1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 
9 #include "intel_breadcrumbs.h"
10 #include "intel_context.h"
11 #include "intel_engine.h"
12 #include "intel_engine_heartbeat.h"
13 #include "intel_engine_pm.h"
14 #include "intel_gt.h"
15 #include "intel_gt_pm.h"
16 #include "intel_rc6.h"
17 #include "intel_ring.h"
18 #include "shmem_utils.h"
19 
20 static void dbg_poison_ce(struct intel_context *ce)
21 {
22 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
23 		return;
24 
25 	if (ce->state) {
26 		struct drm_i915_gem_object *obj = ce->state->obj;
27 		int type = i915_coherent_map_type(ce->engine->i915);
28 		void *map;
29 
30 		map = i915_gem_object_pin_map(obj, type);
31 		if (!IS_ERR(map)) {
32 			memset(map, CONTEXT_REDZONE, obj->base.size);
33 			i915_gem_object_flush_map(obj);
34 			i915_gem_object_unpin_map(obj);
35 		}
36 	}
37 }
38 
39 static int __engine_unpark(struct intel_wakeref *wf)
40 {
41 	struct intel_engine_cs *engine =
42 		container_of(wf, typeof(*engine), wakeref);
43 	struct intel_context *ce;
44 
45 	ENGINE_TRACE(engine, "\n");
46 
47 	intel_gt_pm_get(engine->gt);
48 
49 	/* Discard stale context state from across idling */
50 	ce = engine->kernel_context;
51 	if (ce) {
52 		GEM_BUG_ON(test_bit(CONTEXT_VALID_BIT, &ce->flags));
53 
54 		/* Flush all pending HW writes before we touch the context */
55 		while (unlikely(intel_context_inflight(ce)))
56 			intel_engine_flush_submission(engine);
57 
58 		/* First poison the image to verify we never fully trust it */
59 		dbg_poison_ce(ce);
60 
61 		/* Scrub the context image after our loss of control */
62 		ce->ops->reset(ce);
63 	}
64 
65 	if (engine->unpark)
66 		engine->unpark(engine);
67 
68 	intel_engine_unpark_heartbeat(engine);
69 	return 0;
70 }
71 
72 #if IS_ENABLED(CONFIG_LOCKDEP)
73 
74 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
75 {
76 	unsigned long flags;
77 
78 	local_irq_save(flags);
79 	mutex_acquire(&ce->timeline->mutex.dep_map, 2, 0, _THIS_IP_);
80 
81 	return flags;
82 }
83 
84 static inline void __timeline_mark_unlock(struct intel_context *ce,
85 					  unsigned long flags)
86 {
87 	mutex_release(&ce->timeline->mutex.dep_map, _THIS_IP_);
88 	local_irq_restore(flags);
89 }
90 
91 #else
92 
93 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
94 {
95 	return 0;
96 }
97 
98 static inline void __timeline_mark_unlock(struct intel_context *ce,
99 					  unsigned long flags)
100 {
101 }
102 
103 #endif /* !IS_ENABLED(CONFIG_LOCKDEP) */
104 
105 static void duration(struct dma_fence *fence, struct dma_fence_cb *cb)
106 {
107 	struct i915_request *rq = to_request(fence);
108 
109 	ewma__engine_latency_add(&rq->engine->latency,
110 				 ktime_us_delta(rq->fence.timestamp,
111 						rq->duration.emitted));
112 }
113 
114 static void
115 __queue_and_release_pm(struct i915_request *rq,
116 		       struct intel_timeline *tl,
117 		       struct intel_engine_cs *engine)
118 {
119 	struct intel_gt_timelines *timelines = &engine->gt->timelines;
120 
121 	ENGINE_TRACE(engine, "parking\n");
122 
123 	/*
124 	 * We have to serialise all potential retirement paths with our
125 	 * submission, as we don't want to underflow either the
126 	 * engine->wakeref.counter or our timeline->active_count.
127 	 *
128 	 * Equally, we cannot allow a new submission to start until
129 	 * after we finish queueing, nor could we allow that submitter
130 	 * to retire us before we are ready!
131 	 */
132 	spin_lock(&timelines->lock);
133 
134 	/* Let intel_gt_retire_requests() retire us (acquired under lock) */
135 	if (!atomic_fetch_inc(&tl->active_count))
136 		list_add_tail(&tl->link, &timelines->active_list);
137 
138 	/* Hand the request over to HW and so engine_retire() */
139 	__i915_request_queue(rq, NULL);
140 
141 	/* Let new submissions commence (and maybe retire this timeline) */
142 	__intel_wakeref_defer_park(&engine->wakeref);
143 
144 	spin_unlock(&timelines->lock);
145 }
146 
147 static bool switch_to_kernel_context(struct intel_engine_cs *engine)
148 {
149 	struct intel_context *ce = engine->kernel_context;
150 	struct i915_request *rq;
151 	unsigned long flags;
152 	bool result = true;
153 
154 	/* GPU is pointing to the void, as good as in the kernel context. */
155 	if (intel_gt_is_wedged(engine->gt))
156 		return true;
157 
158 	GEM_BUG_ON(!intel_context_is_barrier(ce));
159 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != engine->status_page.vma);
160 
161 	/* Already inside the kernel context, safe to power down. */
162 	if (engine->wakeref_serial == engine->serial)
163 		return true;
164 
165 	/*
166 	 * Note, we do this without taking the timeline->mutex. We cannot
167 	 * as we may be called while retiring the kernel context and so
168 	 * already underneath the timeline->mutex. Instead we rely on the
169 	 * exclusive property of the __engine_park that prevents anyone
170 	 * else from creating a request on this engine. This also requires
171 	 * that the ring is empty and we avoid any waits while constructing
172 	 * the context, as they assume protection by the timeline->mutex.
173 	 * This should hold true as we can only park the engine after
174 	 * retiring the last request, thus all rings should be empty and
175 	 * all timelines idle.
176 	 *
177 	 * For unlocking, there are 2 other parties and the GPU who have a
178 	 * stake here.
179 	 *
180 	 * A new gpu user will be waiting on the engine-pm to start their
181 	 * engine_unpark. New waiters are predicated on engine->wakeref.count
182 	 * and so intel_wakeref_defer_park() acts like a mutex_unlock of the
183 	 * engine->wakeref.
184 	 *
185 	 * The other party is intel_gt_retire_requests(), which is walking the
186 	 * list of active timelines looking for completions. Meanwhile as soon
187 	 * as we call __i915_request_queue(), the GPU may complete our request.
188 	 * Ergo, if we put ourselves on the timelines.active_list
189 	 * (se intel_timeline_enter()) before we increment the
190 	 * engine->wakeref.count, we may see the request completion and retire
191 	 * it causing an underflow of the engine->wakeref.
192 	 */
193 	flags = __timeline_mark_lock(ce);
194 	GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0);
195 
196 	rq = __i915_request_create(ce, GFP_NOWAIT);
197 	if (IS_ERR(rq))
198 		/* Context switch failed, hope for the best! Maybe reset? */
199 		goto out_unlock;
200 
201 	/* Check again on the next retirement. */
202 	engine->wakeref_serial = engine->serial + 1;
203 	i915_request_add_active_barriers(rq);
204 
205 	/* Install ourselves as a preemption barrier */
206 	rq->sched.attr.priority = I915_PRIORITY_BARRIER;
207 	if (likely(!__i915_request_commit(rq))) { /* engine should be idle! */
208 		/*
209 		 * Use an interrupt for precise measurement of duration,
210 		 * otherwise we rely on someone else retiring all the requests
211 		 * which may delay the signaling (i.e. we will likely wait
212 		 * until the background request retirement running every
213 		 * second or two).
214 		 */
215 		BUILD_BUG_ON(sizeof(rq->duration) > sizeof(rq->submitq));
216 		dma_fence_add_callback(&rq->fence, &rq->duration.cb, duration);
217 		rq->duration.emitted = ktime_get();
218 	}
219 
220 	/* Expose ourselves to the world */
221 	__queue_and_release_pm(rq, ce->timeline, engine);
222 
223 	result = false;
224 out_unlock:
225 	__timeline_mark_unlock(ce, flags);
226 	return result;
227 }
228 
229 static void call_idle_barriers(struct intel_engine_cs *engine)
230 {
231 	struct llist_node *node, *next;
232 
233 	llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) {
234 		struct dma_fence_cb *cb =
235 			container_of((struct list_head *)node,
236 				     typeof(*cb), node);
237 
238 		cb->func(ERR_PTR(-EAGAIN), cb);
239 	}
240 }
241 
242 static int __engine_park(struct intel_wakeref *wf)
243 {
244 	struct intel_engine_cs *engine =
245 		container_of(wf, typeof(*engine), wakeref);
246 
247 	engine->saturated = 0;
248 
249 	/*
250 	 * If one and only one request is completed between pm events,
251 	 * we know that we are inside the kernel context and it is
252 	 * safe to power down. (We are paranoid in case that runtime
253 	 * suspend causes corruption to the active context image, and
254 	 * want to avoid that impacting userspace.)
255 	 */
256 	if (!switch_to_kernel_context(engine))
257 		return -EBUSY;
258 
259 	ENGINE_TRACE(engine, "parked\n");
260 
261 	call_idle_barriers(engine); /* cleanup after wedging */
262 
263 	intel_engine_park_heartbeat(engine);
264 	intel_breadcrumbs_park(engine->breadcrumbs);
265 
266 	/* Must be reset upon idling, or we may miss the busy wakeup. */
267 	GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN);
268 
269 	if (engine->park)
270 		engine->park(engine);
271 
272 	engine->execlists.no_priolist = false;
273 
274 	/* While gt calls i915_vma_parked(), we have to break the lock cycle */
275 	intel_gt_pm_put_async(engine->gt);
276 	return 0;
277 }
278 
279 static const struct intel_wakeref_ops wf_ops = {
280 	.get = __engine_unpark,
281 	.put = __engine_park,
282 };
283 
284 void intel_engine_init__pm(struct intel_engine_cs *engine)
285 {
286 	struct intel_runtime_pm *rpm = engine->uncore->rpm;
287 
288 	intel_wakeref_init(&engine->wakeref, rpm, &wf_ops);
289 	intel_engine_init_heartbeat(engine);
290 }
291 
292 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
293 #include "selftest_engine_pm.c"
294 #endif
295