1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 #include <linux/string_helpers.h>
111 
112 #include "i915_drv.h"
113 #include "i915_reg.h"
114 #include "i915_trace.h"
115 #include "i915_vgpu.h"
116 #include "gen8_engine_cs.h"
117 #include "intel_breadcrumbs.h"
118 #include "intel_context.h"
119 #include "intel_engine_heartbeat.h"
120 #include "intel_engine_pm.h"
121 #include "intel_engine_regs.h"
122 #include "intel_engine_stats.h"
123 #include "intel_execlists_submission.h"
124 #include "intel_gt.h"
125 #include "intel_gt_irq.h"
126 #include "intel_gt_pm.h"
127 #include "intel_gt_regs.h"
128 #include "intel_gt_requests.h"
129 #include "intel_lrc.h"
130 #include "intel_lrc_reg.h"
131 #include "intel_mocs.h"
132 #include "intel_reset.h"
133 #include "intel_ring.h"
134 #include "intel_workarounds.h"
135 #include "shmem_utils.h"
136 
137 #define RING_EXECLIST_QFULL		(1 << 0x2)
138 #define RING_EXECLIST1_VALID		(1 << 0x3)
139 #define RING_EXECLIST0_VALID		(1 << 0x4)
140 #define RING_EXECLIST_ACTIVE_STATUS	(3 << 0xE)
141 #define RING_EXECLIST1_ACTIVE		(1 << 0x11)
142 #define RING_EXECLIST0_ACTIVE		(1 << 0x12)
143 
144 #define GEN8_CTX_STATUS_IDLE_ACTIVE	(1 << 0)
145 #define GEN8_CTX_STATUS_PREEMPTED	(1 << 1)
146 #define GEN8_CTX_STATUS_ELEMENT_SWITCH	(1 << 2)
147 #define GEN8_CTX_STATUS_ACTIVE_IDLE	(1 << 3)
148 #define GEN8_CTX_STATUS_COMPLETE	(1 << 4)
149 #define GEN8_CTX_STATUS_LITE_RESTORE	(1 << 15)
150 
151 #define GEN8_CTX_STATUS_COMPLETED_MASK \
152 	 (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
153 
154 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	(0x1) /* lower csb dword */
155 #define GEN12_CTX_SWITCH_DETAIL(csb_dw)	((csb_dw) & 0xF) /* upper csb dword */
156 #define GEN12_CSB_SW_CTX_ID_MASK		GENMASK(25, 15)
157 #define GEN12_IDLE_CTX_ID		0x7FF
158 #define GEN12_CSB_CTX_VALID(csb_dw) \
159 	(FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
160 
161 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE	BIT(1) /* upper csb dword */
162 #define XEHP_CSB_SW_CTX_ID_MASK			GENMASK(31, 10)
163 #define XEHP_IDLE_CTX_ID			0xFFFF
164 #define XEHP_CSB_CTX_VALID(csb_dw) \
165 	(FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
166 
167 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
168 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169 
170 struct virtual_engine {
171 	struct intel_engine_cs base;
172 	struct intel_context context;
173 	struct rcu_work rcu;
174 
175 	/*
176 	 * We allow only a single request through the virtual engine at a time
177 	 * (each request in the timeline waits for the completion fence of
178 	 * the previous before being submitted). By restricting ourselves to
179 	 * only submitting a single request, each request is placed on to a
180 	 * physical to maximise load spreading (by virtue of the late greedy
181 	 * scheduling -- each real engine takes the next available request
182 	 * upon idling).
183 	 */
184 	struct i915_request *request;
185 
186 	/*
187 	 * We keep a rbtree of available virtual engines inside each physical
188 	 * engine, sorted by priority. Here we preallocate the nodes we need
189 	 * for the virtual engine, indexed by physical_engine->id.
190 	 */
191 	struct ve_node {
192 		struct rb_node rb;
193 		int prio;
194 	} nodes[I915_NUM_ENGINES];
195 
196 	/* And finally, which physical engines this virtual engine maps onto. */
197 	unsigned int num_siblings;
198 	struct intel_engine_cs *siblings[];
199 };
200 
201 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202 {
203 	GEM_BUG_ON(!intel_engine_is_virtual(engine));
204 	return container_of(engine, struct virtual_engine, base);
205 }
206 
207 static struct intel_context *
208 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
209 			 unsigned long flags);
210 
211 static struct i915_request *
212 __active_request(const struct intel_timeline * const tl,
213 		 struct i915_request *rq,
214 		 int error)
215 {
216 	struct i915_request *active = rq;
217 
218 	list_for_each_entry_from_reverse(rq, &tl->requests, link) {
219 		if (__i915_request_is_complete(rq))
220 			break;
221 
222 		if (error) {
223 			i915_request_set_error_once(rq, error);
224 			__i915_request_skip(rq);
225 		}
226 		active = rq;
227 	}
228 
229 	return active;
230 }
231 
232 static struct i915_request *
233 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
234 {
235 	return __active_request(tl, rq, 0);
236 }
237 
238 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
239 {
240 	/*
241 	 * We inspect HWS_PREEMPT with a semaphore inside
242 	 * engine->emit_fini_breadcrumb. If the dword is true,
243 	 * the ring is paused as the semaphore will busywait
244 	 * until the dword is false.
245 	 */
246 	engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
247 	if (state)
248 		wmb();
249 }
250 
251 static struct i915_priolist *to_priolist(struct rb_node *rb)
252 {
253 	return rb_entry(rb, struct i915_priolist, node);
254 }
255 
256 static int rq_prio(const struct i915_request *rq)
257 {
258 	return READ_ONCE(rq->sched.attr.priority);
259 }
260 
261 static int effective_prio(const struct i915_request *rq)
262 {
263 	int prio = rq_prio(rq);
264 
265 	/*
266 	 * If this request is special and must not be interrupted at any
267 	 * cost, so be it. Note we are only checking the most recent request
268 	 * in the context and so may be masking an earlier vip request. It
269 	 * is hoped that under the conditions where nopreempt is used, this
270 	 * will not matter (i.e. all requests to that context will be
271 	 * nopreempt for as long as desired).
272 	 */
273 	if (i915_request_has_nopreempt(rq))
274 		prio = I915_PRIORITY_UNPREEMPTABLE;
275 
276 	return prio;
277 }
278 
279 static int queue_prio(const struct i915_sched_engine *sched_engine)
280 {
281 	struct rb_node *rb;
282 
283 	rb = rb_first_cached(&sched_engine->queue);
284 	if (!rb)
285 		return INT_MIN;
286 
287 	return to_priolist(rb)->priority;
288 }
289 
290 static int virtual_prio(const struct intel_engine_execlists *el)
291 {
292 	struct rb_node *rb = rb_first_cached(&el->virtual);
293 
294 	return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
295 }
296 
297 static bool need_preempt(const struct intel_engine_cs *engine,
298 			 const struct i915_request *rq)
299 {
300 	int last_prio;
301 
302 	if (!intel_engine_has_semaphores(engine))
303 		return false;
304 
305 	/*
306 	 * Check if the current priority hint merits a preemption attempt.
307 	 *
308 	 * We record the highest value priority we saw during rescheduling
309 	 * prior to this dequeue, therefore we know that if it is strictly
310 	 * less than the current tail of ESLP[0], we do not need to force
311 	 * a preempt-to-idle cycle.
312 	 *
313 	 * However, the priority hint is a mere hint that we may need to
314 	 * preempt. If that hint is stale or we may be trying to preempt
315 	 * ourselves, ignore the request.
316 	 *
317 	 * More naturally we would write
318 	 *      prio >= max(0, last);
319 	 * except that we wish to prevent triggering preemption at the same
320 	 * priority level: the task that is running should remain running
321 	 * to preserve FIFO ordering of dependencies.
322 	 */
323 	last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
324 	if (engine->sched_engine->queue_priority_hint <= last_prio)
325 		return false;
326 
327 	/*
328 	 * Check against the first request in ELSP[1], it will, thanks to the
329 	 * power of PI, be the highest priority of that context.
330 	 */
331 	if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
332 	    rq_prio(list_next_entry(rq, sched.link)) > last_prio)
333 		return true;
334 
335 	/*
336 	 * If the inflight context did not trigger the preemption, then maybe
337 	 * it was the set of queued requests? Pick the highest priority in
338 	 * the queue (the first active priolist) and see if it deserves to be
339 	 * running instead of ELSP[0].
340 	 *
341 	 * The highest priority request in the queue can not be either
342 	 * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
343 	 * context, it's priority would not exceed ELSP[0] aka last_prio.
344 	 */
345 	return max(virtual_prio(&engine->execlists),
346 		   queue_prio(engine->sched_engine)) > last_prio;
347 }
348 
349 __maybe_unused static bool
350 assert_priority_queue(const struct i915_request *prev,
351 		      const struct i915_request *next)
352 {
353 	/*
354 	 * Without preemption, the prev may refer to the still active element
355 	 * which we refuse to let go.
356 	 *
357 	 * Even with preemption, there are times when we think it is better not
358 	 * to preempt and leave an ostensibly lower priority request in flight.
359 	 */
360 	if (i915_request_is_active(prev))
361 		return true;
362 
363 	return rq_prio(prev) >= rq_prio(next);
364 }
365 
366 static struct i915_request *
367 __unwind_incomplete_requests(struct intel_engine_cs *engine)
368 {
369 	struct i915_request *rq, *rn, *active = NULL;
370 	struct list_head *pl;
371 	int prio = I915_PRIORITY_INVALID;
372 
373 	lockdep_assert_held(&engine->sched_engine->lock);
374 
375 	list_for_each_entry_safe_reverse(rq, rn,
376 					 &engine->sched_engine->requests,
377 					 sched.link) {
378 		if (__i915_request_is_complete(rq)) {
379 			list_del_init(&rq->sched.link);
380 			continue;
381 		}
382 
383 		__i915_request_unsubmit(rq);
384 
385 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
386 		if (rq_prio(rq) != prio) {
387 			prio = rq_prio(rq);
388 			pl = i915_sched_lookup_priolist(engine->sched_engine,
389 							prio);
390 		}
391 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
392 
393 		list_move(&rq->sched.link, pl);
394 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
395 
396 		/* Check in case we rollback so far we wrap [size/2] */
397 		if (intel_ring_direction(rq->ring,
398 					 rq->tail,
399 					 rq->ring->tail + 8) > 0)
400 			rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
401 
402 		active = rq;
403 	}
404 
405 	return active;
406 }
407 
408 struct i915_request *
409 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
410 {
411 	struct intel_engine_cs *engine =
412 		container_of(execlists, typeof(*engine), execlists);
413 
414 	return __unwind_incomplete_requests(engine);
415 }
416 
417 static void
418 execlists_context_status_change(struct i915_request *rq, unsigned long status)
419 {
420 	/*
421 	 * Only used when GVT-g is enabled now. When GVT-g is disabled,
422 	 * The compiler should eliminate this function as dead-code.
423 	 */
424 	if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
425 		return;
426 
427 	atomic_notifier_call_chain(&rq->engine->context_status_notifier,
428 				   status, rq);
429 }
430 
431 static void reset_active(struct i915_request *rq,
432 			 struct intel_engine_cs *engine)
433 {
434 	struct intel_context * const ce = rq->context;
435 	u32 head;
436 
437 	/*
438 	 * The executing context has been cancelled. We want to prevent
439 	 * further execution along this context and propagate the error on
440 	 * to anything depending on its results.
441 	 *
442 	 * In __i915_request_submit(), we apply the -EIO and remove the
443 	 * requests' payloads for any banned requests. But first, we must
444 	 * rewind the context back to the start of the incomplete request so
445 	 * that we do not jump back into the middle of the batch.
446 	 *
447 	 * We preserve the breadcrumbs and semaphores of the incomplete
448 	 * requests so that inter-timeline dependencies (i.e other timelines)
449 	 * remain correctly ordered. And we defer to __i915_request_submit()
450 	 * so that all asynchronous waits are correctly handled.
451 	 */
452 	ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
453 		     rq->fence.context, rq->fence.seqno);
454 
455 	/* On resubmission of the active request, payload will be scrubbed */
456 	if (__i915_request_is_complete(rq))
457 		head = rq->tail;
458 	else
459 		head = __active_request(ce->timeline, rq, -EIO)->head;
460 	head = intel_ring_wrap(ce->ring, head);
461 
462 	/* Scrub the context image to prevent replaying the previous batch */
463 	lrc_init_regs(ce, engine, true);
464 
465 	/* We've switched away, so this should be a no-op, but intent matters */
466 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
467 }
468 
469 static bool bad_request(const struct i915_request *rq)
470 {
471 	return rq->fence.error && i915_request_started(rq);
472 }
473 
474 static struct intel_engine_cs *
475 __execlists_schedule_in(struct i915_request *rq)
476 {
477 	struct intel_engine_cs * const engine = rq->engine;
478 	struct intel_context * const ce = rq->context;
479 
480 	intel_context_get(ce);
481 
482 	if (unlikely(intel_context_is_closed(ce) &&
483 		     !intel_engine_has_heartbeat(engine)))
484 		intel_context_set_exiting(ce);
485 
486 	if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
487 		reset_active(rq, engine);
488 
489 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
490 		lrc_check_regs(ce, engine, "before");
491 
492 	if (ce->tag) {
493 		/* Use a fixed tag for OA and friends */
494 		GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
495 		ce->lrc.ccid = ce->tag;
496 	} else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
497 		/* We don't need a strict matching tag, just different values */
498 		unsigned int tag = ffs(READ_ONCE(engine->context_tag));
499 
500 		GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
501 		clear_bit(tag - 1, &engine->context_tag);
502 		ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
503 
504 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
505 
506 	} else {
507 		/* We don't need a strict matching tag, just different values */
508 		unsigned int tag = __ffs(engine->context_tag);
509 
510 		GEM_BUG_ON(tag >= BITS_PER_LONG);
511 		__clear_bit(tag, &engine->context_tag);
512 		ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
513 
514 		BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
515 	}
516 
517 	ce->lrc.ccid |= engine->execlists.ccid;
518 
519 	__intel_gt_pm_get(engine->gt);
520 	if (engine->fw_domain && !engine->fw_active++)
521 		intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
522 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
523 	intel_engine_context_in(engine);
524 
525 	CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
526 
527 	return engine;
528 }
529 
530 static void execlists_schedule_in(struct i915_request *rq, int idx)
531 {
532 	struct intel_context * const ce = rq->context;
533 	struct intel_engine_cs *old;
534 
535 	GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
536 	trace_i915_request_in(rq, idx);
537 
538 	old = ce->inflight;
539 	if (!old)
540 		old = __execlists_schedule_in(rq);
541 	WRITE_ONCE(ce->inflight, ptr_inc(old));
542 
543 	GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
544 }
545 
546 static void
547 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
548 {
549 	struct intel_engine_cs *engine = rq->engine;
550 
551 	spin_lock_irq(&engine->sched_engine->lock);
552 
553 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
554 	WRITE_ONCE(rq->engine, &ve->base);
555 	ve->base.submit_request(rq);
556 
557 	spin_unlock_irq(&engine->sched_engine->lock);
558 }
559 
560 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
561 {
562 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
563 	struct intel_engine_cs *engine = rq->engine;
564 
565 	/*
566 	 * After this point, the rq may be transferred to a new sibling, so
567 	 * before we clear ce->inflight make sure that the context has been
568 	 * removed from the b->signalers and furthermore we need to make sure
569 	 * that the concurrent iterator in signal_irq_work is no longer
570 	 * following ce->signal_link.
571 	 */
572 	if (!list_empty(&ce->signals))
573 		intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
574 
575 	/*
576 	 * This engine is now too busy to run this virtual request, so
577 	 * see if we can find an alternative engine for it to execute on.
578 	 * Once a request has become bonded to this engine, we treat it the
579 	 * same as other native request.
580 	 */
581 	if (i915_request_in_priority_queue(rq) &&
582 	    rq->execution_mask != engine->mask)
583 		resubmit_virtual_request(rq, ve);
584 
585 	if (READ_ONCE(ve->request))
586 		tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
587 }
588 
589 static void __execlists_schedule_out(struct i915_request * const rq,
590 				     struct intel_context * const ce)
591 {
592 	struct intel_engine_cs * const engine = rq->engine;
593 	unsigned int ccid;
594 
595 	/*
596 	 * NB process_csb() is not under the engine->sched_engine->lock and hence
597 	 * schedule_out can race with schedule_in meaning that we should
598 	 * refrain from doing non-trivial work here.
599 	 */
600 
601 	CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
602 	GEM_BUG_ON(ce->inflight != engine);
603 
604 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
605 		lrc_check_regs(ce, engine, "after");
606 
607 	/*
608 	 * If we have just completed this context, the engine may now be
609 	 * idle and we want to re-enter powersaving.
610 	 */
611 	if (intel_timeline_is_last(ce->timeline, rq) &&
612 	    __i915_request_is_complete(rq))
613 		intel_engine_add_retire(engine, ce->timeline);
614 
615 	ccid = ce->lrc.ccid;
616 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
617 		ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
618 		ccid &= XEHP_MAX_CONTEXT_HW_ID;
619 	} else {
620 		ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
621 		ccid &= GEN12_MAX_CONTEXT_HW_ID;
622 	}
623 
624 	if (ccid < BITS_PER_LONG) {
625 		GEM_BUG_ON(ccid == 0);
626 		GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
627 		__set_bit(ccid - 1, &engine->context_tag);
628 	}
629 	intel_engine_context_out(engine);
630 	execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
631 	if (engine->fw_domain && !--engine->fw_active)
632 		intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
633 	intel_gt_pm_put_async(engine->gt);
634 
635 	/*
636 	 * If this is part of a virtual engine, its next request may
637 	 * have been blocked waiting for access to the active context.
638 	 * We have to kick all the siblings again in case we need to
639 	 * switch (e.g. the next request is not runnable on this
640 	 * engine). Hopefully, we will already have submitted the next
641 	 * request before the tasklet runs and do not need to rebuild
642 	 * each virtual tree and kick everyone again.
643 	 */
644 	if (ce->engine != engine)
645 		kick_siblings(rq, ce);
646 
647 	WRITE_ONCE(ce->inflight, NULL);
648 	intel_context_put(ce);
649 }
650 
651 static inline void execlists_schedule_out(struct i915_request *rq)
652 {
653 	struct intel_context * const ce = rq->context;
654 
655 	trace_i915_request_out(rq);
656 
657 	GEM_BUG_ON(!ce->inflight);
658 	ce->inflight = ptr_dec(ce->inflight);
659 	if (!__intel_context_inflight_count(ce->inflight))
660 		__execlists_schedule_out(rq, ce);
661 
662 	i915_request_put(rq);
663 }
664 
665 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
666 {
667 	if (prio > I915_PRIORITY_NORMAL)
668 		return GEN12_CTX_PRIORITY_HIGH;
669 	else if (prio < I915_PRIORITY_NORMAL)
670 		return GEN12_CTX_PRIORITY_LOW;
671 	else
672 		return GEN12_CTX_PRIORITY_NORMAL;
673 }
674 
675 static u64 execlists_update_context(struct i915_request *rq)
676 {
677 	struct intel_context *ce = rq->context;
678 	u64 desc;
679 	u32 tail, prev;
680 
681 	desc = ce->lrc.desc;
682 	if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
683 		desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
684 
685 	/*
686 	 * WaIdleLiteRestore:bdw,skl
687 	 *
688 	 * We should never submit the context with the same RING_TAIL twice
689 	 * just in case we submit an empty ring, which confuses the HW.
690 	 *
691 	 * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
692 	 * the normal request to be able to always advance the RING_TAIL on
693 	 * subsequent resubmissions (for lite restore). Should that fail us,
694 	 * and we try and submit the same tail again, force the context
695 	 * reload.
696 	 *
697 	 * If we need to return to a preempted context, we need to skip the
698 	 * lite-restore and force it to reload the RING_TAIL. Otherwise, the
699 	 * HW has a tendency to ignore us rewinding the TAIL to the end of
700 	 * an earlier request.
701 	 */
702 	GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
703 	prev = rq->ring->tail;
704 	tail = intel_ring_set_tail(rq->ring, rq->tail);
705 	if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
706 		desc |= CTX_DESC_FORCE_RESTORE;
707 	ce->lrc_reg_state[CTX_RING_TAIL] = tail;
708 	rq->tail = rq->wa_tail;
709 
710 	/*
711 	 * Make sure the context image is complete before we submit it to HW.
712 	 *
713 	 * Ostensibly, writes (including the WCB) should be flushed prior to
714 	 * an uncached write such as our mmio register access, the empirical
715 	 * evidence (esp. on Braswell) suggests that the WC write into memory
716 	 * may not be visible to the HW prior to the completion of the UC
717 	 * register write and that we may begin execution from the context
718 	 * before its image is complete leading to invalid PD chasing.
719 	 */
720 	wmb();
721 
722 	ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
723 	return desc;
724 }
725 
726 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
727 {
728 	if (execlists->ctrl_reg) {
729 		writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
730 		writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
731 	} else {
732 		writel(upper_32_bits(desc), execlists->submit_reg);
733 		writel(lower_32_bits(desc), execlists->submit_reg);
734 	}
735 }
736 
737 static __maybe_unused char *
738 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
739 {
740 	if (!rq)
741 		return "";
742 
743 	snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
744 		 prefix,
745 		 rq->context->lrc.ccid,
746 		 rq->fence.context, rq->fence.seqno,
747 		 __i915_request_is_complete(rq) ? "!" :
748 		 __i915_request_has_started(rq) ? "*" :
749 		 "",
750 		 rq_prio(rq));
751 
752 	return buf;
753 }
754 
755 static __maybe_unused noinline void
756 trace_ports(const struct intel_engine_execlists *execlists,
757 	    const char *msg,
758 	    struct i915_request * const *ports)
759 {
760 	const struct intel_engine_cs *engine =
761 		container_of(execlists, typeof(*engine), execlists);
762 	char __maybe_unused p0[40], p1[40];
763 
764 	if (!ports[0])
765 		return;
766 
767 	ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
768 		     dump_port(p0, sizeof(p0), "", ports[0]),
769 		     dump_port(p1, sizeof(p1), ", ", ports[1]));
770 }
771 
772 static bool
773 reset_in_progress(const struct intel_engine_cs *engine)
774 {
775 	return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
776 }
777 
778 static __maybe_unused noinline bool
779 assert_pending_valid(const struct intel_engine_execlists *execlists,
780 		     const char *msg)
781 {
782 	struct intel_engine_cs *engine =
783 		container_of(execlists, typeof(*engine), execlists);
784 	struct i915_request * const *port, *rq, *prev = NULL;
785 	struct intel_context *ce = NULL;
786 	u32 ccid = -1;
787 
788 	trace_ports(execlists, msg, execlists->pending);
789 
790 	/* We may be messing around with the lists during reset, lalala */
791 	if (reset_in_progress(engine))
792 		return true;
793 
794 	if (!execlists->pending[0]) {
795 		GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
796 			      engine->name);
797 		return false;
798 	}
799 
800 	if (execlists->pending[execlists_num_ports(execlists)]) {
801 		GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
802 			      engine->name, execlists_num_ports(execlists));
803 		return false;
804 	}
805 
806 	for (port = execlists->pending; (rq = *port); port++) {
807 		unsigned long flags;
808 		bool ok = true;
809 
810 		GEM_BUG_ON(!kref_read(&rq->fence.refcount));
811 		GEM_BUG_ON(!i915_request_is_active(rq));
812 
813 		if (ce == rq->context) {
814 			GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
815 				      engine->name,
816 				      ce->timeline->fence_context,
817 				      port - execlists->pending);
818 			return false;
819 		}
820 		ce = rq->context;
821 
822 		if (ccid == ce->lrc.ccid) {
823 			GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
824 				      engine->name,
825 				      ccid, ce->timeline->fence_context,
826 				      port - execlists->pending);
827 			return false;
828 		}
829 		ccid = ce->lrc.ccid;
830 
831 		/*
832 		 * Sentinels are supposed to be the last request so they flush
833 		 * the current execution off the HW. Check that they are the only
834 		 * request in the pending submission.
835 		 *
836 		 * NB: Due to the async nature of preempt-to-busy and request
837 		 * cancellation we need to handle the case where request
838 		 * becomes a sentinel in parallel to CSB processing.
839 		 */
840 		if (prev && i915_request_has_sentinel(prev) &&
841 		    !READ_ONCE(prev->fence.error)) {
842 			GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
843 				      engine->name,
844 				      ce->timeline->fence_context,
845 				      port - execlists->pending);
846 			return false;
847 		}
848 		prev = rq;
849 
850 		/*
851 		 * We want virtual requests to only be in the first slot so
852 		 * that they are never stuck behind a hog and can be immediately
853 		 * transferred onto the next idle engine.
854 		 */
855 		if (rq->execution_mask != engine->mask &&
856 		    port != execlists->pending) {
857 			GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
858 				      engine->name,
859 				      ce->timeline->fence_context,
860 				      port - execlists->pending);
861 			return false;
862 		}
863 
864 		/* Hold tightly onto the lock to prevent concurrent retires! */
865 		if (!spin_trylock_irqsave(&rq->lock, flags))
866 			continue;
867 
868 		if (__i915_request_is_complete(rq))
869 			goto unlock;
870 
871 		if (i915_active_is_idle(&ce->active) &&
872 		    !intel_context_is_barrier(ce)) {
873 			GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
874 				      engine->name,
875 				      ce->timeline->fence_context,
876 				      port - execlists->pending);
877 			ok = false;
878 			goto unlock;
879 		}
880 
881 		if (!i915_vma_is_pinned(ce->state)) {
882 			GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
883 				      engine->name,
884 				      ce->timeline->fence_context,
885 				      port - execlists->pending);
886 			ok = false;
887 			goto unlock;
888 		}
889 
890 		if (!i915_vma_is_pinned(ce->ring->vma)) {
891 			GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
892 				      engine->name,
893 				      ce->timeline->fence_context,
894 				      port - execlists->pending);
895 			ok = false;
896 			goto unlock;
897 		}
898 
899 unlock:
900 		spin_unlock_irqrestore(&rq->lock, flags);
901 		if (!ok)
902 			return false;
903 	}
904 
905 	return ce;
906 }
907 
908 static void execlists_submit_ports(struct intel_engine_cs *engine)
909 {
910 	struct intel_engine_execlists *execlists = &engine->execlists;
911 	unsigned int n;
912 
913 	GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
914 
915 	/*
916 	 * We can skip acquiring intel_runtime_pm_get() here as it was taken
917 	 * on our behalf by the request (see i915_gem_mark_busy()) and it will
918 	 * not be relinquished until the device is idle (see
919 	 * i915_gem_idle_work_handler()). As a precaution, we make sure
920 	 * that all ELSP are drained i.e. we have processed the CSB,
921 	 * before allowing ourselves to idle and calling intel_runtime_pm_put().
922 	 */
923 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
924 
925 	/*
926 	 * ELSQ note: the submit queue is not cleared after being submitted
927 	 * to the HW so we need to make sure we always clean it up. This is
928 	 * currently ensured by the fact that we always write the same number
929 	 * of elsq entries, keep this in mind before changing the loop below.
930 	 */
931 	for (n = execlists_num_ports(execlists); n--; ) {
932 		struct i915_request *rq = execlists->pending[n];
933 
934 		write_desc(execlists,
935 			   rq ? execlists_update_context(rq) : 0,
936 			   n);
937 	}
938 
939 	/* we need to manually load the submit queue */
940 	if (execlists->ctrl_reg)
941 		writel(EL_CTRL_LOAD, execlists->ctrl_reg);
942 }
943 
944 static bool ctx_single_port_submission(const struct intel_context *ce)
945 {
946 	return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
947 		intel_context_force_single_submission(ce));
948 }
949 
950 static bool can_merge_ctx(const struct intel_context *prev,
951 			  const struct intel_context *next)
952 {
953 	if (prev != next)
954 		return false;
955 
956 	if (ctx_single_port_submission(prev))
957 		return false;
958 
959 	return true;
960 }
961 
962 static unsigned long i915_request_flags(const struct i915_request *rq)
963 {
964 	return READ_ONCE(rq->fence.flags);
965 }
966 
967 static bool can_merge_rq(const struct i915_request *prev,
968 			 const struct i915_request *next)
969 {
970 	GEM_BUG_ON(prev == next);
971 	GEM_BUG_ON(!assert_priority_queue(prev, next));
972 
973 	/*
974 	 * We do not submit known completed requests. Therefore if the next
975 	 * request is already completed, we can pretend to merge it in
976 	 * with the previous context (and we will skip updating the ELSP
977 	 * and tracking). Thus hopefully keeping the ELSP full with active
978 	 * contexts, despite the best efforts of preempt-to-busy to confuse
979 	 * us.
980 	 */
981 	if (__i915_request_is_complete(next))
982 		return true;
983 
984 	if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
985 		     (BIT(I915_FENCE_FLAG_NOPREEMPT) |
986 		      BIT(I915_FENCE_FLAG_SENTINEL))))
987 		return false;
988 
989 	if (!can_merge_ctx(prev->context, next->context))
990 		return false;
991 
992 	GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
993 	return true;
994 }
995 
996 static bool virtual_matches(const struct virtual_engine *ve,
997 			    const struct i915_request *rq,
998 			    const struct intel_engine_cs *engine)
999 {
1000 	const struct intel_engine_cs *inflight;
1001 
1002 	if (!rq)
1003 		return false;
1004 
1005 	if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1006 		return false;
1007 
1008 	/*
1009 	 * We track when the HW has completed saving the context image
1010 	 * (i.e. when we have seen the final CS event switching out of
1011 	 * the context) and must not overwrite the context image before
1012 	 * then. This restricts us to only using the active engine
1013 	 * while the previous virtualized request is inflight (so
1014 	 * we reuse the register offsets). This is a very small
1015 	 * hystersis on the greedy seelction algorithm.
1016 	 */
1017 	inflight = intel_context_inflight(&ve->context);
1018 	if (inflight && inflight != engine)
1019 		return false;
1020 
1021 	return true;
1022 }
1023 
1024 static struct virtual_engine *
1025 first_virtual_engine(struct intel_engine_cs *engine)
1026 {
1027 	struct intel_engine_execlists *el = &engine->execlists;
1028 	struct rb_node *rb = rb_first_cached(&el->virtual);
1029 
1030 	while (rb) {
1031 		struct virtual_engine *ve =
1032 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1033 		struct i915_request *rq = READ_ONCE(ve->request);
1034 
1035 		/* lazily cleanup after another engine handled rq */
1036 		if (!rq || !virtual_matches(ve, rq, engine)) {
1037 			rb_erase_cached(rb, &el->virtual);
1038 			RB_CLEAR_NODE(rb);
1039 			rb = rb_first_cached(&el->virtual);
1040 			continue;
1041 		}
1042 
1043 		return ve;
1044 	}
1045 
1046 	return NULL;
1047 }
1048 
1049 static void virtual_xfer_context(struct virtual_engine *ve,
1050 				 struct intel_engine_cs *engine)
1051 {
1052 	unsigned int n;
1053 
1054 	if (likely(engine == ve->siblings[0]))
1055 		return;
1056 
1057 	GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1058 	if (!intel_engine_has_relative_mmio(engine))
1059 		lrc_update_offsets(&ve->context, engine);
1060 
1061 	/*
1062 	 * Move the bound engine to the top of the list for
1063 	 * future execution. We then kick this tasklet first
1064 	 * before checking others, so that we preferentially
1065 	 * reuse this set of bound registers.
1066 	 */
1067 	for (n = 1; n < ve->num_siblings; n++) {
1068 		if (ve->siblings[n] == engine) {
1069 			swap(ve->siblings[n], ve->siblings[0]);
1070 			break;
1071 		}
1072 	}
1073 }
1074 
1075 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1076 {
1077 	LIST_HEAD(list);
1078 
1079 	/*
1080 	 * We want to move the interrupted request to the back of
1081 	 * the round-robin list (i.e. its priority level), but
1082 	 * in doing so, we must then move all requests that were in
1083 	 * flight and were waiting for the interrupted request to
1084 	 * be run after it again.
1085 	 */
1086 	do {
1087 		struct i915_dependency *p;
1088 
1089 		GEM_BUG_ON(i915_request_is_active(rq));
1090 		list_move_tail(&rq->sched.link, pl);
1091 
1092 		for_each_waiter(p, rq) {
1093 			struct i915_request *w =
1094 				container_of(p->waiter, typeof(*w), sched);
1095 
1096 			if (p->flags & I915_DEPENDENCY_WEAK)
1097 				continue;
1098 
1099 			/* Leave semaphores spinning on the other engines */
1100 			if (w->engine != rq->engine)
1101 				continue;
1102 
1103 			/* No waiter should start before its signaler */
1104 			GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1105 				   __i915_request_has_started(w) &&
1106 				   !__i915_request_is_complete(rq));
1107 
1108 			if (!i915_request_is_ready(w))
1109 				continue;
1110 
1111 			if (rq_prio(w) < rq_prio(rq))
1112 				continue;
1113 
1114 			GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1115 			GEM_BUG_ON(i915_request_is_active(w));
1116 			list_move_tail(&w->sched.link, &list);
1117 		}
1118 
1119 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1120 	} while (rq);
1121 }
1122 
1123 static void defer_active(struct intel_engine_cs *engine)
1124 {
1125 	struct i915_request *rq;
1126 
1127 	rq = __unwind_incomplete_requests(engine);
1128 	if (!rq)
1129 		return;
1130 
1131 	defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1132 						     rq_prio(rq)));
1133 }
1134 
1135 static bool
1136 timeslice_yield(const struct intel_engine_execlists *el,
1137 		const struct i915_request *rq)
1138 {
1139 	/*
1140 	 * Once bitten, forever smitten!
1141 	 *
1142 	 * If the active context ever busy-waited on a semaphore,
1143 	 * it will be treated as a hog until the end of its timeslice (i.e.
1144 	 * until it is scheduled out and replaced by a new submission,
1145 	 * possibly even its own lite-restore). The HW only sends an interrupt
1146 	 * on the first miss, and we do know if that semaphore has been
1147 	 * signaled, or even if it is now stuck on another semaphore. Play
1148 	 * safe, yield if it might be stuck -- it will be given a fresh
1149 	 * timeslice in the near future.
1150 	 */
1151 	return rq->context->lrc.ccid == READ_ONCE(el->yield);
1152 }
1153 
1154 static bool needs_timeslice(const struct intel_engine_cs *engine,
1155 			    const struct i915_request *rq)
1156 {
1157 	if (!intel_engine_has_timeslices(engine))
1158 		return false;
1159 
1160 	/* If not currently active, or about to switch, wait for next event */
1161 	if (!rq || __i915_request_is_complete(rq))
1162 		return false;
1163 
1164 	/* We do not need to start the timeslice until after the ACK */
1165 	if (READ_ONCE(engine->execlists.pending[0]))
1166 		return false;
1167 
1168 	/* If ELSP[1] is occupied, always check to see if worth slicing */
1169 	if (!list_is_last_rcu(&rq->sched.link,
1170 			      &engine->sched_engine->requests)) {
1171 		ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1172 		return true;
1173 	}
1174 
1175 	/* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1176 	if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1177 		ENGINE_TRACE(engine, "timeslice required for queue\n");
1178 		return true;
1179 	}
1180 
1181 	if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1182 		ENGINE_TRACE(engine, "timeslice required for virtual\n");
1183 		return true;
1184 	}
1185 
1186 	return false;
1187 }
1188 
1189 static bool
1190 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1191 {
1192 	const struct intel_engine_execlists *el = &engine->execlists;
1193 
1194 	if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1195 		return false;
1196 
1197 	if (!needs_timeslice(engine, rq))
1198 		return false;
1199 
1200 	return timer_expired(&el->timer) || timeslice_yield(el, rq);
1201 }
1202 
1203 static unsigned long timeslice(const struct intel_engine_cs *engine)
1204 {
1205 	return READ_ONCE(engine->props.timeslice_duration_ms);
1206 }
1207 
1208 static void start_timeslice(struct intel_engine_cs *engine)
1209 {
1210 	struct intel_engine_execlists *el = &engine->execlists;
1211 	unsigned long duration;
1212 
1213 	/* Disable the timer if there is nothing to switch to */
1214 	duration = 0;
1215 	if (needs_timeslice(engine, *el->active)) {
1216 		/* Avoid continually prolonging an active timeslice */
1217 		if (timer_active(&el->timer)) {
1218 			/*
1219 			 * If we just submitted a new ELSP after an old
1220 			 * context, that context may have already consumed
1221 			 * its timeslice, so recheck.
1222 			 */
1223 			if (!timer_pending(&el->timer))
1224 				tasklet_hi_schedule(&engine->sched_engine->tasklet);
1225 			return;
1226 		}
1227 
1228 		duration = timeslice(engine);
1229 	}
1230 
1231 	set_timer_ms(&el->timer, duration);
1232 }
1233 
1234 static void record_preemption(struct intel_engine_execlists *execlists)
1235 {
1236 	(void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1237 }
1238 
1239 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1240 					    const struct i915_request *rq)
1241 {
1242 	if (!rq)
1243 		return 0;
1244 
1245 	/* Only allow ourselves to force reset the currently active context */
1246 	engine->execlists.preempt_target = rq;
1247 
1248 	/* Force a fast reset for terminated contexts (ignoring sysfs!) */
1249 	if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1250 		return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1251 
1252 	return READ_ONCE(engine->props.preempt_timeout_ms);
1253 }
1254 
1255 static void set_preempt_timeout(struct intel_engine_cs *engine,
1256 				const struct i915_request *rq)
1257 {
1258 	if (!intel_engine_has_preempt_reset(engine))
1259 		return;
1260 
1261 	set_timer_ms(&engine->execlists.preempt,
1262 		     active_preempt_timeout(engine, rq));
1263 }
1264 
1265 static bool completed(const struct i915_request *rq)
1266 {
1267 	if (i915_request_has_sentinel(rq))
1268 		return false;
1269 
1270 	return __i915_request_is_complete(rq);
1271 }
1272 
1273 static void execlists_dequeue(struct intel_engine_cs *engine)
1274 {
1275 	struct intel_engine_execlists * const execlists = &engine->execlists;
1276 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
1277 	struct i915_request **port = execlists->pending;
1278 	struct i915_request ** const last_port = port + execlists->port_mask;
1279 	struct i915_request *last, * const *active;
1280 	struct virtual_engine *ve;
1281 	struct rb_node *rb;
1282 	bool submit = false;
1283 
1284 	/*
1285 	 * Hardware submission is through 2 ports. Conceptually each port
1286 	 * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1287 	 * static for a context, and unique to each, so we only execute
1288 	 * requests belonging to a single context from each ring. RING_HEAD
1289 	 * is maintained by the CS in the context image, it marks the place
1290 	 * where it got up to last time, and through RING_TAIL we tell the CS
1291 	 * where we want to execute up to this time.
1292 	 *
1293 	 * In this list the requests are in order of execution. Consecutive
1294 	 * requests from the same context are adjacent in the ringbuffer. We
1295 	 * can combine these requests into a single RING_TAIL update:
1296 	 *
1297 	 *              RING_HEAD...req1...req2
1298 	 *                                    ^- RING_TAIL
1299 	 * since to execute req2 the CS must first execute req1.
1300 	 *
1301 	 * Our goal then is to point each port to the end of a consecutive
1302 	 * sequence of requests as being the most optimal (fewest wake ups
1303 	 * and context switches) submission.
1304 	 */
1305 
1306 	spin_lock(&sched_engine->lock);
1307 
1308 	/*
1309 	 * If the queue is higher priority than the last
1310 	 * request in the currently active context, submit afresh.
1311 	 * We will resubmit again afterwards in case we need to split
1312 	 * the active context to interject the preemption request,
1313 	 * i.e. we will retrigger preemption following the ack in case
1314 	 * of trouble.
1315 	 *
1316 	 */
1317 	active = execlists->active;
1318 	while ((last = *active) && completed(last))
1319 		active++;
1320 
1321 	if (last) {
1322 		if (need_preempt(engine, last)) {
1323 			ENGINE_TRACE(engine,
1324 				     "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1325 				     last->fence.context,
1326 				     last->fence.seqno,
1327 				     last->sched.attr.priority,
1328 				     sched_engine->queue_priority_hint);
1329 			record_preemption(execlists);
1330 
1331 			/*
1332 			 * Don't let the RING_HEAD advance past the breadcrumb
1333 			 * as we unwind (and until we resubmit) so that we do
1334 			 * not accidentally tell it to go backwards.
1335 			 */
1336 			ring_set_paused(engine, 1);
1337 
1338 			/*
1339 			 * Note that we have not stopped the GPU at this point,
1340 			 * so we are unwinding the incomplete requests as they
1341 			 * remain inflight and so by the time we do complete
1342 			 * the preemption, some of the unwound requests may
1343 			 * complete!
1344 			 */
1345 			__unwind_incomplete_requests(engine);
1346 
1347 			last = NULL;
1348 		} else if (timeslice_expired(engine, last)) {
1349 			ENGINE_TRACE(engine,
1350 				     "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1351 				     str_yes_no(timer_expired(&execlists->timer)),
1352 				     last->fence.context, last->fence.seqno,
1353 				     rq_prio(last),
1354 				     sched_engine->queue_priority_hint,
1355 				     str_yes_no(timeslice_yield(execlists, last)));
1356 
1357 			/*
1358 			 * Consume this timeslice; ensure we start a new one.
1359 			 *
1360 			 * The timeslice expired, and we will unwind the
1361 			 * running contexts and recompute the next ELSP.
1362 			 * If that submit will be the same pair of contexts
1363 			 * (due to dependency ordering), we will skip the
1364 			 * submission. If we don't cancel the timer now,
1365 			 * we will see that the timer has expired and
1366 			 * reschedule the tasklet; continually until the
1367 			 * next context switch or other preemption event.
1368 			 *
1369 			 * Since we have decided to reschedule based on
1370 			 * consumption of this timeslice, if we submit the
1371 			 * same context again, grant it a full timeslice.
1372 			 */
1373 			cancel_timer(&execlists->timer);
1374 			ring_set_paused(engine, 1);
1375 			defer_active(engine);
1376 
1377 			/*
1378 			 * Unlike for preemption, if we rewind and continue
1379 			 * executing the same context as previously active,
1380 			 * the order of execution will remain the same and
1381 			 * the tail will only advance. We do not need to
1382 			 * force a full context restore, as a lite-restore
1383 			 * is sufficient to resample the monotonic TAIL.
1384 			 *
1385 			 * If we switch to any other context, similarly we
1386 			 * will not rewind TAIL of current context, and
1387 			 * normal save/restore will preserve state and allow
1388 			 * us to later continue executing the same request.
1389 			 */
1390 			last = NULL;
1391 		} else {
1392 			/*
1393 			 * Otherwise if we already have a request pending
1394 			 * for execution after the current one, we can
1395 			 * just wait until the next CS event before
1396 			 * queuing more. In either case we will force a
1397 			 * lite-restore preemption event, but if we wait
1398 			 * we hopefully coalesce several updates into a single
1399 			 * submission.
1400 			 */
1401 			if (active[1]) {
1402 				/*
1403 				 * Even if ELSP[1] is occupied and not worthy
1404 				 * of timeslices, our queue might be.
1405 				 */
1406 				spin_unlock(&sched_engine->lock);
1407 				return;
1408 			}
1409 		}
1410 	}
1411 
1412 	/* XXX virtual is always taking precedence */
1413 	while ((ve = first_virtual_engine(engine))) {
1414 		struct i915_request *rq;
1415 
1416 		spin_lock(&ve->base.sched_engine->lock);
1417 
1418 		rq = ve->request;
1419 		if (unlikely(!virtual_matches(ve, rq, engine)))
1420 			goto unlock; /* lost the race to a sibling */
1421 
1422 		GEM_BUG_ON(rq->engine != &ve->base);
1423 		GEM_BUG_ON(rq->context != &ve->context);
1424 
1425 		if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1426 			spin_unlock(&ve->base.sched_engine->lock);
1427 			break;
1428 		}
1429 
1430 		if (last && !can_merge_rq(last, rq)) {
1431 			spin_unlock(&ve->base.sched_engine->lock);
1432 			spin_unlock(&engine->sched_engine->lock);
1433 			return; /* leave this for another sibling */
1434 		}
1435 
1436 		ENGINE_TRACE(engine,
1437 			     "virtual rq=%llx:%lld%s, new engine? %s\n",
1438 			     rq->fence.context,
1439 			     rq->fence.seqno,
1440 			     __i915_request_is_complete(rq) ? "!" :
1441 			     __i915_request_has_started(rq) ? "*" :
1442 			     "",
1443 			     str_yes_no(engine != ve->siblings[0]));
1444 
1445 		WRITE_ONCE(ve->request, NULL);
1446 		WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1447 
1448 		rb = &ve->nodes[engine->id].rb;
1449 		rb_erase_cached(rb, &execlists->virtual);
1450 		RB_CLEAR_NODE(rb);
1451 
1452 		GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1453 		WRITE_ONCE(rq->engine, engine);
1454 
1455 		if (__i915_request_submit(rq)) {
1456 			/*
1457 			 * Only after we confirm that we will submit
1458 			 * this request (i.e. it has not already
1459 			 * completed), do we want to update the context.
1460 			 *
1461 			 * This serves two purposes. It avoids
1462 			 * unnecessary work if we are resubmitting an
1463 			 * already completed request after timeslicing.
1464 			 * But more importantly, it prevents us altering
1465 			 * ve->siblings[] on an idle context, where
1466 			 * we may be using ve->siblings[] in
1467 			 * virtual_context_enter / virtual_context_exit.
1468 			 */
1469 			virtual_xfer_context(ve, engine);
1470 			GEM_BUG_ON(ve->siblings[0] != engine);
1471 
1472 			submit = true;
1473 			last = rq;
1474 		}
1475 
1476 		i915_request_put(rq);
1477 unlock:
1478 		spin_unlock(&ve->base.sched_engine->lock);
1479 
1480 		/*
1481 		 * Hmm, we have a bunch of virtual engine requests,
1482 		 * but the first one was already completed (thanks
1483 		 * preempt-to-busy!). Keep looking at the veng queue
1484 		 * until we have no more relevant requests (i.e.
1485 		 * the normal submit queue has higher priority).
1486 		 */
1487 		if (submit)
1488 			break;
1489 	}
1490 
1491 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1492 		struct i915_priolist *p = to_priolist(rb);
1493 		struct i915_request *rq, *rn;
1494 
1495 		priolist_for_each_request_consume(rq, rn, p) {
1496 			bool merge = true;
1497 
1498 			/*
1499 			 * Can we combine this request with the current port?
1500 			 * It has to be the same context/ringbuffer and not
1501 			 * have any exceptions (e.g. GVT saying never to
1502 			 * combine contexts).
1503 			 *
1504 			 * If we can combine the requests, we can execute both
1505 			 * by updating the RING_TAIL to point to the end of the
1506 			 * second request, and so we never need to tell the
1507 			 * hardware about the first.
1508 			 */
1509 			if (last && !can_merge_rq(last, rq)) {
1510 				/*
1511 				 * If we are on the second port and cannot
1512 				 * combine this request with the last, then we
1513 				 * are done.
1514 				 */
1515 				if (port == last_port)
1516 					goto done;
1517 
1518 				/*
1519 				 * We must not populate both ELSP[] with the
1520 				 * same LRCA, i.e. we must submit 2 different
1521 				 * contexts if we submit 2 ELSP.
1522 				 */
1523 				if (last->context == rq->context)
1524 					goto done;
1525 
1526 				if (i915_request_has_sentinel(last))
1527 					goto done;
1528 
1529 				/*
1530 				 * We avoid submitting virtual requests into
1531 				 * the secondary ports so that we can migrate
1532 				 * the request immediately to another engine
1533 				 * rather than wait for the primary request.
1534 				 */
1535 				if (rq->execution_mask != engine->mask)
1536 					goto done;
1537 
1538 				/*
1539 				 * If GVT overrides us we only ever submit
1540 				 * port[0], leaving port[1] empty. Note that we
1541 				 * also have to be careful that we don't queue
1542 				 * the same context (even though a different
1543 				 * request) to the second port.
1544 				 */
1545 				if (ctx_single_port_submission(last->context) ||
1546 				    ctx_single_port_submission(rq->context))
1547 					goto done;
1548 
1549 				merge = false;
1550 			}
1551 
1552 			if (__i915_request_submit(rq)) {
1553 				if (!merge) {
1554 					*port++ = i915_request_get(last);
1555 					last = NULL;
1556 				}
1557 
1558 				GEM_BUG_ON(last &&
1559 					   !can_merge_ctx(last->context,
1560 							  rq->context));
1561 				GEM_BUG_ON(last &&
1562 					   i915_seqno_passed(last->fence.seqno,
1563 							     rq->fence.seqno));
1564 
1565 				submit = true;
1566 				last = rq;
1567 			}
1568 		}
1569 
1570 		rb_erase_cached(&p->node, &sched_engine->queue);
1571 		i915_priolist_free(p);
1572 	}
1573 done:
1574 	*port++ = i915_request_get(last);
1575 
1576 	/*
1577 	 * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1578 	 *
1579 	 * We choose the priority hint such that if we add a request of greater
1580 	 * priority than this, we kick the submission tasklet to decide on
1581 	 * the right order of submitting the requests to hardware. We must
1582 	 * also be prepared to reorder requests as they are in-flight on the
1583 	 * HW. We derive the priority hint then as the first "hole" in
1584 	 * the HW submission ports and if there are no available slots,
1585 	 * the priority of the lowest executing request, i.e. last.
1586 	 *
1587 	 * When we do receive a higher priority request ready to run from the
1588 	 * user, see queue_request(), the priority hint is bumped to that
1589 	 * request triggering preemption on the next dequeue (or subsequent
1590 	 * interrupt for secondary ports).
1591 	 */
1592 	sched_engine->queue_priority_hint = queue_prio(sched_engine);
1593 	i915_sched_engine_reset_on_empty(sched_engine);
1594 	spin_unlock(&sched_engine->lock);
1595 
1596 	/*
1597 	 * We can skip poking the HW if we ended up with exactly the same set
1598 	 * of requests as currently running, e.g. trying to timeslice a pair
1599 	 * of ordered contexts.
1600 	 */
1601 	if (submit &&
1602 	    memcmp(active,
1603 		   execlists->pending,
1604 		   (port - execlists->pending) * sizeof(*port))) {
1605 		*port = NULL;
1606 		while (port-- != execlists->pending)
1607 			execlists_schedule_in(*port, port - execlists->pending);
1608 
1609 		WRITE_ONCE(execlists->yield, -1);
1610 		set_preempt_timeout(engine, *active);
1611 		execlists_submit_ports(engine);
1612 	} else {
1613 		ring_set_paused(engine, 0);
1614 		while (port-- != execlists->pending)
1615 			i915_request_put(*port);
1616 		*execlists->pending = NULL;
1617 	}
1618 }
1619 
1620 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1621 {
1622 	local_irq_disable(); /* Suspend interrupts across request submission */
1623 	execlists_dequeue(engine);
1624 	local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1625 }
1626 
1627 static void clear_ports(struct i915_request **ports, int count)
1628 {
1629 	memset_p((void **)ports, NULL, count);
1630 }
1631 
1632 static void
1633 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1634 {
1635 	/* A memcpy_p() would be very useful here! */
1636 	while (count--)
1637 		WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1638 }
1639 
1640 static struct i915_request **
1641 cancel_port_requests(struct intel_engine_execlists * const execlists,
1642 		     struct i915_request **inactive)
1643 {
1644 	struct i915_request * const *port;
1645 
1646 	for (port = execlists->pending; *port; port++)
1647 		*inactive++ = *port;
1648 	clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1649 
1650 	/* Mark the end of active before we overwrite *active */
1651 	for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1652 		*inactive++ = *port;
1653 	clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1654 
1655 	smp_wmb(); /* complete the seqlock for execlists_active() */
1656 	WRITE_ONCE(execlists->active, execlists->inflight);
1657 
1658 	/* Having cancelled all outstanding process_csb(), stop their timers */
1659 	GEM_BUG_ON(execlists->pending[0]);
1660 	cancel_timer(&execlists->timer);
1661 	cancel_timer(&execlists->preempt);
1662 
1663 	return inactive;
1664 }
1665 
1666 /*
1667  * Starting with Gen12, the status has a new format:
1668  *
1669  *     bit  0:     switched to new queue
1670  *     bit  1:     reserved
1671  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1672  *                 switch detail is set to "wait on semaphore"
1673  *     bits 3-5:   engine class
1674  *     bits 6-11:  engine instance
1675  *     bits 12-14: reserved
1676  *     bits 15-25: sw context id of the lrc the GT switched to
1677  *     bits 26-31: sw counter of the lrc the GT switched to
1678  *     bits 32-35: context switch detail
1679  *                  - 0: ctx complete
1680  *                  - 1: wait on sync flip
1681  *                  - 2: wait on vblank
1682  *                  - 3: wait on scanline
1683  *                  - 4: wait on semaphore
1684  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1685  *                       WAIT_FOR_EVENT)
1686  *     bit  36:    reserved
1687  *     bits 37-43: wait detail (for switch detail 1 to 4)
1688  *     bits 44-46: reserved
1689  *     bits 47-57: sw context id of the lrc the GT switched away from
1690  *     bits 58-63: sw counter of the lrc the GT switched away from
1691  *
1692  * Xe_HP csb shuffles things around compared to TGL:
1693  *
1694  *     bits 0-3:   context switch detail (same possible values as TGL)
1695  *     bits 4-9:   engine instance
1696  *     bits 10-25: sw context id of the lrc the GT switched to
1697  *     bits 26-31: sw counter of the lrc the GT switched to
1698  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1699  *                 switch detail is set to "wait on semaphore"
1700  *     bit  33:    switched to new queue
1701  *     bits 34-41: wait detail (for switch detail 1 to 4)
1702  *     bits 42-57: sw context id of the lrc the GT switched away from
1703  *     bits 58-63: sw counter of the lrc the GT switched away from
1704  */
1705 static inline bool
1706 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1707 		  u8 switch_detail)
1708 {
1709 	/*
1710 	 * The context switch detail is not guaranteed to be 5 when a preemption
1711 	 * occurs, so we can't just check for that. The check below works for
1712 	 * all the cases we care about, including preemptions of WAIT
1713 	 * instructions and lite-restore. Preempt-to-idle via the CTRL register
1714 	 * would require some extra handling, but we don't support that.
1715 	 */
1716 	if (!ctx_away_valid || new_queue) {
1717 		GEM_BUG_ON(!ctx_to_valid);
1718 		return true;
1719 	}
1720 
1721 	/*
1722 	 * switch detail = 5 is covered by the case above and we do not expect a
1723 	 * context switch on an unsuccessful wait instruction since we always
1724 	 * use polling mode.
1725 	 */
1726 	GEM_BUG_ON(switch_detail);
1727 	return false;
1728 }
1729 
1730 static bool xehp_csb_parse(const u64 csb)
1731 {
1732 	return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1733 				 XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1734 				 upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1735 				 GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1736 }
1737 
1738 static bool gen12_csb_parse(const u64 csb)
1739 {
1740 	return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1741 				 GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1742 				 lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1743 				 GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1744 }
1745 
1746 static bool gen8_csb_parse(const u64 csb)
1747 {
1748 	return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1749 }
1750 
1751 static noinline u64
1752 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1753 {
1754 	u64 entry;
1755 
1756 	/*
1757 	 * Reading from the HWSP has one particular advantage: we can detect
1758 	 * a stale entry. Since the write into HWSP is broken, we have no reason
1759 	 * to trust the HW at all, the mmio entry may equally be unordered, so
1760 	 * we prefer the path that is self-checking and as a last resort,
1761 	 * return the mmio value.
1762 	 *
1763 	 * tgl,dg1:HSDES#22011327657
1764 	 */
1765 	preempt_disable();
1766 	if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1767 		int idx = csb - engine->execlists.csb_status;
1768 		int status;
1769 
1770 		status = GEN8_EXECLISTS_STATUS_BUF;
1771 		if (idx >= 6) {
1772 			status = GEN11_EXECLISTS_STATUS_BUF2;
1773 			idx -= 6;
1774 		}
1775 		status += sizeof(u64) * idx;
1776 
1777 		entry = intel_uncore_read64(engine->uncore,
1778 					    _MMIO(engine->mmio_base + status));
1779 	}
1780 	preempt_enable();
1781 
1782 	return entry;
1783 }
1784 
1785 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1786 {
1787 	u64 entry = READ_ONCE(*csb);
1788 
1789 	/*
1790 	 * Unfortunately, the GPU does not always serialise its write
1791 	 * of the CSB entries before its write of the CSB pointer, at least
1792 	 * from the perspective of the CPU, using what is known as a Global
1793 	 * Observation Point. We may read a new CSB tail pointer, but then
1794 	 * read the stale CSB entries, causing us to misinterpret the
1795 	 * context-switch events, and eventually declare the GPU hung.
1796 	 *
1797 	 * icl:HSDES#1806554093
1798 	 * tgl:HSDES#22011248461
1799 	 */
1800 	if (unlikely(entry == -1))
1801 		entry = wa_csb_read(engine, csb);
1802 
1803 	/* Consume this entry so that we can spot its future reuse. */
1804 	WRITE_ONCE(*csb, -1);
1805 
1806 	/* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1807 	return entry;
1808 }
1809 
1810 static void new_timeslice(struct intel_engine_execlists *el)
1811 {
1812 	/* By cancelling, we will start afresh in start_timeslice() */
1813 	cancel_timer(&el->timer);
1814 }
1815 
1816 static struct i915_request **
1817 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1818 {
1819 	struct intel_engine_execlists * const execlists = &engine->execlists;
1820 	u64 * const buf = execlists->csb_status;
1821 	const u8 num_entries = execlists->csb_size;
1822 	struct i915_request **prev;
1823 	u8 head, tail;
1824 
1825 	/*
1826 	 * As we modify our execlists state tracking we require exclusive
1827 	 * access. Either we are inside the tasklet, or the tasklet is disabled
1828 	 * and we assume that is only inside the reset paths and so serialised.
1829 	 */
1830 	GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1831 		   !reset_in_progress(engine));
1832 
1833 	/*
1834 	 * Note that csb_write, csb_status may be either in HWSP or mmio.
1835 	 * When reading from the csb_write mmio register, we have to be
1836 	 * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1837 	 * the low 4bits. As it happens we know the next 4bits are always
1838 	 * zero and so we can simply masked off the low u8 of the register
1839 	 * and treat it identically to reading from the HWSP (without having
1840 	 * to use explicit shifting and masking, and probably bifurcating
1841 	 * the code to handle the legacy mmio read).
1842 	 */
1843 	head = execlists->csb_head;
1844 	tail = READ_ONCE(*execlists->csb_write);
1845 	if (unlikely(head == tail))
1846 		return inactive;
1847 
1848 	/*
1849 	 * We will consume all events from HW, or at least pretend to.
1850 	 *
1851 	 * The sequence of events from the HW is deterministic, and derived
1852 	 * from our writes to the ELSP, with a smidgen of variability for
1853 	 * the arrival of the asynchronous requests wrt to the inflight
1854 	 * execution. If the HW sends an event that does not correspond with
1855 	 * the one we are expecting, we have to abandon all hope as we lose
1856 	 * all tracking of what the engine is actually executing. We will
1857 	 * only detect we are out of sequence with the HW when we get an
1858 	 * 'impossible' event because we have already drained our own
1859 	 * preemption/promotion queue. If this occurs, we know that we likely
1860 	 * lost track of execution earlier and must unwind and restart, the
1861 	 * simplest way is by stop processing the event queue and force the
1862 	 * engine to reset.
1863 	 */
1864 	execlists->csb_head = tail;
1865 	ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1866 
1867 	/*
1868 	 * Hopefully paired with a wmb() in HW!
1869 	 *
1870 	 * We must complete the read of the write pointer before any reads
1871 	 * from the CSB, so that we do not see stale values. Without an rmb
1872 	 * (lfence) the HW may speculatively perform the CSB[] reads *before*
1873 	 * we perform the READ_ONCE(*csb_write).
1874 	 */
1875 	rmb();
1876 
1877 	/* Remember who was last running under the timer */
1878 	prev = inactive;
1879 	*prev = NULL;
1880 
1881 	do {
1882 		bool promote;
1883 		u64 csb;
1884 
1885 		if (++head == num_entries)
1886 			head = 0;
1887 
1888 		/*
1889 		 * We are flying near dragons again.
1890 		 *
1891 		 * We hold a reference to the request in execlist_port[]
1892 		 * but no more than that. We are operating in softirq
1893 		 * context and so cannot hold any mutex or sleep. That
1894 		 * prevents us stopping the requests we are processing
1895 		 * in port[] from being retired simultaneously (the
1896 		 * breadcrumb will be complete before we see the
1897 		 * context-switch). As we only hold the reference to the
1898 		 * request, any pointer chasing underneath the request
1899 		 * is subject to a potential use-after-free. Thus we
1900 		 * store all of the bookkeeping within port[] as
1901 		 * required, and avoid using unguarded pointers beneath
1902 		 * request itself. The same applies to the atomic
1903 		 * status notifier.
1904 		 */
1905 
1906 		csb = csb_read(engine, buf + head);
1907 		ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1908 			     head, upper_32_bits(csb), lower_32_bits(csb));
1909 
1910 		if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1911 			promote = xehp_csb_parse(csb);
1912 		else if (GRAPHICS_VER(engine->i915) >= 12)
1913 			promote = gen12_csb_parse(csb);
1914 		else
1915 			promote = gen8_csb_parse(csb);
1916 		if (promote) {
1917 			struct i915_request * const *old = execlists->active;
1918 
1919 			if (GEM_WARN_ON(!*execlists->pending)) {
1920 				execlists->error_interrupt |= ERROR_CSB;
1921 				break;
1922 			}
1923 
1924 			ring_set_paused(engine, 0);
1925 
1926 			/* Point active to the new ELSP; prevent overwriting */
1927 			WRITE_ONCE(execlists->active, execlists->pending);
1928 			smp_wmb(); /* notify execlists_active() */
1929 
1930 			/* cancel old inflight, prepare for switch */
1931 			trace_ports(execlists, "preempted", old);
1932 			while (*old)
1933 				*inactive++ = *old++;
1934 
1935 			/* switch pending to inflight */
1936 			GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1937 			copy_ports(execlists->inflight,
1938 				   execlists->pending,
1939 				   execlists_num_ports(execlists));
1940 			smp_wmb(); /* complete the seqlock */
1941 			WRITE_ONCE(execlists->active, execlists->inflight);
1942 
1943 			/* XXX Magic delay for tgl */
1944 			ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1945 
1946 			WRITE_ONCE(execlists->pending[0], NULL);
1947 		} else {
1948 			if (GEM_WARN_ON(!*execlists->active)) {
1949 				execlists->error_interrupt |= ERROR_CSB;
1950 				break;
1951 			}
1952 
1953 			/* port0 completed, advanced to port1 */
1954 			trace_ports(execlists, "completed", execlists->active);
1955 
1956 			/*
1957 			 * We rely on the hardware being strongly
1958 			 * ordered, that the breadcrumb write is
1959 			 * coherent (visible from the CPU) before the
1960 			 * user interrupt is processed. One might assume
1961 			 * that the breadcrumb write being before the
1962 			 * user interrupt and the CS event for the context
1963 			 * switch would therefore be before the CS event
1964 			 * itself...
1965 			 */
1966 			if (GEM_SHOW_DEBUG() &&
1967 			    !__i915_request_is_complete(*execlists->active)) {
1968 				struct i915_request *rq = *execlists->active;
1969 				const u32 *regs __maybe_unused =
1970 					rq->context->lrc_reg_state;
1971 
1972 				ENGINE_TRACE(engine,
1973 					     "context completed before request!\n");
1974 				ENGINE_TRACE(engine,
1975 					     "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1976 					     ENGINE_READ(engine, RING_START),
1977 					     ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1978 					     ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1979 					     ENGINE_READ(engine, RING_CTL),
1980 					     ENGINE_READ(engine, RING_MI_MODE));
1981 				ENGINE_TRACE(engine,
1982 					     "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1983 					     i915_ggtt_offset(rq->ring->vma),
1984 					     rq->head, rq->tail,
1985 					     rq->fence.context,
1986 					     lower_32_bits(rq->fence.seqno),
1987 					     hwsp_seqno(rq));
1988 				ENGINE_TRACE(engine,
1989 					     "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1990 					     regs[CTX_RING_START],
1991 					     regs[CTX_RING_HEAD],
1992 					     regs[CTX_RING_TAIL]);
1993 			}
1994 
1995 			*inactive++ = *execlists->active++;
1996 
1997 			GEM_BUG_ON(execlists->active - execlists->inflight >
1998 				   execlists_num_ports(execlists));
1999 		}
2000 	} while (head != tail);
2001 
2002 	/*
2003 	 * Gen11 has proven to fail wrt global observation point between
2004 	 * entry and tail update, failing on the ordering and thus
2005 	 * we see an old entry in the context status buffer.
2006 	 *
2007 	 * Forcibly evict out entries for the next gpu csb update,
2008 	 * to increase the odds that we get a fresh entries with non
2009 	 * working hardware. The cost for doing so comes out mostly with
2010 	 * the wash as hardware, working or not, will need to do the
2011 	 * invalidation before.
2012 	 */
2013 	drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2014 
2015 	/*
2016 	 * We assume that any event reflects a change in context flow
2017 	 * and merits a fresh timeslice. We reinstall the timer after
2018 	 * inspecting the queue to see if we need to resumbit.
2019 	 */
2020 	if (*prev != *execlists->active) { /* elide lite-restores */
2021 		struct intel_context *prev_ce = NULL, *active_ce = NULL;
2022 
2023 		/*
2024 		 * Note the inherent discrepancy between the HW runtime,
2025 		 * recorded as part of the context switch, and the CPU
2026 		 * adjustment for active contexts. We have to hope that
2027 		 * the delay in processing the CS event is very small
2028 		 * and consistent. It works to our advantage to have
2029 		 * the CPU adjustment _undershoot_ (i.e. start later than)
2030 		 * the CS timestamp so we never overreport the runtime
2031 		 * and correct overselves later when updating from HW.
2032 		 */
2033 		if (*prev)
2034 			prev_ce = (*prev)->context;
2035 		if (*execlists->active)
2036 			active_ce = (*execlists->active)->context;
2037 		if (prev_ce != active_ce) {
2038 			if (prev_ce)
2039 				lrc_runtime_stop(prev_ce);
2040 			if (active_ce)
2041 				lrc_runtime_start(active_ce);
2042 		}
2043 		new_timeslice(execlists);
2044 	}
2045 
2046 	return inactive;
2047 }
2048 
2049 static void post_process_csb(struct i915_request **port,
2050 			     struct i915_request **last)
2051 {
2052 	while (port != last)
2053 		execlists_schedule_out(*port++);
2054 }
2055 
2056 static void __execlists_hold(struct i915_request *rq)
2057 {
2058 	LIST_HEAD(list);
2059 
2060 	do {
2061 		struct i915_dependency *p;
2062 
2063 		if (i915_request_is_active(rq))
2064 			__i915_request_unsubmit(rq);
2065 
2066 		clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2067 		list_move_tail(&rq->sched.link,
2068 			       &rq->engine->sched_engine->hold);
2069 		i915_request_set_hold(rq);
2070 		RQ_TRACE(rq, "on hold\n");
2071 
2072 		for_each_waiter(p, rq) {
2073 			struct i915_request *w =
2074 				container_of(p->waiter, typeof(*w), sched);
2075 
2076 			if (p->flags & I915_DEPENDENCY_WEAK)
2077 				continue;
2078 
2079 			/* Leave semaphores spinning on the other engines */
2080 			if (w->engine != rq->engine)
2081 				continue;
2082 
2083 			if (!i915_request_is_ready(w))
2084 				continue;
2085 
2086 			if (__i915_request_is_complete(w))
2087 				continue;
2088 
2089 			if (i915_request_on_hold(w))
2090 				continue;
2091 
2092 			list_move_tail(&w->sched.link, &list);
2093 		}
2094 
2095 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2096 	} while (rq);
2097 }
2098 
2099 static bool execlists_hold(struct intel_engine_cs *engine,
2100 			   struct i915_request *rq)
2101 {
2102 	if (i915_request_on_hold(rq))
2103 		return false;
2104 
2105 	spin_lock_irq(&engine->sched_engine->lock);
2106 
2107 	if (__i915_request_is_complete(rq)) { /* too late! */
2108 		rq = NULL;
2109 		goto unlock;
2110 	}
2111 
2112 	/*
2113 	 * Transfer this request onto the hold queue to prevent it
2114 	 * being resumbitted to HW (and potentially completed) before we have
2115 	 * released it. Since we may have already submitted following
2116 	 * requests, we need to remove those as well.
2117 	 */
2118 	GEM_BUG_ON(i915_request_on_hold(rq));
2119 	GEM_BUG_ON(rq->engine != engine);
2120 	__execlists_hold(rq);
2121 	GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2122 
2123 unlock:
2124 	spin_unlock_irq(&engine->sched_engine->lock);
2125 	return rq;
2126 }
2127 
2128 static bool hold_request(const struct i915_request *rq)
2129 {
2130 	struct i915_dependency *p;
2131 	bool result = false;
2132 
2133 	/*
2134 	 * If one of our ancestors is on hold, we must also be on hold,
2135 	 * otherwise we will bypass it and execute before it.
2136 	 */
2137 	rcu_read_lock();
2138 	for_each_signaler(p, rq) {
2139 		const struct i915_request *s =
2140 			container_of(p->signaler, typeof(*s), sched);
2141 
2142 		if (s->engine != rq->engine)
2143 			continue;
2144 
2145 		result = i915_request_on_hold(s);
2146 		if (result)
2147 			break;
2148 	}
2149 	rcu_read_unlock();
2150 
2151 	return result;
2152 }
2153 
2154 static void __execlists_unhold(struct i915_request *rq)
2155 {
2156 	LIST_HEAD(list);
2157 
2158 	do {
2159 		struct i915_dependency *p;
2160 
2161 		RQ_TRACE(rq, "hold release\n");
2162 
2163 		GEM_BUG_ON(!i915_request_on_hold(rq));
2164 		GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2165 
2166 		i915_request_clear_hold(rq);
2167 		list_move_tail(&rq->sched.link,
2168 			       i915_sched_lookup_priolist(rq->engine->sched_engine,
2169 							  rq_prio(rq)));
2170 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2171 
2172 		/* Also release any children on this engine that are ready */
2173 		for_each_waiter(p, rq) {
2174 			struct i915_request *w =
2175 				container_of(p->waiter, typeof(*w), sched);
2176 
2177 			if (p->flags & I915_DEPENDENCY_WEAK)
2178 				continue;
2179 
2180 			if (w->engine != rq->engine)
2181 				continue;
2182 
2183 			if (!i915_request_on_hold(w))
2184 				continue;
2185 
2186 			/* Check that no other parents are also on hold */
2187 			if (hold_request(w))
2188 				continue;
2189 
2190 			list_move_tail(&w->sched.link, &list);
2191 		}
2192 
2193 		rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2194 	} while (rq);
2195 }
2196 
2197 static void execlists_unhold(struct intel_engine_cs *engine,
2198 			     struct i915_request *rq)
2199 {
2200 	spin_lock_irq(&engine->sched_engine->lock);
2201 
2202 	/*
2203 	 * Move this request back to the priority queue, and all of its
2204 	 * children and grandchildren that were suspended along with it.
2205 	 */
2206 	__execlists_unhold(rq);
2207 
2208 	if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2209 		engine->sched_engine->queue_priority_hint = rq_prio(rq);
2210 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2211 	}
2212 
2213 	spin_unlock_irq(&engine->sched_engine->lock);
2214 }
2215 
2216 struct execlists_capture {
2217 	struct work_struct work;
2218 	struct i915_request *rq;
2219 	struct i915_gpu_coredump *error;
2220 };
2221 
2222 static void execlists_capture_work(struct work_struct *work)
2223 {
2224 	struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2225 	const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2226 		__GFP_NOWARN;
2227 	struct intel_engine_cs *engine = cap->rq->engine;
2228 	struct intel_gt_coredump *gt = cap->error->gt;
2229 	struct intel_engine_capture_vma *vma;
2230 
2231 	/* Compress all the objects attached to the request, slow! */
2232 	vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2233 	if (vma) {
2234 		struct i915_vma_compress *compress =
2235 			i915_vma_capture_prepare(gt);
2236 
2237 		intel_engine_coredump_add_vma(gt->engine, vma, compress);
2238 		i915_vma_capture_finish(gt, compress);
2239 	}
2240 
2241 	gt->simulated = gt->engine->simulated;
2242 	cap->error->simulated = gt->simulated;
2243 
2244 	/* Publish the error state, and announce it to the world */
2245 	i915_error_state_store(cap->error);
2246 	i915_gpu_coredump_put(cap->error);
2247 
2248 	/* Return this request and all that depend upon it for signaling */
2249 	execlists_unhold(engine, cap->rq);
2250 	i915_request_put(cap->rq);
2251 
2252 	kfree(cap);
2253 }
2254 
2255 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2256 {
2257 	const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2258 	struct execlists_capture *cap;
2259 
2260 	cap = kmalloc(sizeof(*cap), gfp);
2261 	if (!cap)
2262 		return NULL;
2263 
2264 	cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2265 	if (!cap->error)
2266 		goto err_cap;
2267 
2268 	cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2269 	if (!cap->error->gt)
2270 		goto err_gpu;
2271 
2272 	cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2273 	if (!cap->error->gt->engine)
2274 		goto err_gt;
2275 
2276 	cap->error->gt->engine->hung = true;
2277 
2278 	return cap;
2279 
2280 err_gt:
2281 	kfree(cap->error->gt);
2282 err_gpu:
2283 	kfree(cap->error);
2284 err_cap:
2285 	kfree(cap);
2286 	return NULL;
2287 }
2288 
2289 static struct i915_request *
2290 active_context(struct intel_engine_cs *engine, u32 ccid)
2291 {
2292 	const struct intel_engine_execlists * const el = &engine->execlists;
2293 	struct i915_request * const *port, *rq;
2294 
2295 	/*
2296 	 * Use the most recent result from process_csb(), but just in case
2297 	 * we trigger an error (via interrupt) before the first CS event has
2298 	 * been written, peek at the next submission.
2299 	 */
2300 
2301 	for (port = el->active; (rq = *port); port++) {
2302 		if (rq->context->lrc.ccid == ccid) {
2303 			ENGINE_TRACE(engine,
2304 				     "ccid:%x found at active:%zd\n",
2305 				     ccid, port - el->active);
2306 			return rq;
2307 		}
2308 	}
2309 
2310 	for (port = el->pending; (rq = *port); port++) {
2311 		if (rq->context->lrc.ccid == ccid) {
2312 			ENGINE_TRACE(engine,
2313 				     "ccid:%x found at pending:%zd\n",
2314 				     ccid, port - el->pending);
2315 			return rq;
2316 		}
2317 	}
2318 
2319 	ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2320 	return NULL;
2321 }
2322 
2323 static u32 active_ccid(struct intel_engine_cs *engine)
2324 {
2325 	return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2326 }
2327 
2328 static void execlists_capture(struct intel_engine_cs *engine)
2329 {
2330 	struct execlists_capture *cap;
2331 
2332 	if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2333 		return;
2334 
2335 	/*
2336 	 * We need to _quickly_ capture the engine state before we reset.
2337 	 * We are inside an atomic section (softirq) here and we are delaying
2338 	 * the forced preemption event.
2339 	 */
2340 	cap = capture_regs(engine);
2341 	if (!cap)
2342 		return;
2343 
2344 	spin_lock_irq(&engine->sched_engine->lock);
2345 	cap->rq = active_context(engine, active_ccid(engine));
2346 	if (cap->rq) {
2347 		cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2348 		cap->rq = i915_request_get_rcu(cap->rq);
2349 	}
2350 	spin_unlock_irq(&engine->sched_engine->lock);
2351 	if (!cap->rq)
2352 		goto err_free;
2353 
2354 	/*
2355 	 * Remove the request from the execlists queue, and take ownership
2356 	 * of the request. We pass it to our worker who will _slowly_ compress
2357 	 * all the pages the _user_ requested for debugging their batch, after
2358 	 * which we return it to the queue for signaling.
2359 	 *
2360 	 * By removing them from the execlists queue, we also remove the
2361 	 * requests from being processed by __unwind_incomplete_requests()
2362 	 * during the intel_engine_reset(), and so they will *not* be replayed
2363 	 * afterwards.
2364 	 *
2365 	 * Note that because we have not yet reset the engine at this point,
2366 	 * it is possible for the request that we have identified as being
2367 	 * guilty, did in fact complete and we will then hit an arbitration
2368 	 * point allowing the outstanding preemption to succeed. The likelihood
2369 	 * of that is very low (as capturing of the engine registers should be
2370 	 * fast enough to run inside an irq-off atomic section!), so we will
2371 	 * simply hold that request accountable for being non-preemptible
2372 	 * long enough to force the reset.
2373 	 */
2374 	if (!execlists_hold(engine, cap->rq))
2375 		goto err_rq;
2376 
2377 	INIT_WORK(&cap->work, execlists_capture_work);
2378 	schedule_work(&cap->work);
2379 	return;
2380 
2381 err_rq:
2382 	i915_request_put(cap->rq);
2383 err_free:
2384 	i915_gpu_coredump_put(cap->error);
2385 	kfree(cap);
2386 }
2387 
2388 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2389 {
2390 	const unsigned int bit = I915_RESET_ENGINE + engine->id;
2391 	unsigned long *lock = &engine->gt->reset.flags;
2392 
2393 	if (!intel_has_reset_engine(engine->gt))
2394 		return;
2395 
2396 	if (test_and_set_bit(bit, lock))
2397 		return;
2398 
2399 	ENGINE_TRACE(engine, "reset for %s\n", msg);
2400 
2401 	/* Mark this tasklet as disabled to avoid waiting for it to complete */
2402 	tasklet_disable_nosync(&engine->sched_engine->tasklet);
2403 
2404 	ring_set_paused(engine, 1); /* Freeze the current request in place */
2405 	execlists_capture(engine);
2406 	intel_engine_reset(engine, msg);
2407 
2408 	tasklet_enable(&engine->sched_engine->tasklet);
2409 	clear_and_wake_up_bit(bit, lock);
2410 }
2411 
2412 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2413 {
2414 	const struct timer_list *t = &engine->execlists.preempt;
2415 
2416 	if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2417 		return false;
2418 
2419 	if (!timer_expired(t))
2420 		return false;
2421 
2422 	return engine->execlists.pending[0];
2423 }
2424 
2425 /*
2426  * Check the unread Context Status Buffers and manage the submission of new
2427  * contexts to the ELSP accordingly.
2428  */
2429 static void execlists_submission_tasklet(struct tasklet_struct *t)
2430 {
2431 	struct i915_sched_engine *sched_engine =
2432 		from_tasklet(sched_engine, t, tasklet);
2433 	struct intel_engine_cs * const engine = sched_engine->private_data;
2434 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2435 	struct i915_request **inactive;
2436 
2437 	rcu_read_lock();
2438 	inactive = process_csb(engine, post);
2439 	GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2440 
2441 	if (unlikely(preempt_timeout(engine))) {
2442 		const struct i915_request *rq = *engine->execlists.active;
2443 
2444 		/*
2445 		 * If after the preempt-timeout expired, we are still on the
2446 		 * same active request/context as before we initiated the
2447 		 * preemption, reset the engine.
2448 		 *
2449 		 * However, if we have processed a CS event to switch contexts,
2450 		 * but not yet processed the CS event for the pending
2451 		 * preemption, reset the timer allowing the new context to
2452 		 * gracefully exit.
2453 		 */
2454 		cancel_timer(&engine->execlists.preempt);
2455 		if (rq == engine->execlists.preempt_target)
2456 			engine->execlists.error_interrupt |= ERROR_PREEMPT;
2457 		else
2458 			set_timer_ms(&engine->execlists.preempt,
2459 				     active_preempt_timeout(engine, rq));
2460 	}
2461 
2462 	if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2463 		const char *msg;
2464 
2465 		/* Generate the error message in priority wrt to the user! */
2466 		if (engine->execlists.error_interrupt & GENMASK(15, 0))
2467 			msg = "CS error"; /* thrown by a user payload */
2468 		else if (engine->execlists.error_interrupt & ERROR_CSB)
2469 			msg = "invalid CSB event";
2470 		else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2471 			msg = "preemption time out";
2472 		else
2473 			msg = "internal error";
2474 
2475 		engine->execlists.error_interrupt = 0;
2476 		execlists_reset(engine, msg);
2477 	}
2478 
2479 	if (!engine->execlists.pending[0]) {
2480 		execlists_dequeue_irq(engine);
2481 		start_timeslice(engine);
2482 	}
2483 
2484 	post_process_csb(post, inactive);
2485 	rcu_read_unlock();
2486 }
2487 
2488 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2489 {
2490 	bool tasklet = false;
2491 
2492 	if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2493 		u32 eir;
2494 
2495 		/* Upper 16b are the enabling mask, rsvd for internal errors */
2496 		eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2497 		ENGINE_TRACE(engine, "CS error: %x\n", eir);
2498 
2499 		/* Disable the error interrupt until after the reset */
2500 		if (likely(eir)) {
2501 			ENGINE_WRITE(engine, RING_EMR, ~0u);
2502 			ENGINE_WRITE(engine, RING_EIR, eir);
2503 			WRITE_ONCE(engine->execlists.error_interrupt, eir);
2504 			tasklet = true;
2505 		}
2506 	}
2507 
2508 	if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2509 		WRITE_ONCE(engine->execlists.yield,
2510 			   ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2511 		ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2512 			     engine->execlists.yield);
2513 		if (del_timer(&engine->execlists.timer))
2514 			tasklet = true;
2515 	}
2516 
2517 	if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2518 		tasklet = true;
2519 
2520 	if (iir & GT_RENDER_USER_INTERRUPT)
2521 		intel_engine_signal_breadcrumbs(engine);
2522 
2523 	if (tasklet)
2524 		tasklet_hi_schedule(&engine->sched_engine->tasklet);
2525 }
2526 
2527 static void __execlists_kick(struct intel_engine_execlists *execlists)
2528 {
2529 	struct intel_engine_cs *engine =
2530 		container_of(execlists, typeof(*engine), execlists);
2531 
2532 	/* Kick the tasklet for some interrupt coalescing and reset handling */
2533 	tasklet_hi_schedule(&engine->sched_engine->tasklet);
2534 }
2535 
2536 #define execlists_kick(t, member) \
2537 	__execlists_kick(container_of(t, struct intel_engine_execlists, member))
2538 
2539 static void execlists_timeslice(struct timer_list *timer)
2540 {
2541 	execlists_kick(timer, timer);
2542 }
2543 
2544 static void execlists_preempt(struct timer_list *timer)
2545 {
2546 	execlists_kick(timer, preempt);
2547 }
2548 
2549 static void queue_request(struct intel_engine_cs *engine,
2550 			  struct i915_request *rq)
2551 {
2552 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2553 	list_add_tail(&rq->sched.link,
2554 		      i915_sched_lookup_priolist(engine->sched_engine,
2555 						 rq_prio(rq)));
2556 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2557 }
2558 
2559 static bool submit_queue(struct intel_engine_cs *engine,
2560 			 const struct i915_request *rq)
2561 {
2562 	struct i915_sched_engine *sched_engine = engine->sched_engine;
2563 
2564 	if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2565 		return false;
2566 
2567 	sched_engine->queue_priority_hint = rq_prio(rq);
2568 	return true;
2569 }
2570 
2571 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2572 			     const struct i915_request *rq)
2573 {
2574 	GEM_BUG_ON(i915_request_on_hold(rq));
2575 	return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2576 }
2577 
2578 static void execlists_submit_request(struct i915_request *request)
2579 {
2580 	struct intel_engine_cs *engine = request->engine;
2581 	unsigned long flags;
2582 
2583 	/* Will be called from irq-context when using foreign fences. */
2584 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2585 
2586 	if (unlikely(ancestor_on_hold(engine, request))) {
2587 		RQ_TRACE(request, "ancestor on hold\n");
2588 		list_add_tail(&request->sched.link,
2589 			      &engine->sched_engine->hold);
2590 		i915_request_set_hold(request);
2591 	} else {
2592 		queue_request(engine, request);
2593 
2594 		GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2595 		GEM_BUG_ON(list_empty(&request->sched.link));
2596 
2597 		if (submit_queue(engine, request))
2598 			__execlists_kick(&engine->execlists);
2599 	}
2600 
2601 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2602 }
2603 
2604 static int
2605 __execlists_context_pre_pin(struct intel_context *ce,
2606 			    struct intel_engine_cs *engine,
2607 			    struct i915_gem_ww_ctx *ww, void **vaddr)
2608 {
2609 	int err;
2610 
2611 	err = lrc_pre_pin(ce, engine, ww, vaddr);
2612 	if (err)
2613 		return err;
2614 
2615 	if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2616 		lrc_init_state(ce, engine, *vaddr);
2617 
2618 		__i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2619 	}
2620 
2621 	return 0;
2622 }
2623 
2624 static int execlists_context_pre_pin(struct intel_context *ce,
2625 				     struct i915_gem_ww_ctx *ww,
2626 				     void **vaddr)
2627 {
2628 	return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2629 }
2630 
2631 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2632 {
2633 	return lrc_pin(ce, ce->engine, vaddr);
2634 }
2635 
2636 static int execlists_context_alloc(struct intel_context *ce)
2637 {
2638 	return lrc_alloc(ce, ce->engine);
2639 }
2640 
2641 static void execlists_context_cancel_request(struct intel_context *ce,
2642 					     struct i915_request *rq)
2643 {
2644 	struct intel_engine_cs *engine = NULL;
2645 
2646 	i915_request_active_engine(rq, &engine);
2647 
2648 	if (engine && intel_engine_pulse(engine))
2649 		intel_gt_handle_error(engine->gt, engine->mask, 0,
2650 				      "request cancellation by %s",
2651 				      current->comm);
2652 }
2653 
2654 static struct intel_context *
2655 execlists_create_parallel(struct intel_engine_cs **engines,
2656 			  unsigned int num_siblings,
2657 			  unsigned int width)
2658 {
2659 	struct intel_context *parent = NULL, *ce, *err;
2660 	int i;
2661 
2662 	GEM_BUG_ON(num_siblings != 1);
2663 
2664 	for (i = 0; i < width; ++i) {
2665 		ce = intel_context_create(engines[i]);
2666 		if (IS_ERR(ce)) {
2667 			err = ce;
2668 			goto unwind;
2669 		}
2670 
2671 		if (i == 0)
2672 			parent = ce;
2673 		else
2674 			intel_context_bind_parent_child(parent, ce);
2675 	}
2676 
2677 	parent->parallel.fence_context = dma_fence_context_alloc(1);
2678 
2679 	intel_context_set_nopreempt(parent);
2680 	for_each_child(parent, ce)
2681 		intel_context_set_nopreempt(ce);
2682 
2683 	return parent;
2684 
2685 unwind:
2686 	if (parent)
2687 		intel_context_put(parent);
2688 	return err;
2689 }
2690 
2691 static const struct intel_context_ops execlists_context_ops = {
2692 	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2693 
2694 	.alloc = execlists_context_alloc,
2695 
2696 	.cancel_request = execlists_context_cancel_request,
2697 
2698 	.pre_pin = execlists_context_pre_pin,
2699 	.pin = execlists_context_pin,
2700 	.unpin = lrc_unpin,
2701 	.post_unpin = lrc_post_unpin,
2702 
2703 	.enter = intel_context_enter_engine,
2704 	.exit = intel_context_exit_engine,
2705 
2706 	.reset = lrc_reset,
2707 	.destroy = lrc_destroy,
2708 
2709 	.create_parallel = execlists_create_parallel,
2710 	.create_virtual = execlists_create_virtual,
2711 };
2712 
2713 static int emit_pdps(struct i915_request *rq)
2714 {
2715 	const struct intel_engine_cs * const engine = rq->engine;
2716 	struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2717 	int err, i;
2718 	u32 *cs;
2719 
2720 	GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2721 
2722 	/*
2723 	 * Beware ye of the dragons, this sequence is magic!
2724 	 *
2725 	 * Small changes to this sequence can cause anything from
2726 	 * GPU hangs to forcewake errors and machine lockups!
2727 	 */
2728 
2729 	cs = intel_ring_begin(rq, 2);
2730 	if (IS_ERR(cs))
2731 		return PTR_ERR(cs);
2732 
2733 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2734 	*cs++ = MI_NOOP;
2735 	intel_ring_advance(rq, cs);
2736 
2737 	/* Flush any residual operations from the context load */
2738 	err = engine->emit_flush(rq, EMIT_FLUSH);
2739 	if (err)
2740 		return err;
2741 
2742 	/* Magic required to prevent forcewake errors! */
2743 	err = engine->emit_flush(rq, EMIT_INVALIDATE);
2744 	if (err)
2745 		return err;
2746 
2747 	cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2748 	if (IS_ERR(cs))
2749 		return PTR_ERR(cs);
2750 
2751 	/* Ensure the LRI have landed before we invalidate & continue */
2752 	*cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2753 	for (i = GEN8_3LVL_PDPES; i--; ) {
2754 		const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2755 		u32 base = engine->mmio_base;
2756 
2757 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2758 		*cs++ = upper_32_bits(pd_daddr);
2759 		*cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2760 		*cs++ = lower_32_bits(pd_daddr);
2761 	}
2762 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2763 	intel_ring_advance(rq, cs);
2764 
2765 	intel_ring_advance(rq, cs);
2766 
2767 	return 0;
2768 }
2769 
2770 static int execlists_request_alloc(struct i915_request *request)
2771 {
2772 	int ret;
2773 
2774 	GEM_BUG_ON(!intel_context_is_pinned(request->context));
2775 
2776 	/*
2777 	 * Flush enough space to reduce the likelihood of waiting after
2778 	 * we start building the request - in which case we will just
2779 	 * have to repeat work.
2780 	 */
2781 	request->reserved_space += EXECLISTS_REQUEST_SIZE;
2782 
2783 	/*
2784 	 * Note that after this point, we have committed to using
2785 	 * this request as it is being used to both track the
2786 	 * state of engine initialisation and liveness of the
2787 	 * golden renderstate above. Think twice before you try
2788 	 * to cancel/unwind this request now.
2789 	 */
2790 
2791 	if (!i915_vm_is_4lvl(request->context->vm)) {
2792 		ret = emit_pdps(request);
2793 		if (ret)
2794 			return ret;
2795 	}
2796 
2797 	/* Unconditionally invalidate GPU caches and TLBs. */
2798 	ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2799 	if (ret)
2800 		return ret;
2801 
2802 	request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2803 	return 0;
2804 }
2805 
2806 static void reset_csb_pointers(struct intel_engine_cs *engine)
2807 {
2808 	struct intel_engine_execlists * const execlists = &engine->execlists;
2809 	const unsigned int reset_value = execlists->csb_size - 1;
2810 
2811 	ring_set_paused(engine, 0);
2812 
2813 	/*
2814 	 * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2815 	 * Bludgeon them with a mmio update to be sure.
2816 	 */
2817 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2818 		     0xffff << 16 | reset_value << 8 | reset_value);
2819 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2820 
2821 	/*
2822 	 * After a reset, the HW starts writing into CSB entry [0]. We
2823 	 * therefore have to set our HEAD pointer back one entry so that
2824 	 * the *first* entry we check is entry 0. To complicate this further,
2825 	 * as we don't wait for the first interrupt after reset, we have to
2826 	 * fake the HW write to point back to the last entry so that our
2827 	 * inline comparison of our cached head position against the last HW
2828 	 * write works even before the first interrupt.
2829 	 */
2830 	execlists->csb_head = reset_value;
2831 	WRITE_ONCE(*execlists->csb_write, reset_value);
2832 	wmb(); /* Make sure this is visible to HW (paranoia?) */
2833 
2834 	/* Check that the GPU does indeed update the CSB entries! */
2835 	memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2836 	drm_clflush_virt_range(execlists->csb_status,
2837 			       execlists->csb_size *
2838 			       sizeof(execlists->csb_status));
2839 
2840 	/* Once more for luck and our trusty paranoia */
2841 	ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2842 		     0xffff << 16 | reset_value << 8 | reset_value);
2843 	ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2844 
2845 	GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2846 }
2847 
2848 static void sanitize_hwsp(struct intel_engine_cs *engine)
2849 {
2850 	struct intel_timeline *tl;
2851 
2852 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2853 		intel_timeline_reset_seqno(tl);
2854 }
2855 
2856 static void execlists_sanitize(struct intel_engine_cs *engine)
2857 {
2858 	GEM_BUG_ON(execlists_active(&engine->execlists));
2859 
2860 	/*
2861 	 * Poison residual state on resume, in case the suspend didn't!
2862 	 *
2863 	 * We have to assume that across suspend/resume (or other loss
2864 	 * of control) that the contents of our pinned buffers has been
2865 	 * lost, replaced by garbage. Since this doesn't always happen,
2866 	 * let's poison such state so that we more quickly spot when
2867 	 * we falsely assume it has been preserved.
2868 	 */
2869 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2870 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2871 
2872 	reset_csb_pointers(engine);
2873 
2874 	/*
2875 	 * The kernel_context HWSP is stored in the status_page. As above,
2876 	 * that may be lost on resume/initialisation, and so we need to
2877 	 * reset the value in the HWSP.
2878 	 */
2879 	sanitize_hwsp(engine);
2880 
2881 	/* And scrub the dirty cachelines for the HWSP */
2882 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2883 
2884 	intel_engine_reset_pinned_contexts(engine);
2885 }
2886 
2887 static void enable_error_interrupt(struct intel_engine_cs *engine)
2888 {
2889 	u32 status;
2890 
2891 	engine->execlists.error_interrupt = 0;
2892 	ENGINE_WRITE(engine, RING_EMR, ~0u);
2893 	ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2894 
2895 	status = ENGINE_READ(engine, RING_ESR);
2896 	if (unlikely(status)) {
2897 		drm_err(&engine->i915->drm,
2898 			"engine '%s' resumed still in error: %08x\n",
2899 			engine->name, status);
2900 		__intel_gt_reset(engine->gt, engine->mask);
2901 	}
2902 
2903 	/*
2904 	 * On current gen8+, we have 2 signals to play with
2905 	 *
2906 	 * - I915_ERROR_INSTUCTION (bit 0)
2907 	 *
2908 	 *    Generate an error if the command parser encounters an invalid
2909 	 *    instruction
2910 	 *
2911 	 *    This is a fatal error.
2912 	 *
2913 	 * - CP_PRIV (bit 2)
2914 	 *
2915 	 *    Generate an error on privilege violation (where the CP replaces
2916 	 *    the instruction with a no-op). This also fires for writes into
2917 	 *    read-only scratch pages.
2918 	 *
2919 	 *    This is a non-fatal error, parsing continues.
2920 	 *
2921 	 * * there are a few others defined for odd HW that we do not use
2922 	 *
2923 	 * Since CP_PRIV fires for cases where we have chosen to ignore the
2924 	 * error (as the HW is validating and suppressing the mistakes), we
2925 	 * only unmask the instruction error bit.
2926 	 */
2927 	ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2928 }
2929 
2930 static void enable_execlists(struct intel_engine_cs *engine)
2931 {
2932 	u32 mode;
2933 
2934 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2935 
2936 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2937 
2938 	if (GRAPHICS_VER(engine->i915) >= 11)
2939 		mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2940 	else
2941 		mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2942 	ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2943 
2944 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2945 
2946 	ENGINE_WRITE_FW(engine,
2947 			RING_HWS_PGA,
2948 			i915_ggtt_offset(engine->status_page.vma));
2949 	ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2950 
2951 	enable_error_interrupt(engine);
2952 }
2953 
2954 static int execlists_resume(struct intel_engine_cs *engine)
2955 {
2956 	intel_mocs_init_engine(engine);
2957 	intel_breadcrumbs_reset(engine->breadcrumbs);
2958 
2959 	enable_execlists(engine);
2960 
2961 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2962 		xehp_enable_ccs_engines(engine);
2963 
2964 	return 0;
2965 }
2966 
2967 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2968 {
2969 	ENGINE_TRACE(engine, "depth<-%d\n",
2970 		     atomic_read(&engine->sched_engine->tasklet.count));
2971 
2972 	/*
2973 	 * Prevent request submission to the hardware until we have
2974 	 * completed the reset in i915_gem_reset_finish(). If a request
2975 	 * is completed by one engine, it may then queue a request
2976 	 * to a second via its execlists->tasklet *just* as we are
2977 	 * calling engine->resume() and also writing the ELSP.
2978 	 * Turning off the execlists->tasklet until the reset is over
2979 	 * prevents the race.
2980 	 */
2981 	__tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2982 	GEM_BUG_ON(!reset_in_progress(engine));
2983 
2984 	/*
2985 	 * We stop engines, otherwise we might get failed reset and a
2986 	 * dead gpu (on elk). Also as modern gpu as kbl can suffer
2987 	 * from system hang if batchbuffer is progressing when
2988 	 * the reset is issued, regardless of READY_TO_RESET ack.
2989 	 * Thus assume it is best to stop engines on all gens
2990 	 * where we have a gpu reset.
2991 	 *
2992 	 * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2993 	 *
2994 	 * FIXME: Wa for more modern gens needs to be validated
2995 	 */
2996 	ring_set_paused(engine, 1);
2997 	intel_engine_stop_cs(engine);
2998 
2999 	/*
3000 	 * Wa_22011802037: In addition to stopping the cs, we need
3001 	 * to wait for any pending mi force wakeups
3002 	 */
3003 	if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
3004 	    (GRAPHICS_VER(engine->i915) >= 11 &&
3005 	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70)))
3006 		intel_engine_wait_for_pending_mi_fw(engine);
3007 
3008 	engine->execlists.reset_ccid = active_ccid(engine);
3009 }
3010 
3011 static struct i915_request **
3012 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3013 {
3014 	struct intel_engine_execlists * const execlists = &engine->execlists;
3015 
3016 	drm_clflush_virt_range(execlists->csb_write,
3017 			       sizeof(execlists->csb_write[0]));
3018 
3019 	inactive = process_csb(engine, inactive); /* drain preemption events */
3020 
3021 	/* Following the reset, we need to reload the CSB read/write pointers */
3022 	reset_csb_pointers(engine);
3023 
3024 	return inactive;
3025 }
3026 
3027 static void
3028 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3029 {
3030 	struct intel_context *ce;
3031 	struct i915_request *rq;
3032 	u32 head;
3033 
3034 	/*
3035 	 * Save the currently executing context, even if we completed
3036 	 * its request, it was still running at the time of the
3037 	 * reset and will have been clobbered.
3038 	 */
3039 	rq = active_context(engine, engine->execlists.reset_ccid);
3040 	if (!rq)
3041 		return;
3042 
3043 	ce = rq->context;
3044 	GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3045 
3046 	if (__i915_request_is_complete(rq)) {
3047 		/* Idle context; tidy up the ring so we can restart afresh */
3048 		head = intel_ring_wrap(ce->ring, rq->tail);
3049 		goto out_replay;
3050 	}
3051 
3052 	/* We still have requests in-flight; the engine should be active */
3053 	GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3054 
3055 	/* Context has requests still in-flight; it should not be idle! */
3056 	GEM_BUG_ON(i915_active_is_idle(&ce->active));
3057 
3058 	rq = active_request(ce->timeline, rq);
3059 	head = intel_ring_wrap(ce->ring, rq->head);
3060 	GEM_BUG_ON(head == ce->ring->tail);
3061 
3062 	/*
3063 	 * If this request hasn't started yet, e.g. it is waiting on a
3064 	 * semaphore, we need to avoid skipping the request or else we
3065 	 * break the signaling chain. However, if the context is corrupt
3066 	 * the request will not restart and we will be stuck with a wedged
3067 	 * device. It is quite often the case that if we issue a reset
3068 	 * while the GPU is loading the context image, that the context
3069 	 * image becomes corrupt.
3070 	 *
3071 	 * Otherwise, if we have not started yet, the request should replay
3072 	 * perfectly and we do not need to flag the result as being erroneous.
3073 	 */
3074 	if (!__i915_request_has_started(rq))
3075 		goto out_replay;
3076 
3077 	/*
3078 	 * If the request was innocent, we leave the request in the ELSP
3079 	 * and will try to replay it on restarting. The context image may
3080 	 * have been corrupted by the reset, in which case we may have
3081 	 * to service a new GPU hang, but more likely we can continue on
3082 	 * without impact.
3083 	 *
3084 	 * If the request was guilty, we presume the context is corrupt
3085 	 * and have to at least restore the RING register in the context
3086 	 * image back to the expected values to skip over the guilty request.
3087 	 */
3088 	__i915_request_reset(rq, stalled);
3089 
3090 	/*
3091 	 * We want a simple context + ring to execute the breadcrumb update.
3092 	 * We cannot rely on the context being intact across the GPU hang,
3093 	 * so clear it and rebuild just what we need for the breadcrumb.
3094 	 * All pending requests for this context will be zapped, and any
3095 	 * future request will be after userspace has had the opportunity
3096 	 * to recreate its own state.
3097 	 */
3098 out_replay:
3099 	ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3100 		     head, ce->ring->tail);
3101 	lrc_reset_regs(ce, engine);
3102 	ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3103 }
3104 
3105 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3106 {
3107 	struct intel_engine_execlists * const execlists = &engine->execlists;
3108 	struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3109 	struct i915_request **inactive;
3110 
3111 	rcu_read_lock();
3112 	inactive = reset_csb(engine, post);
3113 
3114 	execlists_reset_active(engine, true);
3115 
3116 	inactive = cancel_port_requests(execlists, inactive);
3117 	post_process_csb(post, inactive);
3118 	rcu_read_unlock();
3119 }
3120 
3121 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3122 {
3123 	unsigned long flags;
3124 
3125 	ENGINE_TRACE(engine, "\n");
3126 
3127 	/* Process the csb, find the guilty context and throw away */
3128 	execlists_reset_csb(engine, stalled);
3129 
3130 	/* Push back any incomplete requests for replay after the reset. */
3131 	rcu_read_lock();
3132 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3133 	__unwind_incomplete_requests(engine);
3134 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3135 	rcu_read_unlock();
3136 }
3137 
3138 static void nop_submission_tasklet(struct tasklet_struct *t)
3139 {
3140 	struct i915_sched_engine *sched_engine =
3141 		from_tasklet(sched_engine, t, tasklet);
3142 	struct intel_engine_cs * const engine = sched_engine->private_data;
3143 
3144 	/* The driver is wedged; don't process any more events. */
3145 	WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3146 }
3147 
3148 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3149 {
3150 	struct intel_engine_execlists * const execlists = &engine->execlists;
3151 	struct i915_sched_engine * const sched_engine = engine->sched_engine;
3152 	struct i915_request *rq, *rn;
3153 	struct rb_node *rb;
3154 	unsigned long flags;
3155 
3156 	ENGINE_TRACE(engine, "\n");
3157 
3158 	/*
3159 	 * Before we call engine->cancel_requests(), we should have exclusive
3160 	 * access to the submission state. This is arranged for us by the
3161 	 * caller disabling the interrupt generation, the tasklet and other
3162 	 * threads that may then access the same state, giving us a free hand
3163 	 * to reset state. However, we still need to let lockdep be aware that
3164 	 * we know this state may be accessed in hardirq context, so we
3165 	 * disable the irq around this manipulation and we want to keep
3166 	 * the spinlock focused on its duties and not accidentally conflate
3167 	 * coverage to the submission's irq state. (Similarly, although we
3168 	 * shouldn't need to disable irq around the manipulation of the
3169 	 * submission's irq state, we also wish to remind ourselves that
3170 	 * it is irq state.)
3171 	 */
3172 	execlists_reset_csb(engine, true);
3173 
3174 	rcu_read_lock();
3175 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
3176 
3177 	/* Mark all executing requests as skipped. */
3178 	list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3179 		i915_request_put(i915_request_mark_eio(rq));
3180 	intel_engine_signal_breadcrumbs(engine);
3181 
3182 	/* Flush the queued requests to the timeline list (for retiring). */
3183 	while ((rb = rb_first_cached(&sched_engine->queue))) {
3184 		struct i915_priolist *p = to_priolist(rb);
3185 
3186 		priolist_for_each_request_consume(rq, rn, p) {
3187 			if (i915_request_mark_eio(rq)) {
3188 				__i915_request_submit(rq);
3189 				i915_request_put(rq);
3190 			}
3191 		}
3192 
3193 		rb_erase_cached(&p->node, &sched_engine->queue);
3194 		i915_priolist_free(p);
3195 	}
3196 
3197 	/* On-hold requests will be flushed to timeline upon their release */
3198 	list_for_each_entry(rq, &sched_engine->hold, sched.link)
3199 		i915_request_put(i915_request_mark_eio(rq));
3200 
3201 	/* Cancel all attached virtual engines */
3202 	while ((rb = rb_first_cached(&execlists->virtual))) {
3203 		struct virtual_engine *ve =
3204 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3205 
3206 		rb_erase_cached(rb, &execlists->virtual);
3207 		RB_CLEAR_NODE(rb);
3208 
3209 		spin_lock(&ve->base.sched_engine->lock);
3210 		rq = fetch_and_zero(&ve->request);
3211 		if (rq) {
3212 			if (i915_request_mark_eio(rq)) {
3213 				rq->engine = engine;
3214 				__i915_request_submit(rq);
3215 				i915_request_put(rq);
3216 			}
3217 			i915_request_put(rq);
3218 
3219 			ve->base.sched_engine->queue_priority_hint = INT_MIN;
3220 		}
3221 		spin_unlock(&ve->base.sched_engine->lock);
3222 	}
3223 
3224 	/* Remaining _unready_ requests will be nop'ed when submitted */
3225 
3226 	sched_engine->queue_priority_hint = INT_MIN;
3227 	sched_engine->queue = RB_ROOT_CACHED;
3228 
3229 	GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3230 	engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3231 
3232 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3233 	rcu_read_unlock();
3234 }
3235 
3236 static void execlists_reset_finish(struct intel_engine_cs *engine)
3237 {
3238 	struct intel_engine_execlists * const execlists = &engine->execlists;
3239 
3240 	/*
3241 	 * After a GPU reset, we may have requests to replay. Do so now while
3242 	 * we still have the forcewake to be sure that the GPU is not allowed
3243 	 * to sleep before we restart and reload a context.
3244 	 *
3245 	 * If the GPU reset fails, the engine may still be alive with requests
3246 	 * inflight. We expect those to complete, or for the device to be
3247 	 * reset as the next level of recovery, and as a final resort we
3248 	 * will declare the device wedged.
3249 	 */
3250 	GEM_BUG_ON(!reset_in_progress(engine));
3251 
3252 	/* And kick in case we missed a new request submission. */
3253 	if (__tasklet_enable(&engine->sched_engine->tasklet))
3254 		__execlists_kick(execlists);
3255 
3256 	ENGINE_TRACE(engine, "depth->%d\n",
3257 		     atomic_read(&engine->sched_engine->tasklet.count));
3258 }
3259 
3260 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3261 {
3262 	ENGINE_WRITE(engine, RING_IMR,
3263 		     ~(engine->irq_enable_mask | engine->irq_keep_mask));
3264 	ENGINE_POSTING_READ(engine, RING_IMR);
3265 }
3266 
3267 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3268 {
3269 	ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3270 }
3271 
3272 static void execlists_park(struct intel_engine_cs *engine)
3273 {
3274 	cancel_timer(&engine->execlists.timer);
3275 	cancel_timer(&engine->execlists.preempt);
3276 }
3277 
3278 static void add_to_engine(struct i915_request *rq)
3279 {
3280 	lockdep_assert_held(&rq->engine->sched_engine->lock);
3281 	list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3282 }
3283 
3284 static void remove_from_engine(struct i915_request *rq)
3285 {
3286 	struct intel_engine_cs *engine, *locked;
3287 
3288 	/*
3289 	 * Virtual engines complicate acquiring the engine timeline lock,
3290 	 * as their rq->engine pointer is not stable until under that
3291 	 * engine lock. The simple ploy we use is to take the lock then
3292 	 * check that the rq still belongs to the newly locked engine.
3293 	 */
3294 	locked = READ_ONCE(rq->engine);
3295 	spin_lock_irq(&locked->sched_engine->lock);
3296 	while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3297 		spin_unlock(&locked->sched_engine->lock);
3298 		spin_lock(&engine->sched_engine->lock);
3299 		locked = engine;
3300 	}
3301 	list_del_init(&rq->sched.link);
3302 
3303 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3304 	clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3305 
3306 	/* Prevent further __await_execution() registering a cb, then flush */
3307 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3308 
3309 	spin_unlock_irq(&locked->sched_engine->lock);
3310 
3311 	i915_request_notify_execute_cb_imm(rq);
3312 }
3313 
3314 static bool can_preempt(struct intel_engine_cs *engine)
3315 {
3316 	if (GRAPHICS_VER(engine->i915) > 8)
3317 		return true;
3318 
3319 	/* GPGPU on bdw requires extra w/a; not implemented */
3320 	return engine->class != RENDER_CLASS;
3321 }
3322 
3323 static void kick_execlists(const struct i915_request *rq, int prio)
3324 {
3325 	struct intel_engine_cs *engine = rq->engine;
3326 	struct i915_sched_engine *sched_engine = engine->sched_engine;
3327 	const struct i915_request *inflight;
3328 
3329 	/*
3330 	 * We only need to kick the tasklet once for the high priority
3331 	 * new context we add into the queue.
3332 	 */
3333 	if (prio <= sched_engine->queue_priority_hint)
3334 		return;
3335 
3336 	rcu_read_lock();
3337 
3338 	/* Nothing currently active? We're overdue for a submission! */
3339 	inflight = execlists_active(&engine->execlists);
3340 	if (!inflight)
3341 		goto unlock;
3342 
3343 	/*
3344 	 * If we are already the currently executing context, don't
3345 	 * bother evaluating if we should preempt ourselves.
3346 	 */
3347 	if (inflight->context == rq->context)
3348 		goto unlock;
3349 
3350 	ENGINE_TRACE(engine,
3351 		     "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3352 		     prio,
3353 		     rq->fence.context, rq->fence.seqno,
3354 		     inflight->fence.context, inflight->fence.seqno,
3355 		     inflight->sched.attr.priority);
3356 
3357 	sched_engine->queue_priority_hint = prio;
3358 
3359 	/*
3360 	 * Allow preemption of low -> normal -> high, but we do
3361 	 * not allow low priority tasks to preempt other low priority
3362 	 * tasks under the impression that latency for low priority
3363 	 * tasks does not matter (as much as background throughput),
3364 	 * so kiss.
3365 	 */
3366 	if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3367 		tasklet_hi_schedule(&sched_engine->tasklet);
3368 
3369 unlock:
3370 	rcu_read_unlock();
3371 }
3372 
3373 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3374 {
3375 	engine->submit_request = execlists_submit_request;
3376 	engine->sched_engine->schedule = i915_schedule;
3377 	engine->sched_engine->kick_backend = kick_execlists;
3378 	engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3379 }
3380 
3381 static void execlists_shutdown(struct intel_engine_cs *engine)
3382 {
3383 	/* Synchronise with residual timers and any softirq they raise */
3384 	del_timer_sync(&engine->execlists.timer);
3385 	del_timer_sync(&engine->execlists.preempt);
3386 	tasklet_kill(&engine->sched_engine->tasklet);
3387 }
3388 
3389 static void execlists_release(struct intel_engine_cs *engine)
3390 {
3391 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3392 
3393 	execlists_shutdown(engine);
3394 
3395 	intel_engine_cleanup_common(engine);
3396 	lrc_fini_wa_ctx(engine);
3397 }
3398 
3399 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3400 					   ktime_t *now)
3401 {
3402 	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3403 	ktime_t total = stats->total;
3404 
3405 	/*
3406 	 * If the engine is executing something at the moment
3407 	 * add it to the total.
3408 	 */
3409 	*now = ktime_get();
3410 	if (READ_ONCE(stats->active))
3411 		total = ktime_add(total, ktime_sub(*now, stats->start));
3412 
3413 	return total;
3414 }
3415 
3416 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3417 					 ktime_t *now)
3418 {
3419 	struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3420 	unsigned int seq;
3421 	ktime_t total;
3422 
3423 	do {
3424 		seq = read_seqcount_begin(&stats->lock);
3425 		total = __execlists_engine_busyness(engine, now);
3426 	} while (read_seqcount_retry(&stats->lock, seq));
3427 
3428 	return total;
3429 }
3430 
3431 static void
3432 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3433 {
3434 	/* Default vfuncs which can be overridden by each engine. */
3435 
3436 	engine->resume = execlists_resume;
3437 
3438 	engine->cops = &execlists_context_ops;
3439 	engine->request_alloc = execlists_request_alloc;
3440 	engine->add_active_request = add_to_engine;
3441 	engine->remove_active_request = remove_from_engine;
3442 
3443 	engine->reset.prepare = execlists_reset_prepare;
3444 	engine->reset.rewind = execlists_reset_rewind;
3445 	engine->reset.cancel = execlists_reset_cancel;
3446 	engine->reset.finish = execlists_reset_finish;
3447 
3448 	engine->park = execlists_park;
3449 	engine->unpark = NULL;
3450 
3451 	engine->emit_flush = gen8_emit_flush_xcs;
3452 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3453 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3454 	if (GRAPHICS_VER(engine->i915) >= 12) {
3455 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3456 		engine->emit_flush = gen12_emit_flush_xcs;
3457 	}
3458 	engine->set_default_submission = execlists_set_default_submission;
3459 
3460 	if (GRAPHICS_VER(engine->i915) < 11) {
3461 		engine->irq_enable = gen8_logical_ring_enable_irq;
3462 		engine->irq_disable = gen8_logical_ring_disable_irq;
3463 	} else {
3464 		/*
3465 		 * TODO: On Gen11 interrupt masks need to be clear
3466 		 * to allow C6 entry. Keep interrupts enabled at
3467 		 * and take the hit of generating extra interrupts
3468 		 * until a more refined solution exists.
3469 		 */
3470 	}
3471 	intel_engine_set_irq_handler(engine, execlists_irq_handler);
3472 
3473 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3474 	if (!intel_vgpu_active(engine->i915)) {
3475 		engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3476 		if (can_preempt(engine)) {
3477 			engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3478 			if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3479 				engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3480 		}
3481 	}
3482 
3483 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
3484 		if (intel_engine_has_preemption(engine))
3485 			engine->emit_bb_start = xehp_emit_bb_start;
3486 		else
3487 			engine->emit_bb_start = xehp_emit_bb_start_noarb;
3488 	} else {
3489 		if (intel_engine_has_preemption(engine))
3490 			engine->emit_bb_start = gen8_emit_bb_start;
3491 		else
3492 			engine->emit_bb_start = gen8_emit_bb_start_noarb;
3493 	}
3494 
3495 	engine->busyness = execlists_engine_busyness;
3496 }
3497 
3498 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3499 {
3500 	unsigned int shift = 0;
3501 
3502 	if (GRAPHICS_VER(engine->i915) < 11) {
3503 		const u8 irq_shifts[] = {
3504 			[RCS0]  = GEN8_RCS_IRQ_SHIFT,
3505 			[BCS0]  = GEN8_BCS_IRQ_SHIFT,
3506 			[VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3507 			[VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3508 			[VECS0] = GEN8_VECS_IRQ_SHIFT,
3509 		};
3510 
3511 		shift = irq_shifts[engine->id];
3512 	}
3513 
3514 	engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3515 	engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3516 	engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3517 	engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3518 }
3519 
3520 static void rcs_submission_override(struct intel_engine_cs *engine)
3521 {
3522 	switch (GRAPHICS_VER(engine->i915)) {
3523 	case 12:
3524 		engine->emit_flush = gen12_emit_flush_rcs;
3525 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3526 		break;
3527 	case 11:
3528 		engine->emit_flush = gen11_emit_flush_rcs;
3529 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3530 		break;
3531 	default:
3532 		engine->emit_flush = gen8_emit_flush_rcs;
3533 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3534 		break;
3535 	}
3536 }
3537 
3538 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3539 {
3540 	struct intel_engine_execlists * const execlists = &engine->execlists;
3541 	struct drm_i915_private *i915 = engine->i915;
3542 	struct intel_uncore *uncore = engine->uncore;
3543 	u32 base = engine->mmio_base;
3544 
3545 	tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3546 	timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3547 	timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3548 
3549 	logical_ring_default_vfuncs(engine);
3550 	logical_ring_default_irqs(engine);
3551 
3552 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3553 		rcs_submission_override(engine);
3554 
3555 	lrc_init_wa_ctx(engine);
3556 
3557 	if (HAS_LOGICAL_RING_ELSQ(i915)) {
3558 		execlists->submit_reg = uncore->regs +
3559 			i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3560 		execlists->ctrl_reg = uncore->regs +
3561 			i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3562 
3563 		engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3564 				    RING_EXECLIST_CONTROL(engine->mmio_base),
3565 				    FW_REG_WRITE);
3566 	} else {
3567 		execlists->submit_reg = uncore->regs +
3568 			i915_mmio_reg_offset(RING_ELSP(base));
3569 	}
3570 
3571 	execlists->csb_status =
3572 		(u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3573 
3574 	execlists->csb_write =
3575 		&engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3576 
3577 	if (GRAPHICS_VER(i915) < 11)
3578 		execlists->csb_size = GEN8_CSB_ENTRIES;
3579 	else
3580 		execlists->csb_size = GEN11_CSB_ENTRIES;
3581 
3582 	engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3583 	if (GRAPHICS_VER(engine->i915) >= 11 &&
3584 	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3585 		execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3586 		execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3587 	}
3588 
3589 	/* Finally, take ownership and responsibility for cleanup! */
3590 	engine->sanitize = execlists_sanitize;
3591 	engine->release = execlists_release;
3592 
3593 	return 0;
3594 }
3595 
3596 static struct list_head *virtual_queue(struct virtual_engine *ve)
3597 {
3598 	return &ve->base.sched_engine->default_priolist.requests;
3599 }
3600 
3601 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3602 {
3603 	struct virtual_engine *ve =
3604 		container_of(wrk, typeof(*ve), rcu.work);
3605 	unsigned int n;
3606 
3607 	GEM_BUG_ON(ve->context.inflight);
3608 
3609 	/* Preempt-to-busy may leave a stale request behind. */
3610 	if (unlikely(ve->request)) {
3611 		struct i915_request *old;
3612 
3613 		spin_lock_irq(&ve->base.sched_engine->lock);
3614 
3615 		old = fetch_and_zero(&ve->request);
3616 		if (old) {
3617 			GEM_BUG_ON(!__i915_request_is_complete(old));
3618 			__i915_request_submit(old);
3619 			i915_request_put(old);
3620 		}
3621 
3622 		spin_unlock_irq(&ve->base.sched_engine->lock);
3623 	}
3624 
3625 	/*
3626 	 * Flush the tasklet in case it is still running on another core.
3627 	 *
3628 	 * This needs to be done before we remove ourselves from the siblings'
3629 	 * rbtrees as in the case it is running in parallel, it may reinsert
3630 	 * the rb_node into a sibling.
3631 	 */
3632 	tasklet_kill(&ve->base.sched_engine->tasklet);
3633 
3634 	/* Decouple ourselves from the siblings, no more access allowed. */
3635 	for (n = 0; n < ve->num_siblings; n++) {
3636 		struct intel_engine_cs *sibling = ve->siblings[n];
3637 		struct rb_node *node = &ve->nodes[sibling->id].rb;
3638 
3639 		if (RB_EMPTY_NODE(node))
3640 			continue;
3641 
3642 		spin_lock_irq(&sibling->sched_engine->lock);
3643 
3644 		/* Detachment is lazily performed in the sched_engine->tasklet */
3645 		if (!RB_EMPTY_NODE(node))
3646 			rb_erase_cached(node, &sibling->execlists.virtual);
3647 
3648 		spin_unlock_irq(&sibling->sched_engine->lock);
3649 	}
3650 	GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3651 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3652 
3653 	lrc_fini(&ve->context);
3654 	intel_context_fini(&ve->context);
3655 
3656 	if (ve->base.breadcrumbs)
3657 		intel_breadcrumbs_put(ve->base.breadcrumbs);
3658 	if (ve->base.sched_engine)
3659 		i915_sched_engine_put(ve->base.sched_engine);
3660 	intel_engine_free_request_pool(&ve->base);
3661 
3662 	kfree(ve);
3663 }
3664 
3665 static void virtual_context_destroy(struct kref *kref)
3666 {
3667 	struct virtual_engine *ve =
3668 		container_of(kref, typeof(*ve), context.ref);
3669 
3670 	GEM_BUG_ON(!list_empty(&ve->context.signals));
3671 
3672 	/*
3673 	 * When destroying the virtual engine, we have to be aware that
3674 	 * it may still be in use from an hardirq/softirq context causing
3675 	 * the resubmission of a completed request (background completion
3676 	 * due to preempt-to-busy). Before we can free the engine, we need
3677 	 * to flush the submission code and tasklets that are still potentially
3678 	 * accessing the engine. Flushing the tasklets requires process context,
3679 	 * and since we can guard the resubmit onto the engine with an RCU read
3680 	 * lock, we can delegate the free of the engine to an RCU worker.
3681 	 */
3682 	INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3683 	queue_rcu_work(system_wq, &ve->rcu);
3684 }
3685 
3686 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3687 {
3688 	int swp;
3689 
3690 	/*
3691 	 * Pick a random sibling on starting to help spread the load around.
3692 	 *
3693 	 * New contexts are typically created with exactly the same order
3694 	 * of siblings, and often started in batches. Due to the way we iterate
3695 	 * the array of sibling when submitting requests, sibling[0] is
3696 	 * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3697 	 * randomised across the system, we also help spread the load by the
3698 	 * first engine we inspect being different each time.
3699 	 *
3700 	 * NB This does not force us to execute on this engine, it will just
3701 	 * typically be the first we inspect for submission.
3702 	 */
3703 	swp = get_random_u32_below(ve->num_siblings);
3704 	if (swp)
3705 		swap(ve->siblings[swp], ve->siblings[0]);
3706 }
3707 
3708 static int virtual_context_alloc(struct intel_context *ce)
3709 {
3710 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3711 
3712 	return lrc_alloc(ce, ve->siblings[0]);
3713 }
3714 
3715 static int virtual_context_pre_pin(struct intel_context *ce,
3716 				   struct i915_gem_ww_ctx *ww,
3717 				   void **vaddr)
3718 {
3719 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3720 
3721 	 /* Note: we must use a real engine class for setting up reg state */
3722 	return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3723 }
3724 
3725 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3726 {
3727 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3728 
3729 	return lrc_pin(ce, ve->siblings[0], vaddr);
3730 }
3731 
3732 static void virtual_context_enter(struct intel_context *ce)
3733 {
3734 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3735 	unsigned int n;
3736 
3737 	for (n = 0; n < ve->num_siblings; n++)
3738 		intel_engine_pm_get(ve->siblings[n]);
3739 
3740 	intel_timeline_enter(ce->timeline);
3741 }
3742 
3743 static void virtual_context_exit(struct intel_context *ce)
3744 {
3745 	struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3746 	unsigned int n;
3747 
3748 	intel_timeline_exit(ce->timeline);
3749 
3750 	for (n = 0; n < ve->num_siblings; n++)
3751 		intel_engine_pm_put(ve->siblings[n]);
3752 }
3753 
3754 static struct intel_engine_cs *
3755 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3756 {
3757 	struct virtual_engine *ve = to_virtual_engine(engine);
3758 
3759 	if (sibling >= ve->num_siblings)
3760 		return NULL;
3761 
3762 	return ve->siblings[sibling];
3763 }
3764 
3765 static const struct intel_context_ops virtual_context_ops = {
3766 	.flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3767 
3768 	.alloc = virtual_context_alloc,
3769 
3770 	.cancel_request = execlists_context_cancel_request,
3771 
3772 	.pre_pin = virtual_context_pre_pin,
3773 	.pin = virtual_context_pin,
3774 	.unpin = lrc_unpin,
3775 	.post_unpin = lrc_post_unpin,
3776 
3777 	.enter = virtual_context_enter,
3778 	.exit = virtual_context_exit,
3779 
3780 	.destroy = virtual_context_destroy,
3781 
3782 	.get_sibling = virtual_get_sibling,
3783 };
3784 
3785 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3786 {
3787 	struct i915_request *rq;
3788 	intel_engine_mask_t mask;
3789 
3790 	rq = READ_ONCE(ve->request);
3791 	if (!rq)
3792 		return 0;
3793 
3794 	/* The rq is ready for submission; rq->execution_mask is now stable. */
3795 	mask = rq->execution_mask;
3796 	if (unlikely(!mask)) {
3797 		/* Invalid selection, submit to a random engine in error */
3798 		i915_request_set_error_once(rq, -ENODEV);
3799 		mask = ve->siblings[0]->mask;
3800 	}
3801 
3802 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3803 		     rq->fence.context, rq->fence.seqno,
3804 		     mask, ve->base.sched_engine->queue_priority_hint);
3805 
3806 	return mask;
3807 }
3808 
3809 static void virtual_submission_tasklet(struct tasklet_struct *t)
3810 {
3811 	struct i915_sched_engine *sched_engine =
3812 		from_tasklet(sched_engine, t, tasklet);
3813 	struct virtual_engine * const ve =
3814 		(struct virtual_engine *)sched_engine->private_data;
3815 	const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3816 	intel_engine_mask_t mask;
3817 	unsigned int n;
3818 
3819 	rcu_read_lock();
3820 	mask = virtual_submission_mask(ve);
3821 	rcu_read_unlock();
3822 	if (unlikely(!mask))
3823 		return;
3824 
3825 	for (n = 0; n < ve->num_siblings; n++) {
3826 		struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3827 		struct ve_node * const node = &ve->nodes[sibling->id];
3828 		struct rb_node **parent, *rb;
3829 		bool first;
3830 
3831 		if (!READ_ONCE(ve->request))
3832 			break; /* already handled by a sibling's tasklet */
3833 
3834 		spin_lock_irq(&sibling->sched_engine->lock);
3835 
3836 		if (unlikely(!(mask & sibling->mask))) {
3837 			if (!RB_EMPTY_NODE(&node->rb)) {
3838 				rb_erase_cached(&node->rb,
3839 						&sibling->execlists.virtual);
3840 				RB_CLEAR_NODE(&node->rb);
3841 			}
3842 
3843 			goto unlock_engine;
3844 		}
3845 
3846 		if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3847 			/*
3848 			 * Cheat and avoid rebalancing the tree if we can
3849 			 * reuse this node in situ.
3850 			 */
3851 			first = rb_first_cached(&sibling->execlists.virtual) ==
3852 				&node->rb;
3853 			if (prio == node->prio || (prio > node->prio && first))
3854 				goto submit_engine;
3855 
3856 			rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3857 		}
3858 
3859 		rb = NULL;
3860 		first = true;
3861 		parent = &sibling->execlists.virtual.rb_root.rb_node;
3862 		while (*parent) {
3863 			struct ve_node *other;
3864 
3865 			rb = *parent;
3866 			other = rb_entry(rb, typeof(*other), rb);
3867 			if (prio > other->prio) {
3868 				parent = &rb->rb_left;
3869 			} else {
3870 				parent = &rb->rb_right;
3871 				first = false;
3872 			}
3873 		}
3874 
3875 		rb_link_node(&node->rb, rb, parent);
3876 		rb_insert_color_cached(&node->rb,
3877 				       &sibling->execlists.virtual,
3878 				       first);
3879 
3880 submit_engine:
3881 		GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3882 		node->prio = prio;
3883 		if (first && prio > sibling->sched_engine->queue_priority_hint)
3884 			tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3885 
3886 unlock_engine:
3887 		spin_unlock_irq(&sibling->sched_engine->lock);
3888 
3889 		if (intel_context_inflight(&ve->context))
3890 			break;
3891 	}
3892 }
3893 
3894 static void virtual_submit_request(struct i915_request *rq)
3895 {
3896 	struct virtual_engine *ve = to_virtual_engine(rq->engine);
3897 	unsigned long flags;
3898 
3899 	ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3900 		     rq->fence.context,
3901 		     rq->fence.seqno);
3902 
3903 	GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3904 
3905 	spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3906 
3907 	/* By the time we resubmit a request, it may be completed */
3908 	if (__i915_request_is_complete(rq)) {
3909 		__i915_request_submit(rq);
3910 		goto unlock;
3911 	}
3912 
3913 	if (ve->request) { /* background completion from preempt-to-busy */
3914 		GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3915 		__i915_request_submit(ve->request);
3916 		i915_request_put(ve->request);
3917 	}
3918 
3919 	ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3920 	ve->request = i915_request_get(rq);
3921 
3922 	GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3923 	list_move_tail(&rq->sched.link, virtual_queue(ve));
3924 
3925 	tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3926 
3927 unlock:
3928 	spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3929 }
3930 
3931 static struct intel_context *
3932 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3933 			 unsigned long flags)
3934 {
3935 	struct drm_i915_private *i915 = siblings[0]->i915;
3936 	struct virtual_engine *ve;
3937 	unsigned int n;
3938 	int err;
3939 
3940 	ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3941 	if (!ve)
3942 		return ERR_PTR(-ENOMEM);
3943 
3944 	ve->base.i915 = i915;
3945 	ve->base.gt = siblings[0]->gt;
3946 	ve->base.uncore = siblings[0]->uncore;
3947 	ve->base.id = -1;
3948 
3949 	ve->base.class = OTHER_CLASS;
3950 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3951 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3952 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3953 
3954 	/*
3955 	 * The decision on whether to submit a request using semaphores
3956 	 * depends on the saturated state of the engine. We only compute
3957 	 * this during HW submission of the request, and we need for this
3958 	 * state to be globally applied to all requests being submitted
3959 	 * to this engine. Virtual engines encompass more than one physical
3960 	 * engine and so we cannot accurately tell in advance if one of those
3961 	 * engines is already saturated and so cannot afford to use a semaphore
3962 	 * and be pessimized in priority for doing so -- if we are the only
3963 	 * context using semaphores after all other clients have stopped, we
3964 	 * will be starved on the saturated system. Such a global switch for
3965 	 * semaphores is less than ideal, but alas is the current compromise.
3966 	 */
3967 	ve->base.saturated = ALL_ENGINES;
3968 
3969 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3970 
3971 	intel_engine_init_execlists(&ve->base);
3972 
3973 	ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3974 	if (!ve->base.sched_engine) {
3975 		err = -ENOMEM;
3976 		goto err_put;
3977 	}
3978 	ve->base.sched_engine->private_data = &ve->base;
3979 
3980 	ve->base.cops = &virtual_context_ops;
3981 	ve->base.request_alloc = execlists_request_alloc;
3982 
3983 	ve->base.sched_engine->schedule = i915_schedule;
3984 	ve->base.sched_engine->kick_backend = kick_execlists;
3985 	ve->base.submit_request = virtual_submit_request;
3986 
3987 	INIT_LIST_HEAD(virtual_queue(ve));
3988 	tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3989 
3990 	intel_context_init(&ve->context, &ve->base);
3991 
3992 	ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3993 	if (!ve->base.breadcrumbs) {
3994 		err = -ENOMEM;
3995 		goto err_put;
3996 	}
3997 
3998 	for (n = 0; n < count; n++) {
3999 		struct intel_engine_cs *sibling = siblings[n];
4000 
4001 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
4002 		if (sibling->mask & ve->base.mask) {
4003 			drm_dbg(&i915->drm,
4004 				"duplicate %s entry in load balancer\n",
4005 				sibling->name);
4006 			err = -EINVAL;
4007 			goto err_put;
4008 		}
4009 
4010 		/*
4011 		 * The virtual engine implementation is tightly coupled to
4012 		 * the execlists backend -- we push out request directly
4013 		 * into a tree inside each physical engine. We could support
4014 		 * layering if we handle cloning of the requests and
4015 		 * submitting a copy into each backend.
4016 		 */
4017 		if (sibling->sched_engine->tasklet.callback !=
4018 		    execlists_submission_tasklet) {
4019 			err = -ENODEV;
4020 			goto err_put;
4021 		}
4022 
4023 		GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4024 		RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4025 
4026 		ve->siblings[ve->num_siblings++] = sibling;
4027 		ve->base.mask |= sibling->mask;
4028 		ve->base.logical_mask |= sibling->logical_mask;
4029 
4030 		/*
4031 		 * All physical engines must be compatible for their emission
4032 		 * functions (as we build the instructions during request
4033 		 * construction and do not alter them before submission
4034 		 * on the physical engine). We use the engine class as a guide
4035 		 * here, although that could be refined.
4036 		 */
4037 		if (ve->base.class != OTHER_CLASS) {
4038 			if (ve->base.class != sibling->class) {
4039 				drm_dbg(&i915->drm,
4040 					"invalid mixing of engine class, sibling %d, already %d\n",
4041 					sibling->class, ve->base.class);
4042 				err = -EINVAL;
4043 				goto err_put;
4044 			}
4045 			continue;
4046 		}
4047 
4048 		ve->base.class = sibling->class;
4049 		ve->base.uabi_class = sibling->uabi_class;
4050 		snprintf(ve->base.name, sizeof(ve->base.name),
4051 			 "v%dx%d", ve->base.class, count);
4052 		ve->base.context_size = sibling->context_size;
4053 
4054 		ve->base.add_active_request = sibling->add_active_request;
4055 		ve->base.remove_active_request = sibling->remove_active_request;
4056 		ve->base.emit_bb_start = sibling->emit_bb_start;
4057 		ve->base.emit_flush = sibling->emit_flush;
4058 		ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4059 		ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4060 		ve->base.emit_fini_breadcrumb_dw =
4061 			sibling->emit_fini_breadcrumb_dw;
4062 
4063 		ve->base.flags = sibling->flags;
4064 	}
4065 
4066 	ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4067 
4068 	virtual_engine_initial_hint(ve);
4069 	return &ve->context;
4070 
4071 err_put:
4072 	intel_context_put(&ve->context);
4073 	return ERR_PTR(err);
4074 }
4075 
4076 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4077 				   struct drm_printer *m,
4078 				   void (*show_request)(struct drm_printer *m,
4079 							const struct i915_request *rq,
4080 							const char *prefix,
4081 							int indent),
4082 				   unsigned int max)
4083 {
4084 	const struct intel_engine_execlists *execlists = &engine->execlists;
4085 	struct i915_sched_engine *sched_engine = engine->sched_engine;
4086 	struct i915_request *rq, *last;
4087 	unsigned long flags;
4088 	unsigned int count;
4089 	struct rb_node *rb;
4090 
4091 	spin_lock_irqsave(&sched_engine->lock, flags);
4092 
4093 	last = NULL;
4094 	count = 0;
4095 	list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4096 		if (count++ < max - 1)
4097 			show_request(m, rq, "\t\t", 0);
4098 		else
4099 			last = rq;
4100 	}
4101 	if (last) {
4102 		if (count > max) {
4103 			drm_printf(m,
4104 				   "\t\t...skipping %d executing requests...\n",
4105 				   count - max);
4106 		}
4107 		show_request(m, last, "\t\t", 0);
4108 	}
4109 
4110 	if (sched_engine->queue_priority_hint != INT_MIN)
4111 		drm_printf(m, "\t\tQueue priority hint: %d\n",
4112 			   READ_ONCE(sched_engine->queue_priority_hint));
4113 
4114 	last = NULL;
4115 	count = 0;
4116 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4117 		struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4118 
4119 		priolist_for_each_request(rq, p) {
4120 			if (count++ < max - 1)
4121 				show_request(m, rq, "\t\t", 0);
4122 			else
4123 				last = rq;
4124 		}
4125 	}
4126 	if (last) {
4127 		if (count > max) {
4128 			drm_printf(m,
4129 				   "\t\t...skipping %d queued requests...\n",
4130 				   count - max);
4131 		}
4132 		show_request(m, last, "\t\t", 0);
4133 	}
4134 
4135 	last = NULL;
4136 	count = 0;
4137 	for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4138 		struct virtual_engine *ve =
4139 			rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4140 		struct i915_request *rq = READ_ONCE(ve->request);
4141 
4142 		if (rq) {
4143 			if (count++ < max - 1)
4144 				show_request(m, rq, "\t\t", 0);
4145 			else
4146 				last = rq;
4147 		}
4148 	}
4149 	if (last) {
4150 		if (count > max) {
4151 			drm_printf(m,
4152 				   "\t\t...skipping %d virtual requests...\n",
4153 				   count - max);
4154 		}
4155 		show_request(m, last, "\t\t", 0);
4156 	}
4157 
4158 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4159 }
4160 
4161 void intel_execlists_dump_active_requests(struct intel_engine_cs *engine,
4162 					  struct i915_request *hung_rq,
4163 					  struct drm_printer *m)
4164 {
4165 	unsigned long flags;
4166 
4167 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
4168 
4169 	intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m);
4170 
4171 	drm_printf(m, "\tOn hold?: %zu\n",
4172 		   list_count_nodes(&engine->sched_engine->hold));
4173 
4174 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
4175 }
4176 
4177 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4178 #include "selftest_execlists.c"
4179 #endif
4180