1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 
9 #include "intel_context.h"
10 #include "intel_engine.h"
11 #include "intel_engine_heartbeat.h"
12 #include "intel_engine_pm.h"
13 #include "intel_engine_pool.h"
14 #include "intel_gt.h"
15 #include "intel_gt_pm.h"
16 #include "intel_rc6.h"
17 #include "intel_ring.h"
18 
19 static int __engine_unpark(struct intel_wakeref *wf)
20 {
21 	struct intel_engine_cs *engine =
22 		container_of(wf, typeof(*engine), wakeref);
23 	struct intel_context *ce;
24 	void *map;
25 
26 	ENGINE_TRACE(engine, "\n");
27 
28 	intel_gt_pm_get(engine->gt);
29 
30 	/* Pin the default state for fast resets from atomic context. */
31 	map = NULL;
32 	if (engine->default_state)
33 		map = i915_gem_object_pin_map(engine->default_state,
34 					      I915_MAP_WB);
35 	if (!IS_ERR_OR_NULL(map))
36 		engine->pinned_default_state = map;
37 
38 	/* Discard stale context state from across idling */
39 	ce = engine->kernel_context;
40 	if (ce) {
41 		GEM_BUG_ON(test_bit(CONTEXT_VALID_BIT, &ce->flags));
42 
43 		/* First poison the image to verify we never fully trust it */
44 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && ce->state) {
45 			struct drm_i915_gem_object *obj = ce->state->obj;
46 			int type = i915_coherent_map_type(engine->i915);
47 
48 			map = i915_gem_object_pin_map(obj, type);
49 			if (!IS_ERR(map)) {
50 				memset(map, CONTEXT_REDZONE, obj->base.size);
51 				i915_gem_object_flush_map(obj);
52 				i915_gem_object_unpin_map(obj);
53 			}
54 		}
55 
56 		ce->ops->reset(ce);
57 	}
58 
59 	if (engine->unpark)
60 		engine->unpark(engine);
61 
62 	intel_engine_unpark_heartbeat(engine);
63 	return 0;
64 }
65 
66 #if IS_ENABLED(CONFIG_LOCKDEP)
67 
68 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
69 {
70 	unsigned long flags;
71 
72 	local_irq_save(flags);
73 	mutex_acquire(&ce->timeline->mutex.dep_map, 2, 0, _THIS_IP_);
74 
75 	return flags;
76 }
77 
78 static inline void __timeline_mark_unlock(struct intel_context *ce,
79 					  unsigned long flags)
80 {
81 	mutex_release(&ce->timeline->mutex.dep_map, _THIS_IP_);
82 	local_irq_restore(flags);
83 }
84 
85 #else
86 
87 static inline unsigned long __timeline_mark_lock(struct intel_context *ce)
88 {
89 	return 0;
90 }
91 
92 static inline void __timeline_mark_unlock(struct intel_context *ce,
93 					  unsigned long flags)
94 {
95 }
96 
97 #endif /* !IS_ENABLED(CONFIG_LOCKDEP) */
98 
99 static void duration(struct dma_fence *fence, struct dma_fence_cb *cb)
100 {
101 	struct i915_request *rq = to_request(fence);
102 
103 	ewma__engine_latency_add(&rq->engine->latency,
104 				 ktime_us_delta(rq->fence.timestamp,
105 						rq->duration.emitted));
106 }
107 
108 static void
109 __queue_and_release_pm(struct i915_request *rq,
110 		       struct intel_timeline *tl,
111 		       struct intel_engine_cs *engine)
112 {
113 	struct intel_gt_timelines *timelines = &engine->gt->timelines;
114 
115 	ENGINE_TRACE(engine, "parking\n");
116 
117 	/*
118 	 * We have to serialise all potential retirement paths with our
119 	 * submission, as we don't want to underflow either the
120 	 * engine->wakeref.counter or our timeline->active_count.
121 	 *
122 	 * Equally, we cannot allow a new submission to start until
123 	 * after we finish queueing, nor could we allow that submitter
124 	 * to retire us before we are ready!
125 	 */
126 	spin_lock(&timelines->lock);
127 
128 	/* Let intel_gt_retire_requests() retire us (acquired under lock) */
129 	if (!atomic_fetch_inc(&tl->active_count))
130 		list_add_tail(&tl->link, &timelines->active_list);
131 
132 	/* Hand the request over to HW and so engine_retire() */
133 	__i915_request_queue(rq, NULL);
134 
135 	/* Let new submissions commence (and maybe retire this timeline) */
136 	__intel_wakeref_defer_park(&engine->wakeref);
137 
138 	spin_unlock(&timelines->lock);
139 }
140 
141 static bool switch_to_kernel_context(struct intel_engine_cs *engine)
142 {
143 	struct intel_context *ce = engine->kernel_context;
144 	struct i915_request *rq;
145 	unsigned long flags;
146 	bool result = true;
147 
148 	/* GPU is pointing to the void, as good as in the kernel context. */
149 	if (intel_gt_is_wedged(engine->gt))
150 		return true;
151 
152 	GEM_BUG_ON(!intel_context_is_barrier(ce));
153 
154 	/* Already inside the kernel context, safe to power down. */
155 	if (engine->wakeref_serial == engine->serial)
156 		return true;
157 
158 	/*
159 	 * Note, we do this without taking the timeline->mutex. We cannot
160 	 * as we may be called while retiring the kernel context and so
161 	 * already underneath the timeline->mutex. Instead we rely on the
162 	 * exclusive property of the __engine_park that prevents anyone
163 	 * else from creating a request on this engine. This also requires
164 	 * that the ring is empty and we avoid any waits while constructing
165 	 * the context, as they assume protection by the timeline->mutex.
166 	 * This should hold true as we can only park the engine after
167 	 * retiring the last request, thus all rings should be empty and
168 	 * all timelines idle.
169 	 *
170 	 * For unlocking, there are 2 other parties and the GPU who have a
171 	 * stake here.
172 	 *
173 	 * A new gpu user will be waiting on the engine-pm to start their
174 	 * engine_unpark. New waiters are predicated on engine->wakeref.count
175 	 * and so intel_wakeref_defer_park() acts like a mutex_unlock of the
176 	 * engine->wakeref.
177 	 *
178 	 * The other party is intel_gt_retire_requests(), which is walking the
179 	 * list of active timelines looking for completions. Meanwhile as soon
180 	 * as we call __i915_request_queue(), the GPU may complete our request.
181 	 * Ergo, if we put ourselves on the timelines.active_list
182 	 * (se intel_timeline_enter()) before we increment the
183 	 * engine->wakeref.count, we may see the request completion and retire
184 	 * it causing an undeflow of the engine->wakeref.
185 	 */
186 	flags = __timeline_mark_lock(ce);
187 	GEM_BUG_ON(atomic_read(&ce->timeline->active_count) < 0);
188 
189 	rq = __i915_request_create(ce, GFP_NOWAIT);
190 	if (IS_ERR(rq))
191 		/* Context switch failed, hope for the best! Maybe reset? */
192 		goto out_unlock;
193 
194 	/* Check again on the next retirement. */
195 	engine->wakeref_serial = engine->serial + 1;
196 	i915_request_add_active_barriers(rq);
197 
198 	/* Install ourselves as a preemption barrier */
199 	rq->sched.attr.priority = I915_PRIORITY_BARRIER;
200 	if (likely(!__i915_request_commit(rq))) { /* engine should be idle! */
201 		/*
202 		 * Use an interrupt for precise measurement of duration,
203 		 * otherwise we rely on someone else retiring all the requests
204 		 * which may delay the signaling (i.e. we will likely wait
205 		 * until the background request retirement running every
206 		 * second or two).
207 		 */
208 		BUILD_BUG_ON(sizeof(rq->duration) > sizeof(rq->submitq));
209 		dma_fence_add_callback(&rq->fence, &rq->duration.cb, duration);
210 		rq->duration.emitted = ktime_get();
211 	}
212 
213 	/* Expose ourselves to the world */
214 	__queue_and_release_pm(rq, ce->timeline, engine);
215 
216 	result = false;
217 out_unlock:
218 	__timeline_mark_unlock(ce, flags);
219 	return result;
220 }
221 
222 static void call_idle_barriers(struct intel_engine_cs *engine)
223 {
224 	struct llist_node *node, *next;
225 
226 	llist_for_each_safe(node, next, llist_del_all(&engine->barrier_tasks)) {
227 		struct dma_fence_cb *cb =
228 			container_of((struct list_head *)node,
229 				     typeof(*cb), node);
230 
231 		cb->func(ERR_PTR(-EAGAIN), cb);
232 	}
233 }
234 
235 static int __engine_park(struct intel_wakeref *wf)
236 {
237 	struct intel_engine_cs *engine =
238 		container_of(wf, typeof(*engine), wakeref);
239 
240 	engine->saturated = 0;
241 
242 	/*
243 	 * If one and only one request is completed between pm events,
244 	 * we know that we are inside the kernel context and it is
245 	 * safe to power down. (We are paranoid in case that runtime
246 	 * suspend causes corruption to the active context image, and
247 	 * want to avoid that impacting userspace.)
248 	 */
249 	if (!switch_to_kernel_context(engine))
250 		return -EBUSY;
251 
252 	ENGINE_TRACE(engine, "parked\n");
253 
254 	call_idle_barriers(engine); /* cleanup after wedging */
255 
256 	intel_engine_park_heartbeat(engine);
257 	intel_engine_disarm_breadcrumbs(engine);
258 	intel_engine_pool_park(&engine->pool);
259 
260 	/* Must be reset upon idling, or we may miss the busy wakeup. */
261 	GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN);
262 
263 	if (engine->park)
264 		engine->park(engine);
265 
266 	if (engine->pinned_default_state) {
267 		i915_gem_object_unpin_map(engine->default_state);
268 		engine->pinned_default_state = NULL;
269 	}
270 
271 	engine->execlists.no_priolist = false;
272 
273 	/* While gt calls i915_vma_parked(), we have to break the lock cycle */
274 	intel_gt_pm_put_async(engine->gt);
275 	return 0;
276 }
277 
278 static const struct intel_wakeref_ops wf_ops = {
279 	.get = __engine_unpark,
280 	.put = __engine_park,
281 };
282 
283 void intel_engine_init__pm(struct intel_engine_cs *engine)
284 {
285 	struct intel_runtime_pm *rpm = engine->uncore->rpm;
286 
287 	intel_wakeref_init(&engine->wakeref, rpm, &wf_ops);
288 	intel_engine_init_heartbeat(engine);
289 }
290 
291 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
292 #include "selftest_engine_pm.c"
293 #endif
294