xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_engine_pm.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 
9 #include "intel_engine.h"
10 #include "intel_engine_heartbeat.h"
11 #include "intel_engine_pm.h"
12 #include "intel_engine_pool.h"
13 #include "intel_gt.h"
14 #include "intel_gt_pm.h"
15 #include "intel_rc6.h"
16 #include "intel_ring.h"
17 
18 static int __engine_unpark(struct intel_wakeref *wf)
19 {
20 	struct intel_engine_cs *engine =
21 		container_of(wf, typeof(*engine), wakeref);
22 	void *map;
23 
24 	GEM_TRACE("%s\n", engine->name);
25 
26 	intel_gt_pm_get(engine->gt);
27 
28 	/* Pin the default state for fast resets from atomic context. */
29 	map = NULL;
30 	if (engine->default_state)
31 		map = i915_gem_object_pin_map(engine->default_state,
32 					      I915_MAP_WB);
33 	if (!IS_ERR_OR_NULL(map))
34 		engine->pinned_default_state = map;
35 
36 	if (engine->unpark)
37 		engine->unpark(engine);
38 
39 	intel_engine_unpark_heartbeat(engine);
40 	return 0;
41 }
42 
43 #if IS_ENABLED(CONFIG_LOCKDEP)
44 
45 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
46 {
47 	unsigned long flags;
48 
49 	local_irq_save(flags);
50 	mutex_acquire(&ce->timeline->mutex.dep_map, 2, 0, _THIS_IP_);
51 
52 	return flags;
53 }
54 
55 static inline void __timeline_mark_unlock(struct intel_context *ce,
56 					  unsigned long flags)
57 {
58 	mutex_release(&ce->timeline->mutex.dep_map, _THIS_IP_);
59 	local_irq_restore(flags);
60 }
61 
62 #else
63 
64 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
65 {
66 	return 0;
67 }
68 
69 static inline void __timeline_mark_unlock(struct intel_context *ce,
70 					  unsigned long flags)
71 {
72 }
73 
74 #endif /* !IS_ENABLED(CONFIG_LOCKDEP) */
75 
76 static void
77 __queue_and_release_pm(struct i915_request *rq,
78 		       struct intel_timeline *tl,
79 		       struct intel_engine_cs *engine)
80 {
81 	struct intel_gt_timelines *timelines = &engine->gt->timelines;
82 
83 	GEM_TRACE("%s\n", engine->name);
84 
85 	/*
86 	 * We have to serialise all potential retirement paths with our
87 	 * submission, as we don't want to underflow either the
88 	 * engine->wakeref.counter or our timeline->active_count.
89 	 *
90 	 * Equally, we cannot allow a new submission to start until
91 	 * after we finish queueing, nor could we allow that submitter
92 	 * to retire us before we are ready!
93 	 */
94 	spin_lock(&timelines->lock);
95 
96 	/* Let intel_gt_retire_requests() retire us (acquired under lock) */
97 	if (!atomic_fetch_inc(&tl->active_count))
98 		list_add_tail(&tl->link, &timelines->active_list);
99 
100 	/* Hand the request over to HW and so engine_retire() */
101 	__i915_request_queue(rq, NULL);
102 
103 	/* Let new submissions commence (and maybe retire this timeline) */
104 	__intel_wakeref_defer_park(&engine->wakeref);
105 
106 	spin_unlock(&timelines->lock);
107 }
108 
109 static bool switch_to_kernel_context(struct intel_engine_cs *engine)
110 {
111 	struct intel_context *ce = engine->kernel_context;
112 	struct i915_request *rq;
113 	unsigned long flags;
114 	bool result = true;
115 
116 	/* Already inside the kernel context, safe to power down. */
117 	if (engine->wakeref_serial == engine->serial)
118 		return true;
119 
120 	/* GPU is pointing to the void, as good as in the kernel context. */
121 	if (intel_gt_is_wedged(engine->gt))
122 		return true;
123 
124 	/*
125 	 * Note, we do this without taking the timeline->mutex. We cannot
126 	 * as we may be called while retiring the kernel context and so
127 	 * already underneath the timeline->mutex. Instead we rely on the
128 	 * exclusive property of the __engine_park that prevents anyone
129 	 * else from creating a request on this engine. This also requires
130 	 * that the ring is empty and we avoid any waits while constructing
131 	 * the context, as they assume protection by the timeline->mutex.
132 	 * This should hold true as we can only park the engine after
133 	 * retiring the last request, thus all rings should be empty and
134 	 * all timelines idle.
135 	 *
136 	 * For unlocking, there are 2 other parties and the GPU who have a
137 	 * stake here.
138 	 *
139 	 * A new gpu user will be waiting on the engine-pm to start their
140 	 * engine_unpark. New waiters are predicated on engine->wakeref.count
141 	 * and so intel_wakeref_defer_park() acts like a mutex_unlock of the
142 	 * engine->wakeref.
143 	 *
144 	 * The other party is intel_gt_retire_requests(), which is walking the
145 	 * list of active timelines looking for completions. Meanwhile as soon
146 	 * as we call __i915_request_queue(), the GPU may complete our request.
147 	 * Ergo, if we put ourselves on the timelines.active_list
148 	 * (se intel_timeline_enter()) before we increment the
149 	 * engine->wakeref.count, we may see the request completion and retire
150 	 * it causing an undeflow of the engine->wakeref.
151 	 */
152 	flags = __timeline_mark_lock(ce);
153 	GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0);
154 
155 	rq = __i915_request_create(ce, GFP_NOWAIT);
156 	if (IS_ERR(rq))
157 		/* Context switch failed, hope for the best! Maybe reset? */
158 		goto out_unlock;
159 
160 	/* Check again on the next retirement. */
161 	engine->wakeref_serial = engine->serial + 1;
162 	i915_request_add_active_barriers(rq);
163 
164 	/* Install ourselves as a preemption barrier */
165 	rq->sched.attr.priority = I915_PRIORITY_BARRIER;
166 	__i915_request_commit(rq);
167 
168 	/* Expose ourselves to the world */
169 	__queue_and_release_pm(rq, ce->timeline, engine);
170 
171 	result = false;
172 out_unlock:
173 	__timeline_mark_unlock(ce, flags);
174 	return result;
175 }
176 
177 static void call_idle_barriers(struct intel_engine_cs *engine)
178 {
179 	struct llist_node *node, *next;
180 
181 	llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) {
182 		struct dma_fence_cb *cb =
183 			container_of((struct list_head *)node,
184 				     typeof(*cb), node);
185 
186 		cb->func(NULL, cb);
187 	}
188 }
189 
190 static int __engine_park(struct intel_wakeref *wf)
191 {
192 	struct intel_engine_cs *engine =
193 		container_of(wf, typeof(*engine), wakeref);
194 
195 	engine->saturated = 0;
196 
197 	/*
198 	 * If one and only one request is completed between pm events,
199 	 * we know that we are inside the kernel context and it is
200 	 * safe to power down. (We are paranoid in case that runtime
201 	 * suspend causes corruption to the active context image, and
202 	 * want to avoid that impacting userspace.)
203 	 */
204 	if (!switch_to_kernel_context(engine))
205 		return -EBUSY;
206 
207 	GEM_TRACE("%s\n", engine->name);
208 
209 	call_idle_barriers(engine); /* cleanup after wedging */
210 
211 	intel_engine_park_heartbeat(engine);
212 	intel_engine_disarm_breadcrumbs(engine);
213 	intel_engine_pool_park(&engine->pool);
214 
215 	/* Must be reset upon idling, or we may miss the busy wakeup. */
216 	GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN);
217 
218 	if (engine->park)
219 		engine->park(engine);
220 
221 	if (engine->pinned_default_state) {
222 		i915_gem_object_unpin_map(engine->default_state);
223 		engine->pinned_default_state = NULL;
224 	}
225 
226 	engine->execlists.no_priolist = false;
227 
228 	/* While gt calls i915_vma_parked(), we have to break the lock cycle */
229 	intel_gt_pm_put_async(engine->gt);
230 	return 0;
231 }
232 
233 static const struct intel_wakeref_ops wf_ops = {
234 	.get = __engine_unpark,
235 	.put = __engine_park,
236 };
237 
238 void intel_engine_init__pm(struct intel_engine_cs *engine)
239 {
240 	struct intel_runtime_pm *rpm = engine->uncore->rpm;
241 
242 	intel_wakeref_init(&engine->wakeref, rpm, &wf_ops);
243 	intel_engine_init_heartbeat(engine);
244 }
245 
246 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
247 #include "selftest_engine_pm.c"
248 #endif
249