter(p, rq) {
2037 			struct i915_request *w =
2038 				container_of(p->waiter, typeof(*w), sched);
2039 
2040 			if (p->flags & I915_DEPENDENCY_WEAK)
2041 				continue;
2042 
2043 			/* Leave semaphores spinning on the other engines */
2044 			if (w->engine != rq->engine)
2045 				continue;
2046 
2047 			if (!i915_request_is_ready(w))
2048 				continue;
2049 
2050 			if (__i915_request_is_complete(w))
2051 				continue;
2052 
2053 			if (i915_request_on_hold(w))
2054 				continue;
2055 
2056 			list_move_tail(&w->sched.link, &list);
2057 		}
2058 
2059 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2060 	} while (rq);
2061 }
2062 
2063 static bool execlists_hold(struct intel_engine_cs *engine,
2064 			   struct i915_request *rq)
2065 {
2066 	if (i915_request_on_hold(rq))
2067 		return false;
2068 
2069 	spin_lock_irq(&engine->sched_engine->lock);
2070 
2071 	if (__i915_request_is_complete(rq)) { /* too late! */
2072 		rq = NULL;
2073 		goto unlock;
2074 	}
2075 
2076 	/*
2077 	 * Transfer this request onto the hold queue to prevent it
2078 	 * being resumbitted to HW (and potentially completed) before we have
2079 	 * released it. Since we may have already submitted following
2080 	 * requests, we need to remove those as well.
2081 	 */
2082 	GEM_BUG_ON(i915_request_on_hold(rq));
2083 	GEM_BUG_ON(rq->engine != engine);
2084 	__execlists_hold(rq);
2085 	GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2086 
2087 unlock:
2088 	spin_unlock_irq(&engine->sched_engine->lock);
2089 	return rq;
2090 }
2091 
2092 static bool hold_request(const struct i915_request *rq)
2093 {
2094 	struct i915_dependency *p;
2095 	bool result = false;
2096 
2097 	/*
2098 	 * If one of our ancestors is on hold, we must also be on hold,
2099 	 * otherwise we will bypass it and execute before it.
2100 	 */
2101 	rcu_read_lock();
2102 	for_each_signaler(p, rq) {
2103 		const struct i915_request *s =
2104 			container_of(p->signaler, typeof(*s), sched);
2105 
2106 		if (s->engine != rq->engine)
2107 			continue;
2108 
2109 		result = i915_request_on_hold(s);
2110 		if (result)
2111 			break;
2112 	}
2113 	rcu_read_unlock();
2114 
2115 	return result;
2116 }
2117 
2118 static void __execlists_unhold(struct i915_request *rq)
2119 {
2120 	LIST_HEAD(list);
2121 
2122 	do {
2123 		struct i915_dependency *p;
2124 
2125 		RQ_TRACE(rq, "hold release\n");
2126 
2127 		GEM_BUG_ON(!i915_request_on_hold(rq));
2128 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2129 
2130 		i915_request_clear_hold(rq);
2131 		list_move_tail(&rq->sched.link,
2132 			       i915_sched_lookup_priolist(rq->engine->sched_engine,
2133 							  rq_prio(rq)));
2134 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2135 
2136 		/* Also release any children on this engine that are ready */
2137 		for_each_waiter(p, rq) {
2138 			struct i915_request *w =
2139 				container_of(p->waiter, typeof(*w), sched);
2140 
2141 			if (p->flags & I915_DEPENDENCY_WEAK)
2142 				continue;
2143 
2144 			if (w->engine != rq->engine)
2145 				continue;
2146 
2147 			if (!i915_request_on_hold(w))
2148 				continue;
2149 
2150 			/* Check that no other parents are also on hold */
2151 			if (hold_request(w))
2152 				continue;
2153 
2154 			list_move_tail(&w->sched.link, &list);
2155 		}
2156 
2157 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2158 	} while (rq);
2159 }
2160 
2161 static void execlists_unhold(struct intel_engine_cs *engine,
2162 			     struct i915_request *rq)
2163 {
2164 	spin_lock_irq(&engine->sched_engine->lock);
2165 
2166 	/*
2167 	 * Move this request back to the priority queue, and all of its
2168 	 * children and grandchildren that were suspended along with it.
2169 	 */
2170 	__execlists_unhold(rq);
2171 
2172 	if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2173 		engine->sched_engine->queue_priority_hint = rq_prio(rq);
2174 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2175 	}
2176 
2177 	spin_unlock_irq(&engine->sched_engine->lock);
2178 }
2179 
2180 struct execlists_capture {
2181 	struct work_struct work;
2182 	struct i915_request *rq;
2183 	struct i915_gpu_coredump *error;
2184 };
2185 
2186 static void execlists_capture_work(struct work_struct *work)
2187 {
2188 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2189 	const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2190 		__GFP_NOWARN;
2191 	struct intel_engine_cs *engine = cap->rq->engine;
2192 	struct intel_gt_coredump *gt = cap->error->gt;
2193 	struct intel_engine_capture_vma *vma;
2194 
2195 	/* Compress all the objects attached to the request, slow! */
2196 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2197 	if (vma) {
2198 		struct i915_vma_compress *compress =
2199 			i915_vma_capture_prepare(gt);
2200 
2201 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2202 		i915_vma_capture_finish(gt, compress);
2203 	}
2204 
2205 	gt->simulated = gt->engine->simulated;
2206 	cap->error->simulated = gt->simulated;
2207 
2208 	/* Publish the error state, and announce it to the world */
2209 	i915_error_state_store(cap->error);
2210 	i915_gpu_coredump_put(cap->error);
2211 
2212 	/* Return this request and all that depend upon it for signaling */
2213 	execlists_unhold(engine, cap->rq);
2214 	i915_request_put(cap->rq);
2215 
2216 	kfree(cap);
2217 }
2218 
2219 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2220 {
2221 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2222 	struct execlists_capture *cap;
2223 
2224 	cap = kmalloc(sizeof(*cap), gfp);
2225 	if (!cap)
2226 		return NULL;
2227 
2228 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2229 	if (!cap->error)
2230 		goto err_cap;
2231 
2232 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp);
2233 	if (!cap->error->gt)
2234 		goto err_gpu;
2235 
2236 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp);
2237 	if (!cap->error->gt->engine)
2238 		goto err_gt;
2239 
2240 	cap->error->gt->engine->hung = true;
2241 
2242 	return cap;
2243 
2244 err_gt:
2245 	kfree(cap->error->gt);
2246 err_gpu:
2247 	kfree(cap->error);
2248 err_cap:
2249 	kfree(cap);
2250 	return NULL;
2251 }
2252 
2253 static struct i915_request *
2254 active_context(struct intel_engine_cs *engine, u32 ccid)
2255 {
2256 	const struct intel_engine_execlists * const el = &engine->execlists;
2257 	struct i915_request * const *port, *rq;
2258 
2259 	/*
2260 	 * Use the most recent result from process_csb(), but just in case
2261 	 * we trigger an error (via interrupt) before the first CS event has
2262 	 * been written, peek at the next submission.
2263 	 */
2264 
2265 	for (port = el->active; (rq = *port); port++) {
2266 		if (rq->context->lrc.ccid == ccid) {
2267 			ENGINE_TRACE(engine,
2268 				     "ccid:%x found at active:%zd\n",
2269 				     ccid, port - el->active);
2270 			return rq;
2271 		}
2272 	}
2273 
2274 	for (port = el->pending; (rq = *port); port++) {
2275 		if (rq->context->lrc.ccid == ccid) {
2276 			ENGINE_TRACE(engine,
2277 				     "ccid:%x found at pending:%zd\n",
2278 				     ccid, port - el->pending);
2279 			return rq;
2280 		}
2281 	}
2282 
2283 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2284 	return NULL;
2285 }
2286 
2287 static u32 active_ccid(struct intel_engine_cs *engine)
2288 {
2289 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2290 }
2291 
2292 static void execlists_capture(struct intel_engine_cs *engine)
2293 {
2294 	struct execlists_capture *cap;
2295 
2296 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2297 		return;
2298 
2299 	/*
2300 	 * We need to _quickly_ capture the engine state before we reset.
2301 	 * We are inside an atomic section (softirq) here and we are delaying
2302 	 * the forced preemption event.
2303 	 */
2304 	cap = capture_regs(engine);
2305 	if (!cap)
2306 		return;
2307 
2308 	spin_lock_irq(&engine->sched_engine->lock);
2309 	cap->rq = active_context(engine, active_ccid(engine));
2310 	if (cap->rq) {
2311 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2312 		cap->rq = i915_request_get_rcu(cap->rq);
2313 	}
2314 	spin_unlock_irq(&engine->sched_engine->lock);
2315 	if (!cap->rq)
2316 		goto err_free;
2317 
2318 	/*
2319 	 * Remove the request from the execlists queue, and take ownership
2320 	 * of the request. We pass it to our worker who will _slowly_ compress
2321 	 * all the pages the _user_ requested for debugging their batch, after
2322 	 * which we return it to the queue for signaling.
2323 	 *
2324 	 * By removing them from the execlists queue, we also remove the
2325 	 * requests from being processed by __unwind_incomplete_requests()
2326 	 * during the intel_engine_reset(), and so they will *not* be replayed
2327 	 * afterwards.
2328 	 *
2329 	 * Note that because we have not yet reset the engine at this point,
2330 	 * it is possible for the request that we have identified as being
2331 	 * guilty, did in fact complete and we will then hit an arbitration
2332 	 * point allowing the outstanding preemption to succeed. The likelihood
2333 	 * of that is very low (as capturing of the engine registers should be
2334 	 * fast enough to run inside an irq-off atomic section!), so we will
2335 	 * simply hold that request accountable for being non-preemptible
2336 	 * long enough to force the reset.
2337 	 */
2338 	if (!execlists_hold(engine, cap->rq))
2339 		goto err_rq;
2340 
2341 	INIT_WORK(&cap->work, execlists_capture_work);
2342 	schedule_work(&cap->work);
2343 	return;
2344 
2345 err_rq:
2346 	i915_request_put(cap->rq);
2347 err_free:
2348 	i915_gpu_coredump_put(cap->error);
2349 	kfree(cap);
2350 }
2351 
2352 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2353 {
2354 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2355 	unsigned long *lock = &engine->gt->reset.flags;
2356 
2357 	if (!intel_has_reset_engine(engine->gt))
2358 		return;
2359 
2360 	if (test_and_set_bit(bit, lock))
2361 		return;
2362 
2363 	ENGINE_TRACE(engine, "reset for %s\n", msg);
2364 
2365 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2366 	tasklet_disable_nosync(&engine->sched_engine->tasklet);
2367 
2368 	ring_set_paused(engine, 1); /* Freeze the current request in place */
2369 	execlists_capture(engine);
2370 	intel_engine_reset(engine, msg);
2371 
2372 	tasklet_enable(&engine->sched_engine->tasklet);
2373 	clear_and_wake_up_bit(bit, lock);
2374 }
2375 
2376 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2377 {
2378 	const struct timer_list *t = &engine->execlists.preempt;
2379 
2380 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2381 		return false;
2382 
2383 	if (!timer_expired(t))
2384 		return false;
2385 
2386 	return engine->execlists.pending[0];
2387 }
2388 
2389 /*
2390  * Check the unread Context Status Buffers and manage the submission of new
2391  * contexts to the ELSP accordingly.
2392  */
2393 static void execlists_submission_tasklet(struct tasklet_struct *t)
2394 {
2395 	struct i915_sched_engine *sched_engine =
2396 		from_tasklet(sched_engine, t, tasklet);
2397 	struct intel_engine_cs * const engine = sched_engine->private_data;
2398 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2399 	struct i915_request **inactive;
2400 
2401 	rcu_read_lock();
2402 	inactive = process_csb(engine, post);
2403 	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2404 
2405 	if (unlikely(preempt_timeout(engine))) {
2406 		cancel_timer(&engine->execlists.preempt);
2407 		engine->execlists.error_interrupt |= ERROR_PREEMPT;
2408 	}
2409 
2410 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2411 		const char *msg;
2412 
2413 		/* Generate the error message in priority wrt to the user! */
2414 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2415 			msg = "CS error"; /* thrown by a user payload */
2416 		else if (engine->execlists.error_interrupt & ERROR_CSB)
2417 			msg = "invalid CSB event";
2418 		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2419 			msg = "preemption time out";
2420 		else
2421 			msg = "internal error";
2422 
2423 		engine->execlists.error_interrupt = 0;
2424 		execlists_reset(engine, msg);
2425 	}
2426 
2427 	if (!engine->execlists.pending[0]) {
2428 		execlists_dequeue_irq(engine);
2429 		start_timeslice(engine);
2430 	}
2431 
2432 	post_process_csb(post, inactive);
2433 	rcu_read_unlock();
2434 }
2435 
2436 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2437 {
2438 	bool tasklet = false;
2439 
2440 	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2441 		u32 eir;
2442 
2443 		/* Upper 16b are the enabling mask, rsvd for internal errors */
2444 		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2445 		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2446 
2447 		/* Disable the error interrupt until after the reset */
2448 		if (likely(eir)) {
2449 			ENGINE_WRITE(engine, RING_EMR, ~0u);
2450 			ENGINE_WRITE(engine, RING_EIR, eir);
2451 			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2452 			tasklet = true;
2453 		}
2454 	}
2455 
2456 	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2457 		WRITE_ONCE(engine->execlists.yield,
2458 			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2459 		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2460 			     engine->execlists.yield);
2461 		if (del_timer(&engine->execlists.timer))
2462 			tasklet = true;
2463 	}
2464 
2465 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2466 		tasklet = true;
2467 
2468 	if (iir & GT_RENDER_USER_INTERRUPT)
2469 		intel_engine_signal_breadcrumbs(engine);
2470 
2471 	if (tasklet)
2472 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2473 }
2474 
2475 static void __execlists_kick(struct intel_engine_execlists *execlists)
2476 {
2477 	struct intel_engine_cs *engine =
2478 		container_of(execlists, typeof(*engine), execlists);
2479 
2480 	/* Kick the tasklet for some interrupt coalescing and reset handling */
2481 	tasklet_hi_schedule(&engine->sched_engine->tasklet);
2482 }
2483 
2484 #define execlists_kick(t, member) \
2485 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2486 
2487 static void execlists_timeslice(struct timer_list *timer)
2488 {
2489 	execlists_kick(timer, timer);
2490 }
2491 
2492 static void execlists_preempt(struct timer_list *timer)
2493 {
2494 	execlists_kick(timer, preempt);
2495 }
2496 
2497 static void queue_request(struct intel_engine_cs *engine,
2498 			  struct i915_request *rq)
2499 {
2500 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2501 	list_add_tail(&rq->sched.link,
2502 		      i915_sched_lookup_priolist(engine->sched_engine,
2503 						 rq_prio(rq)));
2504 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2505 }
2506 
2507 static bool submit_queue(struct intel_engine_cs *engine,
2508 			 const struct i915_request *rq)
2509 {
2510 	struct i915_sched_engine *sched_engine = engine->sched_engine;
2511 
2512 	if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2513 		return false;
2514 
2515 	sched_engine->queue_priority_hint = rq_prio(rq);
2516 	return true;
2517 }
2518 
2519 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2520 			     const struct i915_request *rq)
2521 {
2522 	GEM_BUG_ON(i915_request_on_hold(rq));
2523 	return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2524 }
2525 
2526 static void execlists_submit_request(struct i915_request *request)
2527 {
2528 	struct intel_engine_cs *engine = request->engine;
2529 	unsigned long flags;
2530 
2531 	/* Will be called from irq-context when using foreign fences. */
2532 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2533 
2534 	if (unlikely(ancestor_on_hold(engine, request))) {
2535 		RQ_TRACE(request, "ancestor on hold\n");
2536 		list_add_tail(&request->sched.link,
2537 			      &engine->sched_engine->hold);
2538 		i915_request_set_hold(request);
2539 	} else {
2540 		queue_request(engine, request);
2541 
2542 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2543 		GEM_BUG_ON(list_empty(&request->sched.link));
2544 
2545 		if (submit_queue(engine, request))
2546 			__execlists_kick(&engine->execlists);
2547 	}
2548 
2549 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2550 }
2551 
2552 static int
2553 __execlists_context_pre_pin(struct intel_context *ce,
2554 			    struct intel_engine_cs *engine,
2555 			    struct i915_gem_ww_ctx *ww, void **vaddr)
2556 {
2557 	int err;
2558 
2559 	err = lrc_pre_pin(ce, engine, ww, vaddr);
2560 	if (err)
2561 		return err;
2562 
2563 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2564 		lrc_init_state(ce, engine, *vaddr);
2565 
2566 		__i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2567 	}
2568 
2569 	return 0;
2570 }
2571 
2572 static int execlists_context_pre_pin(struct intel_context *ce,
2573 				     struct i915_gem_ww_ctx *ww,
2574 				     void **vaddr)
2575 {
2576 	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2577 }
2578 
2579 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2580 {
2581 	return lrc_pin(ce, ce->engine, vaddr);
2582 }
2583 
2584 static int execlists_context_alloc(struct intel_context *ce)
2585 {
2586 	return lrc_alloc(ce, ce->engine);
2587 }
2588 
2589 static void execlists_context_cancel_request(struct intel_context *ce,
2590 					     struct i915_request *rq)
2591 {
2592 	struct intel_engine_cs *engine = NULL;
2593 
2594 	i915_request_active_engine(rq, &engine);
2595 
2596 	if (engine && intel_engine_pulse(engine))
2597 		intel_gt_handle_error(engine->gt, engine->mask, 0,
2598 				      "request cancellation by %s",
2599 				      current->comm);
2600 }
2601 
2602 static const struct intel_context_ops execlists_context_ops = {
2603 	.flags = COPS_HAS_INFLIGHT,
2604 
2605 	.alloc = execlists_context_alloc,
2606 
2607 	.cancel_request = execlists_context_cancel_request,
2608 
2609 	.pre_pin = execlists_context_pre_pin,
2610 	.pin = execlists_context_pin,
2611 	.unpin = lrc_unpin,
2612 	.post_unpin = lrc_post_unpin,
2613 
2614 	.enter = intel_context_enter_engine,
2615 	.exit = intel_context_exit_engine,
2616 
2617 	.reset = lrc_reset,
2618 	.destroy = lrc_destroy,
2619 
2620 	.create_virtual = execlists_create_virtual,
2621 };
2622 
2623 static int emit_pdps(struct i915_request *rq)
2624 {
2625 	const struct intel_engine_cs * const engine = rq->engine;
2626 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2627 	int err, i;
2628 	u32 *cs;
2629 
2630 	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2631 
2632 	/*
2633 	 * Beware ye of the dragons, this sequence is magic!
2634 	 *
2635 	 * Small changes to this sequence can cause anything from
2636 	 * GPU hangs to forcewake errors and machine lockups!
2637 	 */
2638 
2639 	cs = intel_ring_begin(rq, 2);
2640 	if (IS_ERR(cs))
2641 		return PTR_ERR(cs);
2642 
2643 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2644 	*cs++ = MI_NOOP;
2645 	intel_ring_advance(rq, cs);
2646 
2647 	/* Flush any residual operations from the context load */
2648 	err = engine->emit_flush(rq, EMIT_FLUSH);
2649 	if (err)
2650 		return err;
2651 
2652 	/* Magic required to prevent forcewake errors! */
2653 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2654 	if (err)
2655 		return err;
2656 
2657 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2658 	if (IS_ERR(cs))
2659 		return PTR_ERR(cs);
2660 
2661 	/* Ensure the LRI have landed before we invalidate & continue */
2662 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2663 	for (i = GEN8_3LVL_PDPES; i--; ) {
2664 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2665 		u32 base = engine->mmio_base;
2666 
2667 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2668 		*cs++ = upper_32_bits(pd_daddr);
2669 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2670 		*cs++ = lower_32_bits(pd_daddr);
2671 	}
2672 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2673 	intel_ring_advance(rq, cs);
2674 
2675 	intel_ring_advance(rq, cs);
2676 
2677 	return 0;
2678 }
2679 
2680 static int execlists_request_alloc(struct i915_request *request)
2681 {
2682 	int ret;
2683 
2684 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2685 
2686 	/*
2687 	 * Flush enough space to reduce the likelihood of waiting after
2688 	 * we start building the request - in which case we will just
2689 	 * have to repeat work.
2690 	 */
2691 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2692 
2693 	/*
2694 	 * Note that after this point, we have committed to using
2695 	 * this request as it is being used to both track the
2696 	 * state of engine initialisation and liveness of the
2697 	 * golden renderstate above. Think twice before you try
2698 	 * to cancel/unwind this request now.
2699 	 */
2700 
2701 	if (!i915_vm_is_4lvl(request->context->vm)) {
2702 		ret = emit_pdps(request);
2703 		if (ret)
2704 			return ret;
2705 	}
2706 
2707 	/* Unconditionally invalidate GPU caches and TLBs. */
2708 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2709 	if (ret)
2710 		return ret;
2711 
2712 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2713 	return 0;
2714 }
2715 
2716 static void reset_csb_pointers(struct intel_engine_cs *engine)
2717 {
2718 	struct intel_engine_execlists * const execlists = &engine->execlists;
2719 	const unsigned int reset_value = execlists->csb_size - 1;
2720 
2721 	ring_set_paused(engine, 0);
2722 
2723 	/*
2724 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2725 	 * Bludgeon them with a mmio update to be sure.
2726 	 */
2727 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2728 		     0xffff << 16 | reset_value << 8 | reset_value);
2729 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2730 
2731 	/*
2732 	 * After a reset, the HW starts writing into CSB entry [0]. We
2733 	 * therefore have to set our HEAD pointer back one entry so that
2734 	 * the *first* entry we check is entry 0. To complicate this further,
2735 	 * as we don't wait for the first interrupt after reset, we have to
2736 	 * fake the HW write to point back to the last entry so that our
2737 	 * inline comparison of our cached head position against the last HW
2738 	 * write works even before the first interrupt.
2739 	 */
2740 	execlists->csb_head = reset_value;
2741 	WRITE_ONCE(*execlists->csb_write, reset_value);
2742 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2743 
2744 	/* Check that the GPU does indeed update the CSB entries! */
2745 	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2746 	invalidate_csb_entries(&execlists->csb_status[0],
2747 			       &execlists->csb_status[reset_value]);
2748 
2749 	/* Once more for luck and our trusty paranoia */
2750 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2751 		     0xffff << 16 | reset_value << 8 | reset_value);
2752 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2753 
2754 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2755 }
2756 
2757 static void sanitize_hwsp(struct intel_engine_cs *engine)
2758 {
2759 	struct intel_timeline *tl;
2760 
2761 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2762 		intel_timeline_reset_seqno(tl);
2763 }
2764 
2765 static void execlists_sanitize(struct intel_engine_cs *engine)
2766 {
2767 	GEM_BUG_ON(execlists_active(&engine->execlists));
2768 
2769 	/*
2770 	 * Poison residual state on resume, in case the suspend didn't!
2771 	 *
2772 	 * We have to assume that across suspend/resume (or other loss
2773 	 * of control) that the contents of our pinned buffers has been
2774 	 * lost, replaced by garbage. Since this doesn't always happen,
2775 	 * let's poison such state so that we more quickly spot when
2776 	 * we falsely assume it has been preserved.
2777 	 */
2778 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2779 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2780 
2781 	reset_csb_pointers(engine);
2782 
2783 	/*
2784 	 * The kernel_context HWSP is stored in the status_page. As above,
2785 	 * that may be lost on resume/initialisation, and so we need to
2786 	 * reset the value in the HWSP.
2787 	 */
2788 	sanitize_hwsp(engine);
2789 
2790 	/* And scrub the dirty cachelines for the HWSP */
2791 	clflush_cache_range(engine->status_page.addr, PAGE_SIZE);
2792 
2793 	intel_engine_reset_pinned_contexts(engine);
2794 }
2795 
2796 static void enable_error_interrupt(struct intel_engine_cs *engine)
2797 {
2798 	u32 status;
2799 
2800 	engine->execlists.error_interrupt = 0;
2801 	ENGINE_WRITE(engine, RING_EMR, ~0u);
2802 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2803 
2804 	status = ENGINE_READ(engine, RING_ESR);
2805 	if (unlikely(status)) {
2806 		drm_err(&engine->i915->drm,
2807 			"engine '%s' resumed still in error: %08x\n",
2808 			engine->name, status);
2809 		__intel_gt_reset(engine->gt, engine->mask);
2810 	}
2811 
2812 	/*
2813 	 * On current gen8+, we have 2 signals to play with
2814 	 *
2815 	 * - I915_ERROR_INSTUCTION (bit 0)
2816 	 *
2817 	 *    Generate an error if the command parser encounters an invalid
2818 	 *    instruction
2819 	 *
2820 	 *    This is a fatal error.
2821 	 *
2822 	 * - CP_PRIV (bit 2)
2823 	 *
2824 	 *    Generate an error on privilege violation (where the CP replaces
2825 	 *    the instruction with a no-op). This also fires for writes into
2826 	 *    read-only scratch pages.
2827 	 *
2828 	 *    This is a non-fatal error, parsing continues.
2829 	 *
2830 	 * * there are a few others defined for odd HW that we do not use
2831 	 *
2832 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2833 	 * error (as the HW is validating and suppressing the mistakes), we
2834 	 * only unmask the instruction error bit.
2835 	 */
2836 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2837 }
2838 
2839 static void enable_execlists(struct intel_engine_cs *engine)
2840 {
2841 	u32 mode;
2842 
2843 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2844 
2845 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2846 
2847 	if (GRAPHICS_VER(engine->i915) >= 11)
2848 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2849 	else
2850 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2851 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2852 
2853 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2854 
2855 	ENGINE_WRITE_FW(engine,
2856 			RING_HWS_PGA,
2857 			i915_ggtt_offset(engine->status_page.vma));
2858 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2859 
2860 	enable_error_interrupt(engine);
2861 }
2862 
2863 static int execlists_resume(struct intel_engine_cs *engine)
2864 {
2865 	intel_mocs_init_engine(engine);
2866 	intel_breadcrumbs_reset(engine->breadcrumbs);
2867 
2868 	enable_execlists(engine);
2869 
2870 	return 0;
2871 }
2872 
2873 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2874 {
2875 	ENGINE_TRACE(engine, "depth<-%d\n",
2876 		     atomic_read(&engine->sched_engine->tasklet.count));
2877 
2878 	/*
2879 	 * Prevent request submission to the hardware until we have
2880 	 * completed the reset in i915_gem_reset_finish(). If a request
2881 	 * is completed by one engine, it may then queue a request
2882 	 * to a second via its execlists->tasklet *just* as we are
2883 	 * calling engine->resume() and also writing the ELSP.
2884 	 * Turning off the execlists->tasklet until the reset is over
2885 	 * prevents the race.
2886 	 */
2887 	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2888 	GEM_BUG_ON(!reset_in_progress(engine));
2889 
2890 	/*
2891 	 * We stop engines, otherwise we might get failed reset and a
2892 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2893 	 * from system hang if batchbuffer is progressing when
2894 	 * the reset is issued, regardless of READY_TO_RESET ack.
2895 	 * Thus assume it is best to stop engines on all gens
2896 	 * where we have a gpu reset.
2897 	 *
2898 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2899 	 *
2900 	 * FIXME: Wa for more modern gens needs to be validated
2901 	 */
2902 	ring_set_paused(engine, 1);
2903 	intel_engine_stop_cs(engine);
2904 
2905 	engine->execlists.reset_ccid = active_ccid(engine);
2906 }
2907 
2908 static struct i915_request **
2909 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
2910 {
2911 	struct intel_engine_execlists * const execlists = &engine->execlists;
2912 
2913 	mb(); /* paranoia: read the CSB pointers from after the reset */
2914 	clflush(execlists->csb_write);
2915 	mb();
2916 
2917 	inactive = process_csb(engine, inactive); /* drain preemption events */
2918 
2919 	/* Following the reset, we need to reload the CSB read/write pointers */
2920 	reset_csb_pointers(engine);
2921 
2922 	return inactive;
2923 }
2924 
2925 static void
2926 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
2927 {
2928 	struct intel_context *ce;
2929 	struct i915_request *rq;
2930 	u32 head;
2931 
2932 	/*
2933 	 * Save the currently executing context, even if we completed
2934 	 * its request, it was still running at the time of the
2935 	 * reset and will have been clobbered.
2936 	 */
2937 	rq = active_context(engine, engine->execlists.reset_ccid);
2938 	if (!rq)
2939 		return;
2940 
2941 	ce = rq->context;
2942 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
2943 
2944 	if (__i915_request_is_complete(rq)) {
2945 		/* Idle context; tidy up the ring so we can restart afresh */
2946 		head = intel_ring_wrap(ce->ring, rq->tail);
2947 		goto out_replay;
2948 	}
2949 
2950 	/* We still have requests in-flight; the engine should be active */
2951 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
2952 
2953 	/* Context has requests still in-flight; it should not be idle! */
2954 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
2955 
2956 	rq = active_request(ce->timeline, rq);
2957 	head = intel_ring_wrap(ce->ring, rq->head);
2958 	GEM_BUG_ON(head == ce->ring->tail);
2959 
2960 	/*
2961 	 * If this request hasn't started yet, e.g. it is waiting on a
2962 	 * semaphore, we need to avoid skipping the request or else we
2963 	 * break the signaling chain. However, if the context is corrupt
2964 	 * the request will not restart and we will be stuck with a wedged
2965 	 * device. It is quite often the case that if we issue a reset
2966 	 * while the GPU is loading the context image, that the context
2967 	 * image becomes corrupt.
2968 	 *
2969 	 * Otherwise, if we have not started yet, the request should replay
2970 	 * perfectly and we do not need to flag the result as being erroneous.
2971 	 */
2972 	if (!__i915_request_has_started(rq))
2973 		goto out_replay;
2974 
2975 	/*
2976 	 * If the request was innocent, we leave the request in the ELSP
2977 	 * and will try to replay it on restarting. The context image may
2978 	 * have been corrupted by the reset, in which case we may have
2979 	 * to service a new GPU hang, but more likely we can continue on
2980 	 * without impact.
2981 	 *
2982 	 * If the request was guilty, we presume the context is corrupt
2983 	 * and have to at least restore the RING register in the context
2984 	 * image back to the expected values to skip over the guilty request.
2985 	 */
2986 	__i915_request_reset(rq, stalled);
2987 
2988 	/*
2989 	 * We want a simple context + ring to execute the breadcrumb update.
2990 	 * We cannot rely on the context being intact across the GPU hang,
2991 	 * so clear it and rebuild just what we need for the breadcrumb.
2992 	 * All pending requests for this context will be zapped, and any
2993 	 * future request will be after userspace has had the opportunity
2994 	 * to recreate its own state.
2995 	 */
2996 out_replay:
2997 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
2998 		     head, ce->ring->tail);
2999 	lrc_reset_regs(ce, engine);
3000 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3001 }
3002 
3003 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3004 {
3005 	struct intel_engine_execlists * const execlists = &engine->execlists;
3006 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3007 	struct i915_request **inactive;
3008 
3009 	rcu_read_lock();
3010 	inactive = reset_csb(engine, post);
3011 
3012 	execlists_reset_active(engine, true);
3013 
3014 	inactive = cancel_port_requests(execlists, inactive);
3015 	post_process_csb(post, inactive);
3016 	rcu_read_unlock();
3017 }
3018 
3019 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3020 {
3021 	unsigned long flags;
3022 
3023 	ENGINE_TRACE(engine, "\n");
3024 
3025 	/* Process the csb, find the guilty context and throw away */
3026 	execlists_reset_csb(engine, stalled);
3027 
3028 	/* Push back any incomplete requests for replay after the reset. */
3029 	rcu_read_lock();
3030 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3031 	__unwind_incomplete_requests(engine);
3032 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3033 	rcu_read_unlock();
3034 }
3035 
3036 static void nop_submission_tasklet(struct tasklet_struct *t)
3037 {
3038 	struct i915_sched_engine *sched_engine =
3039 		from_tasklet(sched_engine, t, tasklet);
3040 	struct intel_engine_cs * const engine = sched_engine->private_data;
3041 
3042 	/* The driver is wedged; don't process any more events. */
3043 	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3044 }
3045 
3046 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3047 {
3048 	struct intel_engine_execlists * const execlists = &engine->execlists;
3049 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
3050 	struct i915_request *rq, *rn;
3051 	struct rb_node *rb;
3052 	unsigned long flags;
3053 
3054 	ENGINE_TRACE(engine, "\n");
3055 
3056 	/*
3057 	 * Before we call engine->cancel_requests(), we should have exclusive
3058 	 * access to the submission state. This is arranged for us by the
3059 	 * caller disabling the interrupt generation, the tasklet and other
3060 	 * threads that may then access the same state, giving us a free hand
3061 	 * to reset state. However, we still need to let lockdep be aware that
3062 	 * we know this state may be accessed in hardirq context, so we
3063 	 * disable the irq around this manipulation and we want to keep
3064 	 * the spinlock focused on its duties and not accidentally conflate
3065 	 * coverage to the submission's irq state. (Similarly, although we
3066 	 * shouldn't need to disable irq around the manipulation of the
3067 	 * submission's irq state, we also wish to remind ourselves that
3068 	 * it is irq state.)
3069 	 */
3070 	execlists_reset_csb(engine, true);
3071 
3072 	rcu_read_lock();
3073 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3074 
3075 	/* Mark all executing requests as skipped. */
3076 	list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3077 		i915_request_put(i915_request_mark_eio(rq));
3078 	intel_engine_signal_breadcrumbs(engine);
3079 
3080 	/* Flush the queued requests to the timeline list (for retiring). */
3081 	while ((rb = rb_first_cached(&sched_engine->queue))) {
3082 		struct i915_priolist *p = to_priolist(rb);
3083 
3084 		priolist_for_each_request_consume(rq, rn, p) {
3085 			if (i915_request_mark_eio(rq)) {
3086 				__i915_request_submit(rq);
3087 				i915_request_put(rq);
3088 			}
3089 		}
3090 
3091 		rb_erase_cached(&p->node, &sched_engine->queue);
3092 		i915_priolist_free(p);
3093 	}
3094 
3095 	/* On-hold requests will be flushed to timeline upon their release */
3096 	list_for_each_entry(rq, &sched_engine->hold, sched.link)
3097 		i915_request_put(i915_request_mark_eio(rq));
3098 
3099 	/* Cancel all attached virtual engines */
3100 	while ((rb = rb_first_cached(&execlists->virtual))) {
3101 		struct virtual_engine *ve =
3102 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3103 
3104 		rb_erase_cached(rb, &execlists->virtual);
3105 		RB_CLEAR_NODE(rb);
3106 
3107 		spin_lock(&ve->base.sched_engine->lock);
3108 		rq = fetch_and_zero(&ve->request);
3109 		if (rq) {
3110 			if (i915_request_mark_eio(rq)) {
3111 				rq->engine = engine;
3112 				__i915_request_submit(rq);
3113 				i915_request_put(rq);
3114 			}
3115 			i915_request_put(rq);
3116 
3117 			ve->base.sched_engine->queue_priority_hint = INT_MIN;
3118 		}
3119 		spin_unlock(&ve->base.sched_engine->lock);
3120 	}
3121 
3122 	/* Remaining _unready_ requests will be nop'ed when submitted */
3123 
3124 	sched_engine->queue_priority_hint = INT_MIN;
3125 	sched_engine->queue = RB_ROOT_CACHED;
3126 
3127 	GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3128 	engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3129 
3130 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3131 	rcu_read_unlock();
3132 }
3133 
3134 static void execlists_reset_finish(struct intel_engine_cs *engine)
3135 {
3136 	struct intel_engine_execlists * const execlists = &engine->execlists;
3137 
3138 	/*
3139 	 * After a GPU reset, we may have requests to replay. Do so now while
3140 	 * we still have the forcewake to be sure that the GPU is not allowed
3141 	 * to sleep before we restart and reload a context.
3142 	 *
3143 	 * If the GPU reset fails, the engine may still be alive with requests
3144 	 * inflight. We expect those to complete, or for the device to be
3145 	 * reset as the next level of recovery, and as a final resort we
3146 	 * will declare the device wedged.
3147 	 */
3148 	GEM_BUG_ON(!reset_in_progress(engine));
3149 
3150 	/* And kick in case we missed a new request submission. */
3151 	if (__tasklet_enable(&engine->sched_engine->tasklet))
3152 		__execlists_kick(execlists);
3153 
3154 	ENGINE_TRACE(engine, "depth->%d\n",
3155 		     atomic_read(&engine->sched_engine->tasklet.count));
3156 }
3157 
3158 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3159 {
3160 	ENGINE_WRITE(engine, RING_IMR,
3161 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3162 	ENGINE_POSTING_READ(engine, RING_IMR);
3163 }
3164 
3165 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3166 {
3167 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3168 }
3169 
3170 static void execlists_park(struct intel_engine_cs *engine)
3171 {
3172 	cancel_timer(&engine->execlists.timer);
3173 	cancel_timer(&engine->execlists.preempt);
3174 }
3175 
3176 static void add_to_engine(struct i915_request *rq)
3177 {
3178 	lockdep_assert_held(&rq->engine->sched_engine->lock);
3179 	list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3180 }
3181 
3182 static void remove_from_engine(struct i915_request *rq)
3183 {
3184 	struct intel_engine_cs *engine, *locked;
3185 
3186 	/*
3187 	 * Virtual engines complicate acquiring the engine timeline lock,
3188 	 * as their rq->engine pointer is not stable until under that
3189 	 * engine lock. The simple ploy we use is to take the lock then
3190 	 * check that the rq still belongs to the newly locked engine.
3191 	 */
3192 	locked = READ_ONCE(rq->engine);
3193 	spin_lock_irq(&locked->sched_engine->lock);
3194 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3195 		spin_unlock(&locked->sched_engine->lock);
3196 		spin_lock(&engine->sched_engine->lock);
3197 		locked = engine;
3198 	}
3199 	list_del_init(&rq->sched.link);
3200 
3201 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3202 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3203 
3204 	/* Prevent further __await_execution() registering a cb, then flush */
3205 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3206 
3207 	spin_unlock_irq(&locked->sched_engine->lock);
3208 
3209 	i915_request_notify_execute_cb_imm(rq);
3210 }
3211 
3212 static bool can_preempt(struct intel_engine_cs *engine)
3213 {
3214 	if (GRAPHICS_VER(engine->i915) > 8)
3215 		return true;
3216 
3217 	/* GPGPU on bdw requires extra w/a; not implemented */
3218 	return engine->class != RENDER_CLASS;
3219 }
3220 
3221 static void kick_execlists(const struct i915_request *rq, int prio)
3222 {
3223 	struct intel_engine_cs *engine = rq->engine;
3224 	struct i915_sched_engine *sched_engine = engine->sched_engine;
3225 	const struct i915_request *inflight;
3226 
3227 	/*
3228 	 * We only need to kick the tasklet once for the high priority
3229 	 * new context we add into the queue.
3230 	 */
3231 	if (prio <= sched_engine->queue_priority_hint)
3232 		return;
3233 
3234 	rcu_read_lock();
3235 
3236 	/* Nothing currently active? We're overdue for a submission! */
3237 	inflight = execlists_active(&engine->execlists);
3238 	if (!inflight)
3239 		goto unlock;
3240 
3241 	/*
3242 	 * If we are already the currently executing context, don't
3243 	 * bother evaluating if we should preempt ourselves.
3244 	 */
3245 	if (inflight->context == rq->context)
3246 		goto unlock;
3247 
3248 	ENGINE_TRACE(engine,
3249 		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3250 		     prio,
3251 		     rq->fence.context, rq->fence.seqno,
3252 		     inflight->fence.context, inflight->fence.seqno,
3253 		     inflight->sched.attr.priority);
3254 
3255 	sched_engine->queue_priority_hint = prio;
3256 
3257 	/*
3258 	 * Allow preemption of low -> normal -> high, but we do
3259 	 * not allow low priority tasks to preempt other low priority
3260 	 * tasks under the impression that latency for low priority
3261 	 * tasks does not matter (as much as background throughput),
3262 	 * so kiss.
3263 	 */
3264 	if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3265 		tasklet_hi_schedule(&sched_engine->tasklet);
3266 
3267 unlock:
3268 	rcu_read_unlock();
3269 }
3270 
3271 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3272 {
3273 	engine->submit_request = execlists_submit_request;
3274 	engine->sched_engine->schedule = i915_schedule;
3275 	engine->sched_engine->kick_backend = kick_execlists;
3276 	engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3277 }
3278 
3279 static void execlists_shutdown(struct intel_engine_cs *engine)
3280 {
3281 	/* Synchronise with residual timers and any softirq they raise */
3282 	del_timer_sync(&engine->execlists.timer);
3283 	del_timer_sync(&engine->execlists.preempt);
3284 	tasklet_kill(&engine->sched_engine->tasklet);
3285 }
3286 
3287 static void execlists_release(struct intel_engine_cs *engine)
3288 {
3289 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3290 
3291 	execlists_shutdown(engine);
3292 
3293 	intel_engine_cleanup_common(engine);
3294 	lrc_fini_wa_ctx(engine);
3295 }
3296 
3297 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3298 					   ktime_t *now)
3299 {
3300 	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3301 	ktime_t total = stats->total;
3302 
3303 	/*
3304 	 * If the engine is executing something at the moment
3305 	 * add it to the total.
3306 	 */
3307 	*now = ktime_get();
3308 	if (READ_ONCE(stats->active))
3309 		total = ktime_add(total, ktime_sub(*now, stats->start));
3310 
3311 	return total;
3312 }
3313 
3314 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3315 					 ktime_t *now)
3316 {
3317 	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3318 	unsigned int seq;
3319 	ktime_t total;
3320 
3321 	do {
3322 		seq = read_seqcount_begin(&stats->lock);
3323 		total = __execlists_engine_busyness(engine, now);
3324 	} while (read_seqcount_retry(&stats->lock, seq));
3325 
3326 	return total;
3327 }
3328 
3329 static void
3330 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3331 {
3332 	/* Default vfuncs which can be overridden by each engine. */
3333 
3334 	engine->resume = execlists_resume;
3335 
3336 	engine->cops = &execlists_context_ops;
3337 	engine->request_alloc = execlists_request_alloc;
3338 	engine->add_active_request = add_to_engine;
3339 	engine->remove_active_request = remove_from_engine;
3340 
3341 	engine->reset.prepare = execlists_reset_prepare;
3342 	engine->reset.rewind = execlists_reset_rewind;
3343 	engine->reset.cancel = execlists_reset_cancel;
3344 	engine->reset.finish = execlists_reset_finish;
3345 
3346 	engine->park = execlists_park;
3347 	engine->unpark = NULL;
3348 
3349 	engine->emit_flush = gen8_emit_flush_xcs;
3350 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3351 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3352 	if (GRAPHICS_VER(engine->i915) >= 12) {
3353 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3354 		engine->emit_flush = gen12_emit_flush_xcs;
3355 	}
3356 	engine->set_default_submission = execlists_set_default_submission;
3357 
3358 	if (GRAPHICS_VER(engine->i915) < 11) {
3359 		engine->irq_enable = gen8_logical_ring_enable_irq;
3360 		engine->irq_disable = gen8_logical_ring_disable_irq;
3361 	} else {
3362 		/*
3363 		 * TODO: On Gen11 interrupt masks need to be clear
3364 		 * to allow C6 entry. Keep interrupts enabled at
3365 		 * and take the hit of generating extra interrupts
3366 		 * until a more refined solution exists.
3367 		 */
3368 	}
3369 	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3370 
3371 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3372 	if (!intel_vgpu_active(engine->i915)) {
3373 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3374 		if (can_preempt(engine)) {
3375 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3376 			if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3377 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3378 		}
3379 	}
3380 
3381 	if (intel_engine_has_preemption(engine))
3382 		engine->emit_bb_start = gen8_emit_bb_start;
3383 	else
3384 		engine->emit_bb_start = gen8_emit_bb_start_noarb;
3385 
3386 	engine->busyness = execlists_engine_busyness;
3387 }
3388 
3389 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3390 {
3391 	unsigned int shift = 0;
3392 
3393 	if (GRAPHICS_VER(engine->i915) < 11) {
3394 		const u8 irq_shifts[] = {
3395 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3396 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3397 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3398 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3399 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3400 		};
3401 
3402 		shift = irq_shifts[engine->id];
3403 	}
3404 
3405 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3406 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3407 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3408 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3409 }
3410 
3411 static void rcs_submission_override(struct intel_engine_cs *engine)
3412 {
3413 	switch (GRAPHICS_VER(engine->i915)) {
3414 	case 12:
3415 		engine->emit_flush = gen12_emit_flush_rcs;
3416 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3417 		break;
3418 	case 11:
3419 		engine->emit_flush = gen11_emit_flush_rcs;
3420 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3421 		break;
3422 	default:
3423 		engine->emit_flush = gen8_emit_flush_rcs;
3424 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3425 		break;
3426 	}
3427 }
3428 
3429 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3430 {
3431 	struct intel_engine_execlists * const execlists = &engine->execlists;
3432 	struct drm_i915_private *i915 = engine->i915;
3433 	struct intel_uncore *uncore = engine->uncore;
3434 	u32 base = engine->mmio_base;
3435 
3436 	tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3437 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3438 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3439 
3440 	logical_ring_default_vfuncs(engine);
3441 	logical_ring_default_irqs(engine);
3442 
3443 	if (engine->class == RENDER_CLASS)
3444 		rcs_submission_override(engine);
3445 
3446 	lrc_init_wa_ctx(engine);
3447 
3448 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3449 		execlists->submit_reg = uncore->regs +
3450 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3451 		execlists->ctrl_reg = uncore->regs +
3452 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3453 
3454 		engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3455 				    RING_EXECLIST_CONTROL(engine->mmio_base),
3456 				    FW_REG_WRITE);
3457 	} else {
3458 		execlists->submit_reg = uncore->regs +
3459 			i915_mmio_reg_offset(RING_ELSP(base));
3460 	}
3461 
3462 	execlists->csb_status =
3463 		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3464 
3465 	execlists->csb_write =
3466 		&engine->status_page.addr[intel_hws_csb_write_index(i915)];
3467 
3468 	if (GRAPHICS_VER(i915) < 11)
3469 		execlists->csb_size = GEN8_CSB_ENTRIES;
3470 	else
3471 		execlists->csb_size = GEN11_CSB_ENTRIES;
3472 
3473 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3474 	if (GRAPHICS_VER(engine->i915) >= 11 &&
3475 	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3476 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3477 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3478 	}
3479 
3480 	/* Finally, take ownership and responsibility for cleanup! */
3481 	engine->sanitize = execlists_sanitize;
3482 	engine->release = execlists_release;
3483 
3484 	return 0;
3485 }
3486 
3487 static struct list_head *virtual_queue(struct virtual_engine *ve)
3488 {
3489 	return &ve->base.sched_engine->default_priolist.requests;
3490 }
3491 
3492 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3493 {
3494 	struct virtual_engine *ve =
3495 		container_of(wrk, typeof(*ve), rcu.work);
3496 	unsigned int n;
3497 
3498 	GEM_BUG_ON(ve->context.inflight);
3499 
3500 	/* Preempt-to-busy may leave a stale request behind. */
3501 	if (unlikely(ve->request)) {
3502 		struct i915_request *old;
3503 
3504 		spin_lock_irq(&ve->base.sched_engine->lock);
3505 
3506 		old = fetch_and_zero(&ve->request);
3507 		if (old) {
3508 			GEM_BUG_ON(!__i915_request_is_complete(old));
3509 			__i915_request_submit(old);
3510 			i915_request_put(old);
3511 		}
3512 
3513 		spin_unlock_irq(&ve->base.sched_engine->lock);
3514 	}
3515 
3516 	/*
3517 	 * Flush the tasklet in case it is still running on another core.
3518 	 *
3519 	 * This needs to be done before we remove ourselves from the siblings'
3520 	 * rbtrees as in the case it is running in parallel, it may reinsert
3521 	 * the rb_node into a sibling.
3522 	 */
3523 	tasklet_kill(&ve->base.sched_engine->tasklet);
3524 
3525 	/* Decouple ourselves from the siblings, no more access allowed. */
3526 	for (n = 0; n < ve->num_siblings; n++) {
3527 		struct intel_engine_cs *sibling = ve->siblings[n];
3528 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3529 
3530 		if (RB_EMPTY_NODE(node))
3531 			continue;
3532 
3533 		spin_lock_irq(&sibling->sched_engine->lock);
3534 
3535 		/* Detachment is lazily performed in the sched_engine->tasklet */
3536 		if (!RB_EMPTY_NODE(node))
3537 			rb_erase_cached(node, &sibling->execlists.virtual);
3538 
3539 		spin_unlock_irq(&sibling->sched_engine->lock);
3540 	}
3541 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3542 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3543 
3544 	lrc_fini(&ve->context);
3545 	intel_context_fini(&ve->context);
3546 
3547 	if (ve->base.breadcrumbs)
3548 		intel_breadcrumbs_put(ve->base.breadcrumbs);
3549 	if (ve->base.sched_engine)
3550 		i915_sched_engine_put(ve->base.sched_engine);
3551 	intel_engine_free_request_pool(&ve->base);
3552 
3553 	kfree(ve);
3554 }
3555 
3556 static void virtual_context_destroy(struct kref *kref)
3557 {
3558 	struct virtual_engine *ve =
3559 		container_of(kref, typeof(*ve), context.ref);
3560 
3561 	GEM_BUG_ON(!list_empty(&ve->context.signals));
3562 
3563 	/*
3564 	 * When destroying the virtual engine, we have to be aware that
3565 	 * it may still be in use from an hardirq/softirq context causing
3566 	 * the resubmission of a completed request (background completion
3567 	 * due to preempt-to-busy). Before we can free the engine, we need
3568 	 * to flush the submission code and tasklets that are still potentially
3569 	 * accessing the engine. Flushing the tasklets requires process context,
3570 	 * and since we can guard the resubmit onto the engine with an RCU read
3571 	 * lock, we can delegate the free of the engine to an RCU worker.
3572 	 */
3573 	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3574 	queue_rcu_work(system_wq, &ve->rcu);
3575 }
3576 
3577 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3578 {
3579 	int swp;
3580 
3581 	/*
3582 	 * Pick a random sibling on starting to help spread the load around.
3583 	 *
3584 	 * New contexts are typically created with exactly the same order
3585 	 * of siblings, and often started in batches. Due to the way we iterate
3586 	 * the array of sibling when submitting requests, sibling[0] is
3587 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3588 	 * randomised across the system, we also help spread the load by the
3589 	 * first engine we inspect being different each time.
3590 	 *
3591 	 * NB This does not force us to execute on this engine, it will just
3592 	 * typically be the first we inspect for submission.
3593 	 */
3594 	swp = prandom_u32_max(ve->num_siblings);
3595 	if (swp)
3596 		swap(ve->siblings[swp], ve->siblings[0]);
3597 }
3598 
3599 static int virtual_context_alloc(struct intel_context *ce)
3600 {
3601 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3602 
3603 	return lrc_alloc(ce, ve->siblings[0]);
3604 }
3605 
3606 static int virtual_context_pre_pin(struct intel_context *ce,
3607 				   struct i915_gem_ww_ctx *ww,
3608 				   void **vaddr)
3609 {
3610 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3611 
3612 	 /* Note: we must use a real engine class for setting up reg state */
3613 	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3614 }
3615 
3616 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3617 {
3618 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3619 
3620 	return lrc_pin(ce, ve->siblings[0], vaddr);
3621 }
3622 
3623 static void virtual_context_enter(struct intel_context *ce)
3624 {
3625 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3626 	unsigned int n;
3627 
3628 	for (n = 0; n < ve->num_siblings; n++)
3629 		intel_engine_pm_get(ve->siblings[n]);
3630 
3631 	intel_timeline_enter(ce->timeline);
3632 }
3633 
3634 static void virtual_context_exit(struct intel_context *ce)
3635 {
3636 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3637 	unsigned int n;
3638 
3639 	intel_timeline_exit(ce->timeline);
3640 
3641 	for (n = 0; n < ve->num_siblings; n++)
3642 		intel_engine_pm_put(ve->siblings[n]);
3643 }
3644 
3645 static struct intel_engine_cs *
3646 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3647 {
3648 	struct virtual_engine *ve = to_virtual_engine(engine);
3649 
3650 	if (sibling >= ve->num_siblings)
3651 		return NULL;
3652 
3653 	return ve->siblings[sibling];
3654 }
3655 
3656 static const struct intel_context_ops virtual_context_ops = {
3657 	.flags = COPS_HAS_INFLIGHT,
3658 
3659 	.alloc = virtual_context_alloc,
3660 
3661 	.cancel_request = execlists_context_cancel_request,
3662 
3663 	.pre_pin = virtual_context_pre_pin,
3664 	.pin = virtual_context_pin,
3665 	.unpin = lrc_unpin,
3666 	.post_unpin = lrc_post_unpin,
3667 
3668 	.enter = virtual_context_enter,
3669 	.exit = virtual_context_exit,
3670 
3671 	.destroy = virtual_context_destroy,
3672 
3673 	.get_sibling = virtual_get_sibling,
3674 };
3675 
3676 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3677 {
3678 	struct i915_request *rq;
3679 	intel_engine_mask_t mask;
3680 
3681 	rq = READ_ONCE(ve->request);
3682 	if (!rq)
3683 		return 0;
3684 
3685 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3686 	mask = rq->execution_mask;
3687 	if (unlikely(!mask)) {
3688 		/* Invalid selection, submit to a random engine in error */
3689 		i915_request_set_error_once(rq, -ENODEV);
3690 		mask = ve->siblings[0]->mask;
3691 	}
3692 
3693 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3694 		     rq->fence.context, rq->fence.seqno,
3695 		     mask, ve->base.sched_engine->queue_priority_hint);
3696 
3697 	return mask;
3698 }
3699 
3700 static void virtual_submission_tasklet(struct tasklet_struct *t)
3701 {
3702 	struct i915_sched_engine *sched_engine =
3703 		from_tasklet(sched_engine, t, tasklet);
3704 	struct virtual_engine * const ve =
3705 		(struct virtual_engine *)sched_engine->private_data;
3706 	const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3707 	intel_engine_mask_t mask;
3708 	unsigned int n;
3709 
3710 	rcu_read_lock();
3711 	mask = virtual_submission_mask(ve);
3712 	rcu_read_unlock();
3713 	if (unlikely(!mask))
3714 		return;
3715 
3716 	for (n = 0; n < ve->num_siblings; n++) {
3717 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3718 		struct ve_node * const node = &ve->nodes[sibling->id];
3719 		struct rb_node **parent, *rb;
3720 		bool first;
3721 
3722 		if (!READ_ONCE(ve->request))
3723 			break; /* already handled by a sibling's tasklet */
3724 
3725 		spin_lock_irq(&sibling->sched_engine->lock);
3726 
3727 		if (unlikely(!(mask & sibling->mask))) {
3728 			if (!RB_EMPTY_NODE(&node->rb)) {
3729 				rb_erase_cached(&node->rb,
3730 						&sibling->execlists.virtual);
3731 				RB_CLEAR_NODE(&node->rb);
3732 			}
3733 
3734 			goto unlock_engine;
3735 		}
3736 
3737 		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3738 			/*
3739 			 * Cheat and avoid rebalancing the tree if we can
3740 			 * reuse this node in situ.
3741 			 */
3742 			first = rb_first_cached(&sibling->execlists.virtual) ==
3743 				&node->rb;
3744 			if (prio == node->prio || (prio > node->prio && first))
3745 				goto submit_engine;
3746 
3747 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3748 		}
3749 
3750 		rb = NULL;
3751 		first = true;
3752 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3753 		while (*parent) {
3754 			struct ve_node *other;
3755 
3756 			rb = *parent;
3757 			other = rb_entry(rb, typeof(*other), rb);
3758 			if (prio > other->prio) {
3759 				parent = &rb->rb_left;
3760 			} else {
3761 				parent = &rb->rb_right;
3762 				first = false;
3763 			}
3764 		}
3765 
3766 		rb_link_node(&node->rb, rb, parent);
3767 		rb_insert_color_cached(&node->rb,
3768 				       &sibling->execlists.virtual,
3769 				       first);
3770 
3771 submit_engine:
3772 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3773 		node->prio = prio;
3774 		if (first && prio > sibling->sched_engine->queue_priority_hint)
3775 			tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3776 
3777 unlock_engine:
3778 		spin_unlock_irq(&sibling->sched_engine->lock);
3779 
3780 		if (intel_context_inflight(&ve->context))
3781 			break;
3782 	}
3783 }
3784 
3785 static void virtual_submit_request(struct i915_request *rq)
3786 {
3787 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3788 	unsigned long flags;
3789 
3790 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3791 		     rq->fence.context,
3792 		     rq->fence.seqno);
3793 
3794 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3795 
3796 	spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3797 
3798 	/* By the time we resubmit a request, it may be completed */
3799 	if (__i915_request_is_complete(rq)) {
3800 		__i915_request_submit(rq);
3801 		goto unlock;
3802 	}
3803 
3804 	if (ve->request) { /* background completion from preempt-to-busy */
3805 		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3806 		__i915_request_submit(ve->request);
3807 		i915_request_put(ve->request);
3808 	}
3809 
3810 	ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3811 	ve->request = i915_request_get(rq);
3812 
3813 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3814 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3815 
3816 	tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3817 
3818 unlock:
3819 	spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3820 }
3821 
3822 static struct intel_context *
3823 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3824 			 unsigned long flags)
3825 {
3826 	struct virtual_engine *ve;
3827 	unsigned int n;
3828 	int err;
3829 
3830 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3831 	if (!ve)
3832 		return ERR_PTR(-ENOMEM);
3833 
3834 	ve->base.i915 = siblings[0]->i915;
3835 	ve->base.gt = siblings[0]->gt;
3836 	ve->base.uncore = siblings[0]->uncore;
3837 	ve->base.id = -1;
3838 
3839 	ve->base.class = OTHER_CLASS;
3840 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3841 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3842 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3843 
3844 	/*
3845 	 * The decision on whether to submit a request using semaphores
3846 	 * depends on the saturated state of the engine. We only compute
3847 	 * this during HW submission of the request, and we need for this
3848 	 * state to be globally applied to all requests being submitted
3849 	 * to this engine. Virtual engines encompass more than one physical
3850 	 * engine and so we cannot accurately tell in advance if one of those
3851 	 * engines is already saturated and so cannot afford to use a semaphore
3852 	 * and be pessimized in priority for doing so -- if we are the only
3853 	 * context using semaphores after all other clients have stopped, we
3854 	 * will be starved on the saturated system. Such a global switch for
3855 	 * semaphores is less than ideal, but alas is the current compromise.
3856 	 */
3857 	ve->base.saturated = ALL_ENGINES;
3858 
3859 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3860 
3861 	intel_engine_init_execlists(&ve->base);
3862 
3863 	ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3864 	if (!ve->base.sched_engine) {
3865 		err = -ENOMEM;
3866 		goto err_put;
3867 	}
3868 	ve->base.sched_engine->private_data = &ve->base;
3869 
3870 	ve->base.cops = &virtual_context_ops;
3871 	ve->base.request_alloc = execlists_request_alloc;
3872 
3873 	ve->base.sched_engine->schedule = i915_schedule;
3874 	ve->base.sched_engine->kick_backend = kick_execlists;
3875 	ve->base.submit_request = virtual_submit_request;
3876 
3877 	INIT_LIST_HEAD(virtual_queue(ve));
3878 	tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3879 
3880 	intel_context_init(&ve->context, &ve->base);
3881 
3882 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3883 	if (!ve->base.breadcrumbs) {
3884 		err = -ENOMEM;
3885 		goto err_put;
3886 	}
3887 
3888 	for (n = 0; n < count; n++) {
3889 		struct intel_engine_cs *sibling = siblings[n];
3890 
3891 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
3892 		if (sibling->mask & ve->base.mask) {
3893 			DRM_DEBUG("duplicate %s entry in load balancer\n",
3894 				  sibling->name);
3895 			err = -EINVAL;
3896 			goto err_put;
3897 		}
3898 
3899 		/*
3900 		 * The virtual engine implementation is tightly coupled to
3901 		 * the execlists backend -- we push out request directly
3902 		 * into a tree inside each physical engine. We could support
3903 		 * layering if we handle cloning of the requests and
3904 		 * submitting a copy into each backend.
3905 		 */
3906 		if (sibling->sched_engine->tasklet.callback !=
3907 		    execlists_submission_tasklet) {
3908 			err = -ENODEV;
3909 			goto err_put;
3910 		}
3911 
3912 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3913 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3914 
3915 		ve->siblings[ve->num_siblings++] = sibling;
3916 		ve->base.mask |= sibling->mask;
3917 		ve->base.logical_mask |= sibling->logical_mask;
3918 
3919 		/*
3920 		 * All physical engines must be compatible for their emission
3921 		 * functions (as we build the instructions during request
3922 		 * construction and do not alter them before submission
3923 		 * on the physical engine). We use the engine class as a guide
3924 		 * here, although that could be refined.
3925 		 */
3926 		if (ve->base.class != OTHER_CLASS) {
3927 			if (ve->base.class != sibling->class) {
3928 				DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3929 					  sibling->class, ve->base.class);
3930 				err = -EINVAL;
3931 				goto err_put;
3932 			}
3933 			continue;
3934 		}
3935 
3936 		ve->base.class = sibling->class;
3937 		ve->base.uabi_class = sibling->uabi_class;
3938 		snprintf(ve->base.name, sizeof(ve->base.name),
3939 			 "v%dx%d", ve->base.class, count);
3940 		ve->base.context_size = sibling->context_size;
3941 
3942 		ve->base.add_active_request = sibling->add_active_request;
3943 		ve->base.remove_active_request = sibling->remove_active_request;
3944 		ve->base.emit_bb_start = sibling->emit_bb_start;
3945 		ve->base.emit_flush = sibling->emit_flush;
3946 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3947 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3948 		ve->base.emit_fini_breadcrumb_dw =
3949 			sibling->emit_fini_breadcrumb_dw;
3950 
3951 		ve->base.flags = sibling->flags;
3952 	}
3953 
3954 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
3955 
3956 	virtual_engine_initial_hint(ve);
3957 	return &ve->context;
3958 
3959 err_put:
3960 	intel_context_put(&ve->context);
3961 	return ERR_PTR(err);
3962 }
3963 
3964 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3965 				   struct drm_printer *m,
3966 				   void (*show_request)(struct drm_printer *m,
3967 							const struct i915_request *rq,
3968 							const char *prefix,
3969 							int indent),
3970 				   unsigned int max)
3971 {
3972 	const struct intel_engine_execlists *execlists = &engine->execlists;
3973 	struct i915_sched_engine *sched_engine = engine->sched_engine;
3974 	struct i915_request *rq, *last;
3975 	unsigned long flags;
3976 	unsigned int count;
3977 	struct rb_node *rb;
3978 
3979 	spin_lock_irqsave(&sched_engine->lock, flags);
3980 
3981 	last = NULL;
3982 	count = 0;
3983 	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
3984 		if (count++ < max - 1)
3985 			show_request(m, rq, "\t\t", 0);
3986 		else
3987 			last = rq;
3988 	}
3989 	if (last) {
3990 		if (count > max) {
3991 			drm_printf(m,
3992 				   "\t\t...skipping %d executing requests...\n",
3993 				   count - max);
3994 		}
3995 		show_request(m, last, "\t\t", 0);
3996 	}
3997 
3998 	if (sched_engine->queue_priority_hint != INT_MIN)
3999 		drm_printf(m, "\t\tQueue priority hint: %d\n",
4000 			   READ_ONCE(sched_engine->queue_priority_hint));
4001 
4002 	last = NULL;
4003 	count = 0;
4004 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4005 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4006 
4007 		priolist_for_each_request(rq, p) {
4008 			if (count++ < max - 1)
4009 				show_request(m, rq, "\t\t", 0);
4010 			else
4011 				last = rq;
4012 		}
4013 	}
4014 	if (last) {
4015 		if (count > max) {
4016 			drm_printf(m,
4017 				   "\t\t...skipping %d queued requests...\n",
4018 				   count - max);
4019 		}
4020 		show_request(m, last, "\t\t", 0);
4021 	}
4022 
4023 	last = NULL;
4024 	count = 0;
4025 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4026 		struct virtual_engine *ve =
4027 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4028 		struct i915_request *rq = READ_ONCE(ve->request);
4029 
4030 		if (rq) {
4031 			if (count++ < max - 1)
4032 				show_request(m, rq, "\t\t", 0);
4033 			else
4034 				last = rq;
4035 		}
4036 	}
4037 	if (last) {
4038 		if (count > max) {
4039 			drm_printf(m,
4040 				   "\t\t...skipping %d virtual requests...\n",
4041 				   count - max);
4042 		}
4043 		show_request(m, last, "\t\t", 0);
4044 	}
4045 
4046 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4047 }
4048 
4049 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4050 #include "selftest_execlists.c"
4051 #endif
4052