1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 
8 #include "intel_breadcrumbs.h"
9 #include "intel_context.h"
10 #include "intel_engine.h"
11 #include "intel_engine_heartbeat.h"
12 #include "intel_engine_pm.h"
13 #include "intel_gt.h"
14 #include "intel_gt_pm.h"
15 #include "intel_rc6.h"
16 #include "intel_ring.h"
17 #include "shmem_utils.h"
18 #include "intel_gt_regs.h"
19 
20 static void intel_gsc_idle_msg_enable(struct intel_engine_cs *engine)
21 {
22 	struct drm_i915_private *i915 = engine->i915;
23 
24 	if (IS_METEORLAKE(i915) && engine->id == GSC0) {
25 		intel_uncore_write(engine->gt->uncore,
26 				   RC_PSMI_CTRL_GSCCS,
27 				   _MASKED_BIT_DISABLE(IDLE_MSG_DISABLE));
28 		/* hysteresis 0xA=5us as recommended in spec*/
29 		intel_uncore_write(engine->gt->uncore,
30 				   PWRCTX_MAXCNT_GSCCS,
31 				   0xA);
32 	}
33 }
34 
35 static void dbg_poison_ce(struct intel_context *ce)
36 {
37 	if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
38 		return;
39 
40 	if (ce->state) {
41 		struct drm_i915_gem_object *obj = ce->state->obj;
42 		int type = i915_coherent_map_type(ce->engine->i915, obj, true);
43 		void *map;
44 
45 		if (!i915_gem_object_trylock(obj, NULL))
46 			return;
47 
48 		map = i915_gem_object_pin_map(obj, type);
49 		if (!IS_ERR(map)) {
50 			memset(map, CONTEXT_REDZONE, obj->base.size);
51 			i915_gem_object_flush_map(obj);
52 			i915_gem_object_unpin_map(obj);
53 		}
54 		i915_gem_object_unlock(obj);
55 	}
56 }
57 
58 static int __engine_unpark(struct intel_wakeref *wf)
59 {
60 	struct intel_engine_cs *engine =
61 		container_of(wf, typeof(*engine), wakeref);
62 	struct intel_context *ce;
63 
64 	ENGINE_TRACE(engine, "\n");
65 
66 	intel_gt_pm_get(engine->gt);
67 
68 	/* Discard stale context state from across idling */
69 	ce = engine->kernel_context;
70 	if (ce) {
71 		GEM_BUG_ON(test_bit(CONTEXT_VALID_BIT, &ce->flags));
72 
73 		/* Flush all pending HW writes before we touch the context */
74 		while (unlikely(intel_context_inflight(ce)))
75 			intel_engine_flush_submission(engine);
76 
77 		/* First poison the image to verify we never fully trust it */
78 		dbg_poison_ce(ce);
79 
80 		/* Scrub the context image after our loss of control */
81 		ce->ops->reset(ce);
82 
83 		CE_TRACE(ce, "reset { seqno:%x, *hwsp:%x, ring:%x }\n",
84 			 ce->timeline->seqno,
85 			 READ_ONCE(*ce->timeline->hwsp_seqno),
86 			 ce->ring->emit);
87 		GEM_BUG_ON(ce->timeline->seqno !=
88 			   READ_ONCE(*ce->timeline->hwsp_seqno));
89 	}
90 
91 	if (engine->unpark)
92 		engine->unpark(engine);
93 
94 	intel_breadcrumbs_unpark(engine->breadcrumbs);
95 	intel_engine_unpark_heartbeat(engine);
96 	return 0;
97 }
98 
99 static void duration(struct dma_fence *fence, struct dma_fence_cb *cb)
100 {
101 	struct i915_request *rq = to_request(fence);
102 
103 	ewma__engine_latency_add(&rq->engine->latency,
104 				 ktime_us_delta(rq->fence.timestamp,
105 						rq->duration.emitted));
106 }
107 
108 static void
109 __queue_and_release_pm(struct i915_request *rq,
110 		       struct intel_timeline *tl,
111 		       struct intel_engine_cs *engine)
112 {
113 	struct intel_gt_timelines *timelines = &engine->gt->timelines;
114 
115 	ENGINE_TRACE(engine, "parking\n");
116 
117 	/*
118 	 * We have to serialise all potential retirement paths with our
119 	 * submission, as we don't want to underflow either the
120 	 * engine->wakeref.counter or our timeline->active_count.
121 	 *
122 	 * Equally, we cannot allow a new submission to start until
123 	 * after we finish queueing, nor could we allow that submitter
124 	 * to retire us before we are ready!
125 	 */
126 	spin_lock(&timelines->lock);
127 
128 	/* Let intel_gt_retire_requests() retire us (acquired under lock) */
129 	if (!atomic_fetch_inc(&tl->active_count))
130 		list_add_tail(&tl->link, &timelines->active_list);
131 
132 	/* Hand the request over to HW and so engine_retire() */
133 	__i915_request_queue_bh(rq);
134 
135 	/* Let new submissions commence (and maybe retire this timeline) */
136 	__intel_wakeref_defer_park(&engine->wakeref);
137 
138 	spin_unlock(&timelines->lock);
139 }
140 
141 static bool switch_to_kernel_context(struct intel_engine_cs *engine)
142 {
143 	struct intel_context *ce = engine->kernel_context;
144 	struct i915_request *rq;
145 	bool result = true;
146 
147 	/*
148 	 * This is execlist specific behaviour intended to ensure the GPU is
149 	 * idle by switching to a known 'safe' context. With GuC submission, the
150 	 * same idle guarantee is achieved by other means (disabling
151 	 * scheduling). Further, switching to a 'safe' context has no effect
152 	 * with GuC submission as the scheduler can just switch back again.
153 	 *
154 	 * FIXME: Move this backend scheduler specific behaviour into the
155 	 * scheduler backend.
156 	 */
157 	if (intel_engine_uses_guc(engine))
158 		return true;
159 
160 	/* GPU is pointing to the void, as good as in the kernel context. */
161 	if (intel_gt_is_wedged(engine->gt))
162 		return true;
163 
164 	GEM_BUG_ON(!intel_context_is_barrier(ce));
165 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != engine->status_page.vma);
166 
167 	/* Already inside the kernel context, safe to power down. */
168 	if (engine->wakeref_serial == engine->serial)
169 		return true;
170 
171 	/*
172 	 * Note, we do this without taking the timeline->mutex. We cannot
173 	 * as we may be called while retiring the kernel context and so
174 	 * already underneath the timeline->mutex. Instead we rely on the
175 	 * exclusive property of the __engine_park that prevents anyone
176 	 * else from creating a request on this engine. This also requires
177 	 * that the ring is empty and we avoid any waits while constructing
178 	 * the context, as they assume protection by the timeline->mutex.
179 	 * This should hold true as we can only park the engine after
180 	 * retiring the last request, thus all rings should be empty and
181 	 * all timelines idle.
182 	 *
183 	 * For unlocking, there are 2 other parties and the GPU who have a
184 	 * stake here.
185 	 *
186 	 * A new gpu user will be waiting on the engine-pm to start their
187 	 * engine_unpark. New waiters are predicated on engine->wakeref.count
188 	 * and so intel_wakeref_defer_park() acts like a mutex_unlock of the
189 	 * engine->wakeref.
190 	 *
191 	 * The other party is intel_gt_retire_requests(), which is walking the
192 	 * list of active timelines looking for completions. Meanwhile as soon
193 	 * as we call __i915_request_queue(), the GPU may complete our request.
194 	 * Ergo, if we put ourselves on the timelines.active_list
195 	 * (se intel_timeline_enter()) before we increment the
196 	 * engine->wakeref.count, we may see the request completion and retire
197 	 * it causing an underflow of the engine->wakeref.
198 	 */
199 	set_bit(CONTEXT_IS_PARKING, &ce->flags);
200 	GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0);
201 
202 	rq = __i915_request_create(ce, GFP_NOWAIT);
203 	if (IS_ERR(rq))
204 		/* Context switch failed, hope for the best! Maybe reset? */
205 		goto out_unlock;
206 
207 	/* Check again on the next retirement. */
208 	engine->wakeref_serial = engine->serial + 1;
209 	i915_request_add_active_barriers(rq);
210 
211 	/* Install ourselves as a preemption barrier */
212 	rq->sched.attr.priority = I915_PRIORITY_BARRIER;
213 	if (likely(!__i915_request_commit(rq))) { /* engine should be idle! */
214 		/*
215 		 * Use an interrupt for precise measurement of duration,
216 		 * otherwise we rely on someone else retiring all the requests
217 		 * which may delay the signaling (i.e. we will likely wait
218 		 * until the background request retirement running every
219 		 * second or two).
220 		 */
221 		BUILD_BUG_ON(sizeof(rq->duration) > sizeof(rq->submitq));
222 		dma_fence_add_callback(&rq->fence, &rq->duration.cb, duration);
223 		rq->duration.emitted = ktime_get();
224 	}
225 
226 	/* Expose ourselves to the world */
227 	__queue_and_release_pm(rq, ce->timeline, engine);
228 
229 	result = false;
230 out_unlock:
231 	clear_bit(CONTEXT_IS_PARKING, &ce->flags);
232 	return result;
233 }
234 
235 static void call_idle_barriers(struct intel_engine_cs *engine)
236 {
237 	struct llist_node *node, *next;
238 
239 	llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) {
240 		struct dma_fence_cb *cb =
241 			container_of((struct list_head *)node,
242 				     typeof(*cb), node);
243 
244 		cb->func(ERR_PTR(-EAGAIN), cb);
245 	}
246 }
247 
248 static int __engine_park(struct intel_wakeref *wf)
249 {
250 	struct intel_engine_cs *engine =
251 		container_of(wf, typeof(*engine), wakeref);
252 
253 	engine->saturated = 0;
254 
255 	/*
256 	 * If one and only one request is completed between pm events,
257 	 * we know that we are inside the kernel context and it is
258 	 * safe to power down. (We are paranoid in case that runtime
259 	 * suspend causes corruption to the active context image, and
260 	 * want to avoid that impacting userspace.)
261 	 */
262 	if (!switch_to_kernel_context(engine))
263 		return -EBUSY;
264 
265 	ENGINE_TRACE(engine, "parked\n");
266 
267 	call_idle_barriers(engine); /* cleanup after wedging */
268 
269 	intel_engine_park_heartbeat(engine);
270 	intel_breadcrumbs_park(engine->breadcrumbs);
271 
272 	/* Must be reset upon idling, or we may miss the busy wakeup. */
273 	GEM_BUG_ON(engine->sched_engine->queue_priority_hint != INT_MIN);
274 
275 	if (engine->park)
276 		engine->park(engine);
277 
278 	/* While gt calls i915_vma_parked(), we have to break the lock cycle */
279 	intel_gt_pm_put_async(engine->gt);
280 	return 0;
281 }
282 
283 static const struct intel_wakeref_ops wf_ops = {
284 	.get = __engine_unpark,
285 	.put = __engine_park,
286 };
287 
288 void intel_engine_init__pm(struct intel_engine_cs *engine)
289 {
290 	struct intel_runtime_pm *rpm = engine->uncore->rpm;
291 
292 	intel_wakeref_init(&engine->wakeref, rpm, &wf_ops);
293 	intel_engine_init_heartbeat(engine);
294 
295 	intel_gsc_idle_msg_enable(engine);
296 }
297 
298 /**
299  * intel_engine_reset_pinned_contexts - Reset the pinned contexts of
300  * an engine.
301  * @engine: The engine whose pinned contexts we want to reset.
302  *
303  * Typically the pinned context LMEM images lose or get their content
304  * corrupted on suspend. This function resets their images.
305  */
306 void intel_engine_reset_pinned_contexts(struct intel_engine_cs *engine)
307 {
308 	struct intel_context *ce;
309 
310 	list_for_each_entry(ce, &engine->pinned_contexts_list,
311 			    pinned_contexts_link) {
312 		/* kernel context gets reset at __engine_unpark() */
313 		if (ce == engine->kernel_context)
314 			continue;
315 
316 		dbg_poison_ce(ce);
317 		ce->ops->reset(ce);
318 	}
319 }
320 
321 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
322 #include "selftest_engine_pm.c"
323 #endif
324