xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c (revision c0d3b83100c896e1b0909023df58a0ebdd428d61)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_regs.h"
13 
14 #include "i915_cmd_parser.h"
15 #include "i915_drv.h"
16 #include "i915_irq.h"
17 #include "i915_reg.h"
18 #include "intel_breadcrumbs.h"
19 #include "intel_context.h"
20 #include "intel_engine.h"
21 #include "intel_engine_pm.h"
22 #include "intel_engine_regs.h"
23 #include "intel_engine_user.h"
24 #include "intel_execlists_submission.h"
25 #include "intel_gt.h"
26 #include "intel_gt_mcr.h"
27 #include "intel_gt_pm.h"
28 #include "intel_gt_requests.h"
29 #include "intel_lrc.h"
30 #include "intel_lrc_reg.h"
31 #include "intel_reset.h"
32 #include "intel_ring.h"
33 #include "uc/intel_guc_submission.h"
34 
35 /* Haswell does have the CXT_SIZE register however it does not appear to be
36  * valid. Now, docs explain in dwords what is in the context object. The full
37  * size is 70720 bytes, however, the power context and execlist context will
38  * never be saved (power context is stored elsewhere, and execlists don't work
39  * on HSW) - so the final size, including the extra state required for the
40  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
41  */
42 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
43 
44 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
45 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
46 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
47 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
48 
49 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
50 
51 #define MAX_MMIO_BASES 3
52 struct engine_info {
53 	u8 class;
54 	u8 instance;
55 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
56 	struct engine_mmio_base {
57 		u32 graphics_ver : 8;
58 		u32 base : 24;
59 	} mmio_bases[MAX_MMIO_BASES];
60 };
61 
62 static const struct engine_info intel_engines[] = {
63 	[RCS0] = {
64 		.class = RENDER_CLASS,
65 		.instance = 0,
66 		.mmio_bases = {
67 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
68 		},
69 	},
70 	[BCS0] = {
71 		.class = COPY_ENGINE_CLASS,
72 		.instance = 0,
73 		.mmio_bases = {
74 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
75 		},
76 	},
77 	[BCS1] = {
78 		.class = COPY_ENGINE_CLASS,
79 		.instance = 1,
80 		.mmio_bases = {
81 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
82 		},
83 	},
84 	[BCS2] = {
85 		.class = COPY_ENGINE_CLASS,
86 		.instance = 2,
87 		.mmio_bases = {
88 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
89 		},
90 	},
91 	[BCS3] = {
92 		.class = COPY_ENGINE_CLASS,
93 		.instance = 3,
94 		.mmio_bases = {
95 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
96 		},
97 	},
98 	[BCS4] = {
99 		.class = COPY_ENGINE_CLASS,
100 		.instance = 4,
101 		.mmio_bases = {
102 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
103 		},
104 	},
105 	[BCS5] = {
106 		.class = COPY_ENGINE_CLASS,
107 		.instance = 5,
108 		.mmio_bases = {
109 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
110 		},
111 	},
112 	[BCS6] = {
113 		.class = COPY_ENGINE_CLASS,
114 		.instance = 6,
115 		.mmio_bases = {
116 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
117 		},
118 	},
119 	[BCS7] = {
120 		.class = COPY_ENGINE_CLASS,
121 		.instance = 7,
122 		.mmio_bases = {
123 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
124 		},
125 	},
126 	[BCS8] = {
127 		.class = COPY_ENGINE_CLASS,
128 		.instance = 8,
129 		.mmio_bases = {
130 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
131 		},
132 	},
133 	[VCS0] = {
134 		.class = VIDEO_DECODE_CLASS,
135 		.instance = 0,
136 		.mmio_bases = {
137 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
138 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
139 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
140 		},
141 	},
142 	[VCS1] = {
143 		.class = VIDEO_DECODE_CLASS,
144 		.instance = 1,
145 		.mmio_bases = {
146 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
147 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
148 		},
149 	},
150 	[VCS2] = {
151 		.class = VIDEO_DECODE_CLASS,
152 		.instance = 2,
153 		.mmio_bases = {
154 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
155 		},
156 	},
157 	[VCS3] = {
158 		.class = VIDEO_DECODE_CLASS,
159 		.instance = 3,
160 		.mmio_bases = {
161 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
162 		},
163 	},
164 	[VCS4] = {
165 		.class = VIDEO_DECODE_CLASS,
166 		.instance = 4,
167 		.mmio_bases = {
168 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
169 		},
170 	},
171 	[VCS5] = {
172 		.class = VIDEO_DECODE_CLASS,
173 		.instance = 5,
174 		.mmio_bases = {
175 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
176 		},
177 	},
178 	[VCS6] = {
179 		.class = VIDEO_DECODE_CLASS,
180 		.instance = 6,
181 		.mmio_bases = {
182 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
183 		},
184 	},
185 	[VCS7] = {
186 		.class = VIDEO_DECODE_CLASS,
187 		.instance = 7,
188 		.mmio_bases = {
189 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
190 		},
191 	},
192 	[VECS0] = {
193 		.class = VIDEO_ENHANCEMENT_CLASS,
194 		.instance = 0,
195 		.mmio_bases = {
196 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
197 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
198 		},
199 	},
200 	[VECS1] = {
201 		.class = VIDEO_ENHANCEMENT_CLASS,
202 		.instance = 1,
203 		.mmio_bases = {
204 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
205 		},
206 	},
207 	[VECS2] = {
208 		.class = VIDEO_ENHANCEMENT_CLASS,
209 		.instance = 2,
210 		.mmio_bases = {
211 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
212 		},
213 	},
214 	[VECS3] = {
215 		.class = VIDEO_ENHANCEMENT_CLASS,
216 		.instance = 3,
217 		.mmio_bases = {
218 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
219 		},
220 	},
221 	[CCS0] = {
222 		.class = COMPUTE_CLASS,
223 		.instance = 0,
224 		.mmio_bases = {
225 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
226 		}
227 	},
228 	[CCS1] = {
229 		.class = COMPUTE_CLASS,
230 		.instance = 1,
231 		.mmio_bases = {
232 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
233 		}
234 	},
235 	[CCS2] = {
236 		.class = COMPUTE_CLASS,
237 		.instance = 2,
238 		.mmio_bases = {
239 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
240 		}
241 	},
242 	[CCS3] = {
243 		.class = COMPUTE_CLASS,
244 		.instance = 3,
245 		.mmio_bases = {
246 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
247 		}
248 	},
249 	[GSC0] = {
250 		.class = OTHER_CLASS,
251 		.instance = OTHER_GSC_INSTANCE,
252 		.mmio_bases = {
253 			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
254 		}
255 	},
256 };
257 
258 /**
259  * intel_engine_context_size() - return the size of the context for an engine
260  * @gt: the gt
261  * @class: engine class
262  *
263  * Each engine class may require a different amount of space for a context
264  * image.
265  *
266  * Return: size (in bytes) of an engine class specific context image
267  *
268  * Note: this size includes the HWSP, which is part of the context image
269  * in LRC mode, but does not include the "shared data page" used with
270  * GuC submission. The caller should account for this if using the GuC.
271  */
272 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
273 {
274 	struct intel_uncore *uncore = gt->uncore;
275 	u32 cxt_size;
276 
277 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
278 
279 	switch (class) {
280 	case COMPUTE_CLASS:
281 		fallthrough;
282 	case RENDER_CLASS:
283 		switch (GRAPHICS_VER(gt->i915)) {
284 		default:
285 			MISSING_CASE(GRAPHICS_VER(gt->i915));
286 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
287 		case 12:
288 		case 11:
289 			return GEN11_LR_CONTEXT_RENDER_SIZE;
290 		case 9:
291 			return GEN9_LR_CONTEXT_RENDER_SIZE;
292 		case 8:
293 			return GEN8_LR_CONTEXT_RENDER_SIZE;
294 		case 7:
295 			if (IS_HASWELL(gt->i915))
296 				return HSW_CXT_TOTAL_SIZE;
297 
298 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
299 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
300 					PAGE_SIZE);
301 		case 6:
302 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
303 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
304 					PAGE_SIZE);
305 		case 5:
306 		case 4:
307 			/*
308 			 * There is a discrepancy here between the size reported
309 			 * by the register and the size of the context layout
310 			 * in the docs. Both are described as authorative!
311 			 *
312 			 * The discrepancy is on the order of a few cachelines,
313 			 * but the total is under one page (4k), which is our
314 			 * minimum allocation anyway so it should all come
315 			 * out in the wash.
316 			 */
317 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
318 			drm_dbg(&gt->i915->drm,
319 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
320 				GRAPHICS_VER(gt->i915), cxt_size * 64,
321 				cxt_size - 1);
322 			return round_up(cxt_size * 64, PAGE_SIZE);
323 		case 3:
324 		case 2:
325 		/* For the special day when i810 gets merged. */
326 		case 1:
327 			return 0;
328 		}
329 		break;
330 	default:
331 		MISSING_CASE(class);
332 		fallthrough;
333 	case VIDEO_DECODE_CLASS:
334 	case VIDEO_ENHANCEMENT_CLASS:
335 	case COPY_ENGINE_CLASS:
336 	case OTHER_CLASS:
337 		if (GRAPHICS_VER(gt->i915) < 8)
338 			return 0;
339 		return GEN8_LR_CONTEXT_OTHER_SIZE;
340 	}
341 }
342 
343 static u32 __engine_mmio_base(struct drm_i915_private *i915,
344 			      const struct engine_mmio_base *bases)
345 {
346 	int i;
347 
348 	for (i = 0; i < MAX_MMIO_BASES; i++)
349 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
350 			break;
351 
352 	GEM_BUG_ON(i == MAX_MMIO_BASES);
353 	GEM_BUG_ON(!bases[i].base);
354 
355 	return bases[i].base;
356 }
357 
358 static void __sprint_engine_name(struct intel_engine_cs *engine)
359 {
360 	/*
361 	 * Before we know what the uABI name for this engine will be,
362 	 * we still would like to keep track of this engine in the debug logs.
363 	 * We throw in a ' here as a reminder that this isn't its final name.
364 	 */
365 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
366 			     intel_engine_class_repr(engine->class),
367 			     engine->instance) >= sizeof(engine->name));
368 }
369 
370 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
371 {
372 	/*
373 	 * Though they added more rings on g4x/ilk, they did not add
374 	 * per-engine HWSTAM until gen6.
375 	 */
376 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
377 		return;
378 
379 	if (GRAPHICS_VER(engine->i915) >= 3)
380 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
381 	else
382 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
383 }
384 
385 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
386 {
387 	/* Mask off all writes into the unknown HWSP */
388 	intel_engine_set_hwsp_writemask(engine, ~0u);
389 }
390 
391 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
392 {
393 	GEM_DEBUG_WARN_ON(iir);
394 }
395 
396 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
397 {
398 	u32 reset_domain;
399 
400 	if (ver >= 11) {
401 		static const u32 engine_reset_domains[] = {
402 			[RCS0]  = GEN11_GRDOM_RENDER,
403 			[BCS0]  = GEN11_GRDOM_BLT,
404 			[BCS1]  = XEHPC_GRDOM_BLT1,
405 			[BCS2]  = XEHPC_GRDOM_BLT2,
406 			[BCS3]  = XEHPC_GRDOM_BLT3,
407 			[BCS4]  = XEHPC_GRDOM_BLT4,
408 			[BCS5]  = XEHPC_GRDOM_BLT5,
409 			[BCS6]  = XEHPC_GRDOM_BLT6,
410 			[BCS7]  = XEHPC_GRDOM_BLT7,
411 			[BCS8]  = XEHPC_GRDOM_BLT8,
412 			[VCS0]  = GEN11_GRDOM_MEDIA,
413 			[VCS1]  = GEN11_GRDOM_MEDIA2,
414 			[VCS2]  = GEN11_GRDOM_MEDIA3,
415 			[VCS3]  = GEN11_GRDOM_MEDIA4,
416 			[VCS4]  = GEN11_GRDOM_MEDIA5,
417 			[VCS5]  = GEN11_GRDOM_MEDIA6,
418 			[VCS6]  = GEN11_GRDOM_MEDIA7,
419 			[VCS7]  = GEN11_GRDOM_MEDIA8,
420 			[VECS0] = GEN11_GRDOM_VECS,
421 			[VECS1] = GEN11_GRDOM_VECS2,
422 			[VECS2] = GEN11_GRDOM_VECS3,
423 			[VECS3] = GEN11_GRDOM_VECS4,
424 			[CCS0]  = GEN11_GRDOM_RENDER,
425 			[CCS1]  = GEN11_GRDOM_RENDER,
426 			[CCS2]  = GEN11_GRDOM_RENDER,
427 			[CCS3]  = GEN11_GRDOM_RENDER,
428 			[GSC0]  = GEN12_GRDOM_GSC,
429 		};
430 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
431 			   !engine_reset_domains[id]);
432 		reset_domain = engine_reset_domains[id];
433 	} else {
434 		static const u32 engine_reset_domains[] = {
435 			[RCS0]  = GEN6_GRDOM_RENDER,
436 			[BCS0]  = GEN6_GRDOM_BLT,
437 			[VCS0]  = GEN6_GRDOM_MEDIA,
438 			[VCS1]  = GEN8_GRDOM_MEDIA2,
439 			[VECS0] = GEN6_GRDOM_VECS,
440 		};
441 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
442 			   !engine_reset_domains[id]);
443 		reset_domain = engine_reset_domains[id];
444 	}
445 
446 	return reset_domain;
447 }
448 
449 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
450 			      u8 logical_instance)
451 {
452 	const struct engine_info *info = &intel_engines[id];
453 	struct drm_i915_private *i915 = gt->i915;
454 	struct intel_engine_cs *engine;
455 	u8 guc_class;
456 
457 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
458 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
459 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
460 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
461 
462 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
463 		return -EINVAL;
464 
465 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
466 		return -EINVAL;
467 
468 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
469 		return -EINVAL;
470 
471 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
472 		return -EINVAL;
473 
474 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
475 	if (!engine)
476 		return -ENOMEM;
477 
478 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
479 
480 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
481 	engine->id = id;
482 	engine->legacy_idx = INVALID_ENGINE;
483 	engine->mask = BIT(id);
484 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
485 						id);
486 	engine->i915 = i915;
487 	engine->gt = gt;
488 	engine->uncore = gt->uncore;
489 	guc_class = engine_class_to_guc_class(info->class);
490 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
491 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
492 
493 	engine->irq_handler = nop_irq_handler;
494 
495 	engine->class = info->class;
496 	engine->instance = info->instance;
497 	engine->logical_mask = BIT(logical_instance);
498 	__sprint_engine_name(engine);
499 
500 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
501 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
502 	     engine->class == RENDER_CLASS)
503 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
504 
505 	/* features common between engines sharing EUs */
506 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
507 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
508 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
509 	}
510 
511 	engine->props.heartbeat_interval_ms =
512 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
513 	engine->props.max_busywait_duration_ns =
514 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
515 	engine->props.preempt_timeout_ms =
516 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
517 	engine->props.stop_timeout_ms =
518 		CONFIG_DRM_I915_STOP_TIMEOUT;
519 	engine->props.timeslice_duration_ms =
520 		CONFIG_DRM_I915_TIMESLICE_DURATION;
521 
522 	/*
523 	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
524 	 * some compute workloads run quite long threads. That means they get
525 	 * reset due to not pre-empting in a timely manner. So, bump the
526 	 * pre-emption timeout value to be much higher for compute engines.
527 	 */
528 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
529 		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
530 
531 	/* Cap properties according to any system limits */
532 #define CLAMP_PROP(field) \
533 	do { \
534 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
535 		if (clamp != engine->props.field) { \
536 			drm_notice(&engine->i915->drm, \
537 				   "Warning, clamping %s to %lld to prevent overflow\n", \
538 				   #field, clamp); \
539 			engine->props.field = clamp; \
540 		} \
541 	} while (0)
542 
543 	CLAMP_PROP(heartbeat_interval_ms);
544 	CLAMP_PROP(max_busywait_duration_ns);
545 	CLAMP_PROP(preempt_timeout_ms);
546 	CLAMP_PROP(stop_timeout_ms);
547 	CLAMP_PROP(timeslice_duration_ms);
548 
549 #undef CLAMP_PROP
550 
551 	engine->defaults = engine->props; /* never to change again */
552 
553 	engine->context_size = intel_engine_context_size(gt, engine->class);
554 	if (WARN_ON(engine->context_size > BIT(20)))
555 		engine->context_size = 0;
556 	if (engine->context_size)
557 		DRIVER_CAPS(i915)->has_logical_contexts = true;
558 
559 	ewma__engine_latency_init(&engine->latency);
560 	seqcount_init(&engine->stats.execlists.lock);
561 
562 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
563 
564 	/* Scrub mmio state on takeover */
565 	intel_engine_sanitize_mmio(engine);
566 
567 	gt->engine_class[info->class][info->instance] = engine;
568 	gt->engine[id] = engine;
569 
570 	return 0;
571 }
572 
573 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
574 {
575 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
576 
577 	return value;
578 }
579 
580 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
581 {
582 	value = min(value, jiffies_to_nsecs(2));
583 
584 	return value;
585 }
586 
587 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
588 {
589 	/*
590 	 * NB: The GuC API only supports 32bit values. However, the limit is further
591 	 * reduced due to internal calculations which would otherwise overflow.
592 	 */
593 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
594 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
595 
596 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
597 
598 	return value;
599 }
600 
601 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
602 {
603 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
604 
605 	return value;
606 }
607 
608 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
609 {
610 	/*
611 	 * NB: The GuC API only supports 32bit values. However, the limit is further
612 	 * reduced due to internal calculations which would otherwise overflow.
613 	 */
614 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
615 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
616 
617 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
618 
619 	return value;
620 }
621 
622 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
623 {
624 	struct drm_i915_private *i915 = engine->i915;
625 
626 	if (engine->class == VIDEO_DECODE_CLASS) {
627 		/*
628 		 * HEVC support is present on first engine instance
629 		 * before Gen11 and on all instances afterwards.
630 		 */
631 		if (GRAPHICS_VER(i915) >= 11 ||
632 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
633 			engine->uabi_capabilities |=
634 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
635 
636 		/*
637 		 * SFC block is present only on even logical engine
638 		 * instances.
639 		 */
640 		if ((GRAPHICS_VER(i915) >= 11 &&
641 		     (engine->gt->info.vdbox_sfc_access &
642 		      BIT(engine->instance))) ||
643 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
644 			engine->uabi_capabilities |=
645 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
646 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
647 		if (GRAPHICS_VER(i915) >= 9 &&
648 		    engine->gt->info.sfc_mask & BIT(engine->instance))
649 			engine->uabi_capabilities |=
650 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
651 	}
652 }
653 
654 static void intel_setup_engine_capabilities(struct intel_gt *gt)
655 {
656 	struct intel_engine_cs *engine;
657 	enum intel_engine_id id;
658 
659 	for_each_engine(engine, gt, id)
660 		__setup_engine_capabilities(engine);
661 }
662 
663 /**
664  * intel_engines_release() - free the resources allocated for Command Streamers
665  * @gt: pointer to struct intel_gt
666  */
667 void intel_engines_release(struct intel_gt *gt)
668 {
669 	struct intel_engine_cs *engine;
670 	enum intel_engine_id id;
671 
672 	/*
673 	 * Before we release the resources held by engine, we must be certain
674 	 * that the HW is no longer accessing them -- having the GPU scribble
675 	 * to or read from a page being used for something else causes no end
676 	 * of fun.
677 	 *
678 	 * The GPU should be reset by this point, but assume the worst just
679 	 * in case we aborted before completely initialising the engines.
680 	 */
681 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
682 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
683 		__intel_gt_reset(gt, ALL_ENGINES);
684 
685 	/* Decouple the backend; but keep the layout for late GPU resets */
686 	for_each_engine(engine, gt, id) {
687 		if (!engine->release)
688 			continue;
689 
690 		intel_wakeref_wait_for_idle(&engine->wakeref);
691 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
692 
693 		engine->release(engine);
694 		engine->release = NULL;
695 
696 		memset(&engine->reset, 0, sizeof(engine->reset));
697 	}
698 }
699 
700 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 {
702 	if (!engine->request_pool)
703 		return;
704 
705 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
706 }
707 
708 void intel_engines_free(struct intel_gt *gt)
709 {
710 	struct intel_engine_cs *engine;
711 	enum intel_engine_id id;
712 
713 	/* Free the requests! dma-resv keeps fences around for an eternity */
714 	rcu_barrier();
715 
716 	for_each_engine(engine, gt, id) {
717 		intel_engine_free_request_pool(engine);
718 		kfree(engine);
719 		gt->engine[id] = NULL;
720 	}
721 }
722 
723 static
724 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
725 			 unsigned int physical_vdbox,
726 			 unsigned int logical_vdbox, u16 vdbox_mask)
727 {
728 	struct drm_i915_private *i915 = gt->i915;
729 
730 	/*
731 	 * In Gen11, only even numbered logical VDBOXes are hooked
732 	 * up to an SFC (Scaler & Format Converter) unit.
733 	 * In Gen12, Even numbered physical instance always are connected
734 	 * to an SFC. Odd numbered physical instances have SFC only if
735 	 * previous even instance is fused off.
736 	 *
737 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
738 	 * in the fuse register that tells us whether a specific SFC is present.
739 	 */
740 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
741 		return false;
742 	else if (MEDIA_VER(i915) >= 12)
743 		return (physical_vdbox % 2 == 0) ||
744 			!(BIT(physical_vdbox - 1) & vdbox_mask);
745 	else if (MEDIA_VER(i915) == 11)
746 		return logical_vdbox % 2 == 0;
747 
748 	return false;
749 }
750 
751 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
752 {
753 	struct drm_i915_private *i915 = gt->i915;
754 	unsigned int logical_vdbox = 0;
755 	unsigned int i;
756 	u32 media_fuse, fuse1;
757 	u16 vdbox_mask;
758 	u16 vebox_mask;
759 
760 	if (MEDIA_VER(gt->i915) < 11)
761 		return;
762 
763 	/*
764 	 * On newer platforms the fusing register is called 'enable' and has
765 	 * enable semantics, while on older platforms it is called 'disable'
766 	 * and bits have disable semantices.
767 	 */
768 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
769 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
770 		media_fuse = ~media_fuse;
771 
772 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
773 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
774 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
775 
776 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
777 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
778 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
779 	} else {
780 		gt->info.sfc_mask = ~0;
781 	}
782 
783 	for (i = 0; i < I915_MAX_VCS; i++) {
784 		if (!HAS_ENGINE(gt, _VCS(i))) {
785 			vdbox_mask &= ~BIT(i);
786 			continue;
787 		}
788 
789 		if (!(BIT(i) & vdbox_mask)) {
790 			gt->info.engine_mask &= ~BIT(_VCS(i));
791 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
792 			continue;
793 		}
794 
795 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
796 			gt->info.vdbox_sfc_access |= BIT(i);
797 		logical_vdbox++;
798 	}
799 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
800 		vdbox_mask, VDBOX_MASK(gt));
801 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
802 
803 	for (i = 0; i < I915_MAX_VECS; i++) {
804 		if (!HAS_ENGINE(gt, _VECS(i))) {
805 			vebox_mask &= ~BIT(i);
806 			continue;
807 		}
808 
809 		if (!(BIT(i) & vebox_mask)) {
810 			gt->info.engine_mask &= ~BIT(_VECS(i));
811 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
812 		}
813 	}
814 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
815 		vebox_mask, VEBOX_MASK(gt));
816 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
817 }
818 
819 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
820 {
821 	struct drm_i915_private *i915 = gt->i915;
822 	struct intel_gt_info *info = &gt->info;
823 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
824 	unsigned long ccs_mask;
825 	unsigned int i;
826 
827 	if (GRAPHICS_VER(i915) < 11)
828 		return;
829 
830 	if (hweight32(CCS_MASK(gt)) <= 1)
831 		return;
832 
833 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
834 						     ss_per_ccs);
835 	/*
836 	 * If all DSS in a quadrant are fused off, the corresponding CCS
837 	 * engine is not available for use.
838 	 */
839 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
840 		info->engine_mask &= ~BIT(_CCS(i));
841 		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
842 	}
843 }
844 
845 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
846 {
847 	struct drm_i915_private *i915 = gt->i915;
848 	struct intel_gt_info *info = &gt->info;
849 	unsigned long meml3_mask;
850 	unsigned long quad;
851 
852 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
853 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
854 		return;
855 
856 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
857 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
858 
859 	/*
860 	 * Link Copy engines may be fused off according to meml3_mask. Each
861 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
862 	 */
863 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
864 		unsigned int instance = quad * 2 + 1;
865 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
866 						   _BCS(instance));
867 
868 		if (mask & info->engine_mask) {
869 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
870 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
871 
872 			info->engine_mask &= ~mask;
873 		}
874 	}
875 }
876 
877 /*
878  * Determine which engines are fused off in our particular hardware.
879  * Note that we have a catch-22 situation where we need to be able to access
880  * the blitter forcewake domain to read the engine fuses, but at the same time
881  * we need to know which engines are available on the system to know which
882  * forcewake domains are present. We solve this by intializing the forcewake
883  * domains based on the full engine mask in the platform capabilities before
884  * calling this function and pruning the domains for fused-off engines
885  * afterwards.
886  */
887 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
888 {
889 	struct intel_gt_info *info = &gt->info;
890 
891 	GEM_BUG_ON(!info->engine_mask);
892 
893 	engine_mask_apply_media_fuses(gt);
894 	engine_mask_apply_compute_fuses(gt);
895 	engine_mask_apply_copy_fuses(gt);
896 
897 	return info->engine_mask;
898 }
899 
900 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
901 				 u8 class, const u8 *map, u8 num_instances)
902 {
903 	int i, j;
904 	u8 current_logical_id = 0;
905 
906 	for (j = 0; j < num_instances; ++j) {
907 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
908 			if (!HAS_ENGINE(gt, i) ||
909 			    intel_engines[i].class != class)
910 				continue;
911 
912 			if (intel_engines[i].instance == map[j]) {
913 				logical_ids[intel_engines[i].instance] =
914 					current_logical_id++;
915 				break;
916 			}
917 		}
918 	}
919 }
920 
921 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
922 {
923 	/*
924 	 * Logical to physical mapping is needed for proper support
925 	 * to split-frame feature.
926 	 */
927 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
928 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
929 
930 		populate_logical_ids(gt, logical_ids, class,
931 				     map, ARRAY_SIZE(map));
932 	} else {
933 		int i;
934 		u8 map[MAX_ENGINE_INSTANCE + 1];
935 
936 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
937 			map[i] = i;
938 		populate_logical_ids(gt, logical_ids, class,
939 				     map, ARRAY_SIZE(map));
940 	}
941 }
942 
943 /**
944  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
945  * @gt: pointer to struct intel_gt
946  *
947  * Return: non-zero if the initialization failed.
948  */
949 int intel_engines_init_mmio(struct intel_gt *gt)
950 {
951 	struct drm_i915_private *i915 = gt->i915;
952 	const unsigned int engine_mask = init_engine_mask(gt);
953 	unsigned int mask = 0;
954 	unsigned int i, class;
955 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
956 	int err;
957 
958 	drm_WARN_ON(&i915->drm, engine_mask == 0);
959 	drm_WARN_ON(&i915->drm, engine_mask &
960 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
961 
962 	if (i915_inject_probe_failure(i915))
963 		return -ENODEV;
964 
965 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
966 		setup_logical_ids(gt, logical_ids, class);
967 
968 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
969 			u8 instance = intel_engines[i].instance;
970 
971 			if (intel_engines[i].class != class ||
972 			    !HAS_ENGINE(gt, i))
973 				continue;
974 
975 			err = intel_engine_setup(gt, i,
976 						 logical_ids[instance]);
977 			if (err)
978 				goto cleanup;
979 
980 			mask |= BIT(i);
981 		}
982 	}
983 
984 	/*
985 	 * Catch failures to update intel_engines table when the new engines
986 	 * are added to the driver by a warning and disabling the forgotten
987 	 * engines.
988 	 */
989 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
990 		gt->info.engine_mask = mask;
991 
992 	gt->info.num_engines = hweight32(mask);
993 
994 	intel_gt_check_and_clear_faults(gt);
995 
996 	intel_setup_engine_capabilities(gt);
997 
998 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
999 
1000 	return 0;
1001 
1002 cleanup:
1003 	intel_engines_free(gt);
1004 	return err;
1005 }
1006 
1007 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1008 {
1009 	struct intel_engine_execlists * const execlists = &engine->execlists;
1010 
1011 	execlists->port_mask = 1;
1012 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1013 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1014 
1015 	memset(execlists->pending, 0, sizeof(execlists->pending));
1016 	execlists->active =
1017 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1018 }
1019 
1020 static void cleanup_status_page(struct intel_engine_cs *engine)
1021 {
1022 	struct i915_vma *vma;
1023 
1024 	/* Prevent writes into HWSP after returning the page to the system */
1025 	intel_engine_set_hwsp_writemask(engine, ~0u);
1026 
1027 	vma = fetch_and_zero(&engine->status_page.vma);
1028 	if (!vma)
1029 		return;
1030 
1031 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1032 		i915_vma_unpin(vma);
1033 
1034 	i915_gem_object_unpin_map(vma->obj);
1035 	i915_gem_object_put(vma->obj);
1036 }
1037 
1038 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1039 				struct i915_gem_ww_ctx *ww,
1040 				struct i915_vma *vma)
1041 {
1042 	unsigned int flags;
1043 
1044 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1045 		/*
1046 		 * On g33, we cannot place HWS above 256MiB, so
1047 		 * restrict its pinning to the low mappable arena.
1048 		 * Though this restriction is not documented for
1049 		 * gen4, gen5, or byt, they also behave similarly
1050 		 * and hang if the HWS is placed at the top of the
1051 		 * GTT. To generalise, it appears that all !llc
1052 		 * platforms have issues with us placing the HWS
1053 		 * above the mappable region (even though we never
1054 		 * actually map it).
1055 		 */
1056 		flags = PIN_MAPPABLE;
1057 	else
1058 		flags = PIN_HIGH;
1059 
1060 	return i915_ggtt_pin(vma, ww, 0, flags);
1061 }
1062 
1063 static int init_status_page(struct intel_engine_cs *engine)
1064 {
1065 	struct drm_i915_gem_object *obj;
1066 	struct i915_gem_ww_ctx ww;
1067 	struct i915_vma *vma;
1068 	void *vaddr;
1069 	int ret;
1070 
1071 	INIT_LIST_HEAD(&engine->status_page.timelines);
1072 
1073 	/*
1074 	 * Though the HWS register does support 36bit addresses, historically
1075 	 * we have had hangs and corruption reported due to wild writes if
1076 	 * the HWS is placed above 4G. We only allow objects to be allocated
1077 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1078 	 * access to more than 4G.
1079 	 */
1080 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1081 	if (IS_ERR(obj)) {
1082 		drm_err(&engine->i915->drm,
1083 			"Failed to allocate status page\n");
1084 		return PTR_ERR(obj);
1085 	}
1086 
1087 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1088 
1089 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1090 	if (IS_ERR(vma)) {
1091 		ret = PTR_ERR(vma);
1092 		goto err_put;
1093 	}
1094 
1095 	i915_gem_ww_ctx_init(&ww, true);
1096 retry:
1097 	ret = i915_gem_object_lock(obj, &ww);
1098 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1099 		ret = pin_ggtt_status_page(engine, &ww, vma);
1100 	if (ret)
1101 		goto err;
1102 
1103 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1104 	if (IS_ERR(vaddr)) {
1105 		ret = PTR_ERR(vaddr);
1106 		goto err_unpin;
1107 	}
1108 
1109 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1110 	engine->status_page.vma = vma;
1111 
1112 err_unpin:
1113 	if (ret)
1114 		i915_vma_unpin(vma);
1115 err:
1116 	if (ret == -EDEADLK) {
1117 		ret = i915_gem_ww_ctx_backoff(&ww);
1118 		if (!ret)
1119 			goto retry;
1120 	}
1121 	i915_gem_ww_ctx_fini(&ww);
1122 err_put:
1123 	if (ret)
1124 		i915_gem_object_put(obj);
1125 	return ret;
1126 }
1127 
1128 static int engine_setup_common(struct intel_engine_cs *engine)
1129 {
1130 	int err;
1131 
1132 	init_llist_head(&engine->barrier_tasks);
1133 
1134 	err = init_status_page(engine);
1135 	if (err)
1136 		return err;
1137 
1138 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1139 	if (!engine->breadcrumbs) {
1140 		err = -ENOMEM;
1141 		goto err_status;
1142 	}
1143 
1144 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1145 	if (!engine->sched_engine) {
1146 		err = -ENOMEM;
1147 		goto err_sched_engine;
1148 	}
1149 	engine->sched_engine->private_data = engine;
1150 
1151 	err = intel_engine_init_cmd_parser(engine);
1152 	if (err)
1153 		goto err_cmd_parser;
1154 
1155 	intel_engine_init_execlists(engine);
1156 	intel_engine_init__pm(engine);
1157 	intel_engine_init_retire(engine);
1158 
1159 	/* Use the whole device by default */
1160 	engine->sseu =
1161 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1162 
1163 	intel_engine_init_workarounds(engine);
1164 	intel_engine_init_whitelist(engine);
1165 	intel_engine_init_ctx_wa(engine);
1166 
1167 	if (GRAPHICS_VER(engine->i915) >= 12)
1168 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1169 
1170 	return 0;
1171 
1172 err_cmd_parser:
1173 	i915_sched_engine_put(engine->sched_engine);
1174 err_sched_engine:
1175 	intel_breadcrumbs_put(engine->breadcrumbs);
1176 err_status:
1177 	cleanup_status_page(engine);
1178 	return err;
1179 }
1180 
1181 struct measure_breadcrumb {
1182 	struct i915_request rq;
1183 	struct intel_ring ring;
1184 	u32 cs[2048];
1185 };
1186 
1187 static int measure_breadcrumb_dw(struct intel_context *ce)
1188 {
1189 	struct intel_engine_cs *engine = ce->engine;
1190 	struct measure_breadcrumb *frame;
1191 	int dw;
1192 
1193 	GEM_BUG_ON(!engine->gt->scratch);
1194 
1195 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1196 	if (!frame)
1197 		return -ENOMEM;
1198 
1199 	frame->rq.engine = engine;
1200 	frame->rq.context = ce;
1201 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1202 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1203 
1204 	frame->ring.vaddr = frame->cs;
1205 	frame->ring.size = sizeof(frame->cs);
1206 	frame->ring.wrap =
1207 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1208 	frame->ring.effective_size = frame->ring.size;
1209 	intel_ring_update_space(&frame->ring);
1210 	frame->rq.ring = &frame->ring;
1211 
1212 	mutex_lock(&ce->timeline->mutex);
1213 	spin_lock_irq(&engine->sched_engine->lock);
1214 
1215 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1216 
1217 	spin_unlock_irq(&engine->sched_engine->lock);
1218 	mutex_unlock(&ce->timeline->mutex);
1219 
1220 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1221 
1222 	kfree(frame);
1223 	return dw;
1224 }
1225 
1226 struct intel_context *
1227 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1228 				   struct i915_address_space *vm,
1229 				   unsigned int ring_size,
1230 				   unsigned int hwsp,
1231 				   struct lock_class_key *key,
1232 				   const char *name)
1233 {
1234 	struct intel_context *ce;
1235 	int err;
1236 
1237 	ce = intel_context_create(engine);
1238 	if (IS_ERR(ce))
1239 		return ce;
1240 
1241 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1242 	ce->timeline = page_pack_bits(NULL, hwsp);
1243 	ce->ring = NULL;
1244 	ce->ring_size = ring_size;
1245 
1246 	i915_vm_put(ce->vm);
1247 	ce->vm = i915_vm_get(vm);
1248 
1249 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1250 	if (err) {
1251 		intel_context_put(ce);
1252 		return ERR_PTR(err);
1253 	}
1254 
1255 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1256 
1257 	/*
1258 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1259 	 * so that we can use them from within the normal user timelines
1260 	 * should we need to inject GPU operations during their request
1261 	 * construction.
1262 	 */
1263 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1264 
1265 	return ce;
1266 }
1267 
1268 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1269 {
1270 	struct intel_engine_cs *engine = ce->engine;
1271 	struct i915_vma *hwsp = engine->status_page.vma;
1272 
1273 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1274 
1275 	mutex_lock(&hwsp->vm->mutex);
1276 	list_del(&ce->timeline->engine_link);
1277 	mutex_unlock(&hwsp->vm->mutex);
1278 
1279 	list_del(&ce->pinned_contexts_link);
1280 	intel_context_unpin(ce);
1281 	intel_context_put(ce);
1282 }
1283 
1284 static struct intel_context *
1285 create_kernel_context(struct intel_engine_cs *engine)
1286 {
1287 	static struct lock_class_key kernel;
1288 
1289 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1290 						  I915_GEM_HWS_SEQNO_ADDR,
1291 						  &kernel, "kernel_context");
1292 }
1293 
1294 /**
1295  * intel_engines_init_common - initialize cengine state which might require hw access
1296  * @engine: Engine to initialize.
1297  *
1298  * Initializes @engine@ structure members shared between legacy and execlists
1299  * submission modes which do require hardware access.
1300  *
1301  * Typcally done at later stages of submission mode specific engine setup.
1302  *
1303  * Returns zero on success or an error code on failure.
1304  */
1305 static int engine_init_common(struct intel_engine_cs *engine)
1306 {
1307 	struct intel_context *ce;
1308 	int ret;
1309 
1310 	engine->set_default_submission(engine);
1311 
1312 	/*
1313 	 * We may need to do things with the shrinker which
1314 	 * require us to immediately switch back to the default
1315 	 * context. This can cause a problem as pinning the
1316 	 * default context also requires GTT space which may not
1317 	 * be available. To avoid this we always pin the default
1318 	 * context.
1319 	 */
1320 	ce = create_kernel_context(engine);
1321 	if (IS_ERR(ce))
1322 		return PTR_ERR(ce);
1323 
1324 	ret = measure_breadcrumb_dw(ce);
1325 	if (ret < 0)
1326 		goto err_context;
1327 
1328 	engine->emit_fini_breadcrumb_dw = ret;
1329 	engine->kernel_context = ce;
1330 
1331 	return 0;
1332 
1333 err_context:
1334 	intel_engine_destroy_pinned_context(ce);
1335 	return ret;
1336 }
1337 
1338 int intel_engines_init(struct intel_gt *gt)
1339 {
1340 	int (*setup)(struct intel_engine_cs *engine);
1341 	struct intel_engine_cs *engine;
1342 	enum intel_engine_id id;
1343 	int err;
1344 
1345 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1346 		gt->submission_method = INTEL_SUBMISSION_GUC;
1347 		setup = intel_guc_submission_setup;
1348 	} else if (HAS_EXECLISTS(gt->i915)) {
1349 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1350 		setup = intel_execlists_submission_setup;
1351 	} else {
1352 		gt->submission_method = INTEL_SUBMISSION_RING;
1353 		setup = intel_ring_submission_setup;
1354 	}
1355 
1356 	for_each_engine(engine, gt, id) {
1357 		err = engine_setup_common(engine);
1358 		if (err)
1359 			return err;
1360 
1361 		err = setup(engine);
1362 		if (err) {
1363 			intel_engine_cleanup_common(engine);
1364 			return err;
1365 		}
1366 
1367 		/* The backend should now be responsible for cleanup */
1368 		GEM_BUG_ON(engine->release == NULL);
1369 
1370 		err = engine_init_common(engine);
1371 		if (err)
1372 			return err;
1373 
1374 		intel_engine_add_user(engine);
1375 	}
1376 
1377 	return 0;
1378 }
1379 
1380 /**
1381  * intel_engines_cleanup_common - cleans up the engine state created by
1382  *                                the common initiailizers.
1383  * @engine: Engine to cleanup.
1384  *
1385  * This cleans up everything created by the common helpers.
1386  */
1387 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1388 {
1389 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1390 
1391 	i915_sched_engine_put(engine->sched_engine);
1392 	intel_breadcrumbs_put(engine->breadcrumbs);
1393 
1394 	intel_engine_fini_retire(engine);
1395 	intel_engine_cleanup_cmd_parser(engine);
1396 
1397 	if (engine->default_state)
1398 		fput(engine->default_state);
1399 
1400 	if (engine->kernel_context)
1401 		intel_engine_destroy_pinned_context(engine->kernel_context);
1402 
1403 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1404 	cleanup_status_page(engine);
1405 
1406 	intel_wa_list_free(&engine->ctx_wa_list);
1407 	intel_wa_list_free(&engine->wa_list);
1408 	intel_wa_list_free(&engine->whitelist);
1409 }
1410 
1411 /**
1412  * intel_engine_resume - re-initializes the HW state of the engine
1413  * @engine: Engine to resume.
1414  *
1415  * Returns zero on success or an error code on failure.
1416  */
1417 int intel_engine_resume(struct intel_engine_cs *engine)
1418 {
1419 	intel_engine_apply_workarounds(engine);
1420 	intel_engine_apply_whitelist(engine);
1421 
1422 	return engine->resume(engine);
1423 }
1424 
1425 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1426 {
1427 	struct drm_i915_private *i915 = engine->i915;
1428 
1429 	u64 acthd;
1430 
1431 	if (GRAPHICS_VER(i915) >= 8)
1432 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1433 	else if (GRAPHICS_VER(i915) >= 4)
1434 		acthd = ENGINE_READ(engine, RING_ACTHD);
1435 	else
1436 		acthd = ENGINE_READ(engine, ACTHD);
1437 
1438 	return acthd;
1439 }
1440 
1441 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1442 {
1443 	u64 bbaddr;
1444 
1445 	if (GRAPHICS_VER(engine->i915) >= 8)
1446 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1447 	else
1448 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1449 
1450 	return bbaddr;
1451 }
1452 
1453 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1454 {
1455 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1456 		return 0;
1457 
1458 	/*
1459 	 * If we are doing a normal GPU reset, we can take our time and allow
1460 	 * the engine to quiesce. We've stopped submission to the engine, and
1461 	 * if we wait long enough an innocent context should complete and
1462 	 * leave the engine idle. So they should not be caught unaware by
1463 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1464 	 */
1465 	return READ_ONCE(engine->props.stop_timeout_ms);
1466 }
1467 
1468 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1469 				  int fast_timeout_us,
1470 				  int slow_timeout_ms)
1471 {
1472 	struct intel_uncore *uncore = engine->uncore;
1473 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1474 	int err;
1475 
1476 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1477 
1478 	/*
1479 	 * Wa_22011802037 : gen11, gen12, Prior to doing a reset, ensure CS is
1480 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1481 	 */
1482 	if (IS_GRAPHICS_VER(engine->i915, 11, 12))
1483 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1484 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1485 
1486 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1487 					   MODE_IDLE, MODE_IDLE,
1488 					   fast_timeout_us,
1489 					   slow_timeout_ms,
1490 					   NULL);
1491 
1492 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1493 	intel_uncore_posting_read_fw(uncore, mode);
1494 	return err;
1495 }
1496 
1497 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1498 {
1499 	int err = 0;
1500 
1501 	if (GRAPHICS_VER(engine->i915) < 3)
1502 		return -ENODEV;
1503 
1504 	ENGINE_TRACE(engine, "\n");
1505 	/*
1506 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1507 	 * especially with gem_eio tests.
1508 	 *
1509 	 * Occasionally trying to stop the cs times out, but does not adversely
1510 	 * affect functionality. The timeout is set as a config parameter that
1511 	 * defaults to 100ms. In most cases the follow up operation is to wait
1512 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1513 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1514 	 * caused, the caller must check and handle the return from this
1515 	 * function.
1516 	 */
1517 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1518 		ENGINE_TRACE(engine,
1519 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1520 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1521 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1522 
1523 		/*
1524 		 * Sometimes we observe that the idle flag is not
1525 		 * set even though the ring is empty. So double
1526 		 * check before giving up.
1527 		 */
1528 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1529 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1530 			err = -ETIMEDOUT;
1531 	}
1532 
1533 	return err;
1534 }
1535 
1536 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1537 {
1538 	ENGINE_TRACE(engine, "\n");
1539 
1540 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1541 }
1542 
1543 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1544 {
1545 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1546 		[RCS0] = MSG_IDLE_CS,
1547 		[BCS0] = MSG_IDLE_BCS,
1548 		[VCS0] = MSG_IDLE_VCS0,
1549 		[VCS1] = MSG_IDLE_VCS1,
1550 		[VCS2] = MSG_IDLE_VCS2,
1551 		[VCS3] = MSG_IDLE_VCS3,
1552 		[VCS4] = MSG_IDLE_VCS4,
1553 		[VCS5] = MSG_IDLE_VCS5,
1554 		[VCS6] = MSG_IDLE_VCS6,
1555 		[VCS7] = MSG_IDLE_VCS7,
1556 		[VECS0] = MSG_IDLE_VECS0,
1557 		[VECS1] = MSG_IDLE_VECS1,
1558 		[VECS2] = MSG_IDLE_VECS2,
1559 		[VECS3] = MSG_IDLE_VECS3,
1560 		[CCS0] = MSG_IDLE_CS,
1561 		[CCS1] = MSG_IDLE_CS,
1562 		[CCS2] = MSG_IDLE_CS,
1563 		[CCS3] = MSG_IDLE_CS,
1564 	};
1565 	u32 val;
1566 
1567 	if (!_reg[engine->id].reg) {
1568 		drm_err(&engine->i915->drm,
1569 			"MSG IDLE undefined for engine id %u\n", engine->id);
1570 		return 0;
1571 	}
1572 
1573 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1574 
1575 	/* bits[29:25] & bits[13:9] >> shift */
1576 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1577 }
1578 
1579 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1580 {
1581 	int ret;
1582 
1583 	/* Ensure GPM receives fw up/down after CS is stopped */
1584 	udelay(1);
1585 
1586 	/* Wait for forcewake request to complete in GPM */
1587 	ret =  __intel_wait_for_register_fw(gt->uncore,
1588 					    GEN9_PWRGT_DOMAIN_STATUS,
1589 					    fw_mask, fw_mask, 5000, 0, NULL);
1590 
1591 	/* Ensure CS receives fw ack from GPM */
1592 	udelay(1);
1593 
1594 	if (ret)
1595 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1596 }
1597 
1598 /*
1599  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1600  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1601  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1602  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1603  * are concerned only with the gt reset here, we use a logical OR of pending
1604  * forcewakeups from all reset domains and then wait for them to complete by
1605  * querying PWRGT_DOMAIN_STATUS.
1606  */
1607 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1608 {
1609 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1610 
1611 	if (fw_pending)
1612 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1613 }
1614 
1615 /* NB: please notice the memset */
1616 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1617 			       struct intel_instdone *instdone)
1618 {
1619 	struct drm_i915_private *i915 = engine->i915;
1620 	struct intel_uncore *uncore = engine->uncore;
1621 	u32 mmio_base = engine->mmio_base;
1622 	int slice;
1623 	int subslice;
1624 	int iter;
1625 
1626 	memset(instdone, 0, sizeof(*instdone));
1627 
1628 	if (GRAPHICS_VER(i915) >= 8) {
1629 		instdone->instdone =
1630 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1631 
1632 		if (engine->id != RCS0)
1633 			return;
1634 
1635 		instdone->slice_common =
1636 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1637 		if (GRAPHICS_VER(i915) >= 12) {
1638 			instdone->slice_common_extra[0] =
1639 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1640 			instdone->slice_common_extra[1] =
1641 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1642 		}
1643 
1644 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1645 			instdone->sampler[slice][subslice] =
1646 				intel_gt_mcr_read(engine->gt,
1647 						  GEN8_SAMPLER_INSTDONE,
1648 						  slice, subslice);
1649 			instdone->row[slice][subslice] =
1650 				intel_gt_mcr_read(engine->gt,
1651 						  GEN8_ROW_INSTDONE,
1652 						  slice, subslice);
1653 		}
1654 
1655 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1656 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1657 				instdone->geom_svg[slice][subslice] =
1658 					intel_gt_mcr_read(engine->gt,
1659 							  XEHPG_INSTDONE_GEOM_SVG,
1660 							  slice, subslice);
1661 		}
1662 	} else if (GRAPHICS_VER(i915) >= 7) {
1663 		instdone->instdone =
1664 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1665 
1666 		if (engine->id != RCS0)
1667 			return;
1668 
1669 		instdone->slice_common =
1670 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1671 		instdone->sampler[0][0] =
1672 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1673 		instdone->row[0][0] =
1674 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1675 	} else if (GRAPHICS_VER(i915) >= 4) {
1676 		instdone->instdone =
1677 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1678 		if (engine->id == RCS0)
1679 			/* HACK: Using the wrong struct member */
1680 			instdone->slice_common =
1681 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1682 	} else {
1683 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1684 	}
1685 }
1686 
1687 static bool ring_is_idle(struct intel_engine_cs *engine)
1688 {
1689 	bool idle = true;
1690 
1691 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1692 		return true;
1693 
1694 	if (!intel_engine_pm_get_if_awake(engine))
1695 		return true;
1696 
1697 	/* First check that no commands are left in the ring */
1698 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1699 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1700 		idle = false;
1701 
1702 	/* No bit for gen2, so assume the CS parser is idle */
1703 	if (GRAPHICS_VER(engine->i915) > 2 &&
1704 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1705 		idle = false;
1706 
1707 	intel_engine_pm_put(engine);
1708 
1709 	return idle;
1710 }
1711 
1712 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1713 {
1714 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1715 
1716 	if (!t->callback)
1717 		return;
1718 
1719 	local_bh_disable();
1720 	if (tasklet_trylock(t)) {
1721 		/* Must wait for any GPU reset in progress. */
1722 		if (__tasklet_is_enabled(t))
1723 			t->callback(t);
1724 		tasklet_unlock(t);
1725 	}
1726 	local_bh_enable();
1727 
1728 	/* Synchronise and wait for the tasklet on another CPU */
1729 	if (sync)
1730 		tasklet_unlock_wait(t);
1731 }
1732 
1733 /**
1734  * intel_engine_is_idle() - Report if the engine has finished process all work
1735  * @engine: the intel_engine_cs
1736  *
1737  * Return true if there are no requests pending, nothing left to be submitted
1738  * to hardware, and that the engine is idle.
1739  */
1740 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1741 {
1742 	/* More white lies, if wedged, hw state is inconsistent */
1743 	if (intel_gt_is_wedged(engine->gt))
1744 		return true;
1745 
1746 	if (!intel_engine_pm_is_awake(engine))
1747 		return true;
1748 
1749 	/* Waiting to drain ELSP? */
1750 	intel_synchronize_hardirq(engine->i915);
1751 	intel_engine_flush_submission(engine);
1752 
1753 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1754 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1755 		return false;
1756 
1757 	/* Ring stopped? */
1758 	return ring_is_idle(engine);
1759 }
1760 
1761 bool intel_engines_are_idle(struct intel_gt *gt)
1762 {
1763 	struct intel_engine_cs *engine;
1764 	enum intel_engine_id id;
1765 
1766 	/*
1767 	 * If the driver is wedged, HW state may be very inconsistent and
1768 	 * report that it is still busy, even though we have stopped using it.
1769 	 */
1770 	if (intel_gt_is_wedged(gt))
1771 		return true;
1772 
1773 	/* Already parked (and passed an idleness test); must still be idle */
1774 	if (!READ_ONCE(gt->awake))
1775 		return true;
1776 
1777 	for_each_engine(engine, gt, id) {
1778 		if (!intel_engine_is_idle(engine))
1779 			return false;
1780 	}
1781 
1782 	return true;
1783 }
1784 
1785 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1786 {
1787 	if (!engine->irq_enable)
1788 		return false;
1789 
1790 	/* Caller disables interrupts */
1791 	spin_lock(engine->gt->irq_lock);
1792 	engine->irq_enable(engine);
1793 	spin_unlock(engine->gt->irq_lock);
1794 
1795 	return true;
1796 }
1797 
1798 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1799 {
1800 	if (!engine->irq_disable)
1801 		return;
1802 
1803 	/* Caller disables interrupts */
1804 	spin_lock(engine->gt->irq_lock);
1805 	engine->irq_disable(engine);
1806 	spin_unlock(engine->gt->irq_lock);
1807 }
1808 
1809 void intel_engines_reset_default_submission(struct intel_gt *gt)
1810 {
1811 	struct intel_engine_cs *engine;
1812 	enum intel_engine_id id;
1813 
1814 	for_each_engine(engine, gt, id) {
1815 		if (engine->sanitize)
1816 			engine->sanitize(engine);
1817 
1818 		engine->set_default_submission(engine);
1819 	}
1820 }
1821 
1822 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1823 {
1824 	switch (GRAPHICS_VER(engine->i915)) {
1825 	case 2:
1826 		return false; /* uses physical not virtual addresses */
1827 	case 3:
1828 		/* maybe only uses physical not virtual addresses */
1829 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1830 	case 4:
1831 		return !IS_I965G(engine->i915); /* who knows! */
1832 	case 6:
1833 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1834 	default:
1835 		return true;
1836 	}
1837 }
1838 
1839 static struct intel_timeline *get_timeline(struct i915_request *rq)
1840 {
1841 	struct intel_timeline *tl;
1842 
1843 	/*
1844 	 * Even though we are holding the engine->sched_engine->lock here, there
1845 	 * is no control over the submission queue per-se and we are
1846 	 * inspecting the active state at a random point in time, with an
1847 	 * unknown queue. Play safe and make sure the timeline remains valid.
1848 	 * (Only being used for pretty printing, one extra kref shouldn't
1849 	 * cause a camel stampede!)
1850 	 */
1851 	rcu_read_lock();
1852 	tl = rcu_dereference(rq->timeline);
1853 	if (!kref_get_unless_zero(&tl->kref))
1854 		tl = NULL;
1855 	rcu_read_unlock();
1856 
1857 	return tl;
1858 }
1859 
1860 static int print_ring(char *buf, int sz, struct i915_request *rq)
1861 {
1862 	int len = 0;
1863 
1864 	if (!i915_request_signaled(rq)) {
1865 		struct intel_timeline *tl = get_timeline(rq);
1866 
1867 		len = scnprintf(buf, sz,
1868 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1869 				i915_ggtt_offset(rq->ring->vma),
1870 				tl ? tl->hwsp_offset : 0,
1871 				hwsp_seqno(rq),
1872 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1873 						      1000 * 1000));
1874 
1875 		if (tl)
1876 			intel_timeline_put(tl);
1877 	}
1878 
1879 	return len;
1880 }
1881 
1882 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1883 {
1884 	const size_t rowsize = 8 * sizeof(u32);
1885 	const void *prev = NULL;
1886 	bool skip = false;
1887 	size_t pos;
1888 
1889 	for (pos = 0; pos < len; pos += rowsize) {
1890 		char line[128];
1891 
1892 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1893 			if (!skip) {
1894 				drm_printf(m, "*\n");
1895 				skip = true;
1896 			}
1897 			continue;
1898 		}
1899 
1900 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1901 						rowsize, sizeof(u32),
1902 						line, sizeof(line),
1903 						false) >= sizeof(line));
1904 		drm_printf(m, "[%04zx] %s\n", pos, line);
1905 
1906 		prev = buf + pos;
1907 		skip = false;
1908 	}
1909 }
1910 
1911 static const char *repr_timer(const struct timer_list *t)
1912 {
1913 	if (!READ_ONCE(t->expires))
1914 		return "inactive";
1915 
1916 	if (timer_pending(t))
1917 		return "active";
1918 
1919 	return "expired";
1920 }
1921 
1922 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1923 					 struct drm_printer *m)
1924 {
1925 	struct drm_i915_private *dev_priv = engine->i915;
1926 	struct intel_engine_execlists * const execlists = &engine->execlists;
1927 	u64 addr;
1928 
1929 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1930 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1931 	if (HAS_EXECLISTS(dev_priv)) {
1932 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1933 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1934 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1935 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1936 	}
1937 	drm_printf(m, "\tRING_START: 0x%08x\n",
1938 		   ENGINE_READ(engine, RING_START));
1939 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1940 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1941 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1942 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1943 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1944 		   ENGINE_READ(engine, RING_CTL),
1945 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1946 	if (GRAPHICS_VER(engine->i915) > 2) {
1947 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1948 			   ENGINE_READ(engine, RING_MI_MODE),
1949 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1950 	}
1951 
1952 	if (GRAPHICS_VER(dev_priv) >= 6) {
1953 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1954 			   ENGINE_READ(engine, RING_IMR));
1955 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1956 			   ENGINE_READ(engine, RING_ESR));
1957 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1958 			   ENGINE_READ(engine, RING_EMR));
1959 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1960 			   ENGINE_READ(engine, RING_EIR));
1961 	}
1962 
1963 	addr = intel_engine_get_active_head(engine);
1964 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1965 		   upper_32_bits(addr), lower_32_bits(addr));
1966 	addr = intel_engine_get_last_batch_head(engine);
1967 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1968 		   upper_32_bits(addr), lower_32_bits(addr));
1969 	if (GRAPHICS_VER(dev_priv) >= 8)
1970 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1971 	else if (GRAPHICS_VER(dev_priv) >= 4)
1972 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1973 	else
1974 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1975 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1976 		   upper_32_bits(addr), lower_32_bits(addr));
1977 	if (GRAPHICS_VER(dev_priv) >= 4) {
1978 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1979 			   ENGINE_READ(engine, RING_IPEIR));
1980 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1981 			   ENGINE_READ(engine, RING_IPEHR));
1982 	} else {
1983 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1984 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1985 	}
1986 
1987 	if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
1988 		struct i915_request * const *port, *rq;
1989 		const u32 *hws =
1990 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1991 		const u8 num_entries = execlists->csb_size;
1992 		unsigned int idx;
1993 		u8 read, write;
1994 
1995 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1996 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
1997 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
1998 			   repr_timer(&engine->execlists.preempt),
1999 			   repr_timer(&engine->execlists.timer));
2000 
2001 		read = execlists->csb_head;
2002 		write = READ_ONCE(*execlists->csb_write);
2003 
2004 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2005 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2006 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2007 			   read, write, num_entries);
2008 
2009 		if (read >= num_entries)
2010 			read = 0;
2011 		if (write >= num_entries)
2012 			write = 0;
2013 		if (read > write)
2014 			write += num_entries;
2015 		while (read < write) {
2016 			idx = ++read % num_entries;
2017 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2018 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2019 		}
2020 
2021 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2022 		rcu_read_lock();
2023 		for (port = execlists->active; (rq = *port); port++) {
2024 			char hdr[160];
2025 			int len;
2026 
2027 			len = scnprintf(hdr, sizeof(hdr),
2028 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2029 					(int)(port - execlists->active),
2030 					rq->context->lrc.ccid,
2031 					intel_context_is_closed(rq->context) ? "!" : "",
2032 					intel_context_is_banned(rq->context) ? "*" : "");
2033 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2034 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2035 			i915_request_show(m, rq, hdr, 0);
2036 		}
2037 		for (port = execlists->pending; (rq = *port); port++) {
2038 			char hdr[160];
2039 			int len;
2040 
2041 			len = scnprintf(hdr, sizeof(hdr),
2042 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2043 					(int)(port - execlists->pending),
2044 					rq->context->lrc.ccid,
2045 					intel_context_is_closed(rq->context) ? "!" : "",
2046 					intel_context_is_banned(rq->context) ? "*" : "");
2047 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2048 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2049 			i915_request_show(m, rq, hdr, 0);
2050 		}
2051 		rcu_read_unlock();
2052 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2053 	} else if (GRAPHICS_VER(dev_priv) > 6) {
2054 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2055 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2056 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2057 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2058 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2059 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2060 	}
2061 }
2062 
2063 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2064 {
2065 	struct i915_vma_resource *vma_res = rq->batch_res;
2066 	void *ring;
2067 	int size;
2068 
2069 	drm_printf(m,
2070 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2071 		   rq->head, rq->postfix, rq->tail,
2072 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2073 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2074 
2075 	size = rq->tail - rq->head;
2076 	if (rq->tail < rq->head)
2077 		size += rq->ring->size;
2078 
2079 	ring = kmalloc(size, GFP_ATOMIC);
2080 	if (ring) {
2081 		const void *vaddr = rq->ring->vaddr;
2082 		unsigned int head = rq->head;
2083 		unsigned int len = 0;
2084 
2085 		if (rq->tail < head) {
2086 			len = rq->ring->size - head;
2087 			memcpy(ring, vaddr + head, len);
2088 			head = 0;
2089 		}
2090 		memcpy(ring + len, vaddr + head, size - len);
2091 
2092 		hexdump(m, ring, size);
2093 		kfree(ring);
2094 	}
2095 }
2096 
2097 static unsigned long list_count(struct list_head *list)
2098 {
2099 	struct list_head *pos;
2100 	unsigned long count = 0;
2101 
2102 	list_for_each(pos, list)
2103 		count++;
2104 
2105 	return count;
2106 }
2107 
2108 static unsigned long read_ul(void *p, size_t x)
2109 {
2110 	return *(unsigned long *)(p + x);
2111 }
2112 
2113 static void print_properties(struct intel_engine_cs *engine,
2114 			     struct drm_printer *m)
2115 {
2116 	static const struct pmap {
2117 		size_t offset;
2118 		const char *name;
2119 	} props[] = {
2120 #define P(x) { \
2121 	.offset = offsetof(typeof(engine->props), x), \
2122 	.name = #x \
2123 }
2124 		P(heartbeat_interval_ms),
2125 		P(max_busywait_duration_ns),
2126 		P(preempt_timeout_ms),
2127 		P(stop_timeout_ms),
2128 		P(timeslice_duration_ms),
2129 
2130 		{},
2131 #undef P
2132 	};
2133 	const struct pmap *p;
2134 
2135 	drm_printf(m, "\tProperties:\n");
2136 	for (p = props; p->name; p++)
2137 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2138 			   p->name,
2139 			   read_ul(&engine->props, p->offset),
2140 			   read_ul(&engine->defaults, p->offset));
2141 }
2142 
2143 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2144 {
2145 	struct intel_timeline *tl = get_timeline(rq);
2146 
2147 	i915_request_show(m, rq, msg, 0);
2148 
2149 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2150 		   i915_ggtt_offset(rq->ring->vma));
2151 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2152 		   rq->ring->head);
2153 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2154 		   rq->ring->tail);
2155 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2156 		   rq->ring->emit);
2157 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2158 		   rq->ring->space);
2159 
2160 	if (tl) {
2161 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2162 			   tl->hwsp_offset);
2163 		intel_timeline_put(tl);
2164 	}
2165 
2166 	print_request_ring(m, rq);
2167 
2168 	if (rq->context->lrc_reg_state) {
2169 		drm_printf(m, "Logical Ring Context:\n");
2170 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2171 	}
2172 }
2173 
2174 void intel_engine_dump_active_requests(struct list_head *requests,
2175 				       struct i915_request *hung_rq,
2176 				       struct drm_printer *m)
2177 {
2178 	struct i915_request *rq;
2179 	const char *msg;
2180 	enum i915_request_state state;
2181 
2182 	list_for_each_entry(rq, requests, sched.link) {
2183 		if (rq == hung_rq)
2184 			continue;
2185 
2186 		state = i915_test_request_state(rq);
2187 		if (state < I915_REQUEST_QUEUED)
2188 			continue;
2189 
2190 		if (state == I915_REQUEST_ACTIVE)
2191 			msg = "\t\tactive on engine";
2192 		else
2193 			msg = "\t\tactive in queue";
2194 
2195 		engine_dump_request(rq, m, msg);
2196 	}
2197 }
2198 
2199 static void engine_dump_active_requests(struct intel_engine_cs *engine, struct drm_printer *m)
2200 {
2201 	struct i915_request *hung_rq = NULL;
2202 	struct intel_context *ce;
2203 	bool guc;
2204 
2205 	/*
2206 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2207 	 * The GPU is still running so requests are still executing and any
2208 	 * hardware reads will be out of date by the time they are reported.
2209 	 * But the intention here is just to report an instantaneous snapshot
2210 	 * so that's fine.
2211 	 */
2212 	lockdep_assert_held(&engine->sched_engine->lock);
2213 
2214 	drm_printf(m, "\tRequests:\n");
2215 
2216 	guc = intel_uc_uses_guc_submission(&engine->gt->uc);
2217 	if (guc) {
2218 		ce = intel_engine_get_hung_context(engine);
2219 		if (ce)
2220 			hung_rq = intel_context_find_active_request(ce);
2221 	} else {
2222 		hung_rq = intel_engine_execlist_find_hung_request(engine);
2223 	}
2224 
2225 	if (hung_rq)
2226 		engine_dump_request(hung_rq, m, "\t\thung");
2227 
2228 	if (guc)
2229 		intel_guc_dump_active_requests(engine, hung_rq, m);
2230 	else
2231 		intel_engine_dump_active_requests(&engine->sched_engine->requests,
2232 						  hung_rq, m);
2233 }
2234 
2235 void intel_engine_dump(struct intel_engine_cs *engine,
2236 		       struct drm_printer *m,
2237 		       const char *header, ...)
2238 {
2239 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2240 	struct i915_request *rq;
2241 	intel_wakeref_t wakeref;
2242 	unsigned long flags;
2243 	ktime_t dummy;
2244 
2245 	if (header) {
2246 		va_list ap;
2247 
2248 		va_start(ap, header);
2249 		drm_vprintf(m, header, &ap);
2250 		va_end(ap);
2251 	}
2252 
2253 	if (intel_gt_is_wedged(engine->gt))
2254 		drm_printf(m, "*** WEDGED ***\n");
2255 
2256 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2257 	drm_printf(m, "\tBarriers?: %s\n",
2258 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2259 	drm_printf(m, "\tLatency: %luus\n",
2260 		   ewma__engine_latency_read(&engine->latency));
2261 	if (intel_engine_supports_stats(engine))
2262 		drm_printf(m, "\tRuntime: %llums\n",
2263 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2264 								  &dummy)));
2265 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2266 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2267 
2268 	rcu_read_lock();
2269 	rq = READ_ONCE(engine->heartbeat.systole);
2270 	if (rq)
2271 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2272 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2273 	rcu_read_unlock();
2274 	drm_printf(m, "\tReset count: %d (global %d)\n",
2275 		   i915_reset_engine_count(error, engine),
2276 		   i915_reset_count(error));
2277 	print_properties(engine, m);
2278 
2279 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2280 	engine_dump_active_requests(engine, m);
2281 
2282 	drm_printf(m, "\tOn hold?: %lu\n",
2283 		   list_count(&engine->sched_engine->hold));
2284 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2285 
2286 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2287 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2288 	if (wakeref) {
2289 		intel_engine_print_registers(engine, m);
2290 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2291 	} else {
2292 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2293 	}
2294 
2295 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2296 
2297 	drm_printf(m, "HWSP:\n");
2298 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2299 
2300 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2301 
2302 	intel_engine_print_breadcrumbs(engine, m);
2303 }
2304 
2305 /**
2306  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2307  * @engine: engine to report on
2308  * @now: monotonic timestamp of sampling
2309  *
2310  * Returns accumulated time @engine was busy since engine stats were enabled.
2311  */
2312 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2313 {
2314 	return engine->busyness(engine, now);
2315 }
2316 
2317 struct intel_context *
2318 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2319 			    unsigned int count, unsigned long flags)
2320 {
2321 	if (count == 0)
2322 		return ERR_PTR(-EINVAL);
2323 
2324 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2325 		return intel_context_create(siblings[0]);
2326 
2327 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2328 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2329 }
2330 
2331 struct i915_request *
2332 intel_engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2333 {
2334 	struct i915_request *request, *active = NULL;
2335 
2336 	/*
2337 	 * This search does not work in GuC submission mode. However, the GuC
2338 	 * will report the hanging context directly to the driver itself. So
2339 	 * the driver should never get here when in GuC mode.
2340 	 */
2341 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2342 
2343 	/*
2344 	 * We are called by the error capture, reset and to dump engine
2345 	 * state at random points in time. In particular, note that neither is
2346 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2347 	 * and we assume that no more writes can happen (we waited long enough
2348 	 * for all writes that were in transaction to be flushed) - adding an
2349 	 * extra delay for a recent interrupt is pointless. Hence, we do
2350 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2351 	 * At all other times, we must assume the GPU is still running, but
2352 	 * we only care about the snapshot of this moment.
2353 	 */
2354 	lockdep_assert_held(&engine->sched_engine->lock);
2355 
2356 	rcu_read_lock();
2357 	request = execlists_active(&engine->execlists);
2358 	if (request) {
2359 		struct intel_timeline *tl = request->context->timeline;
2360 
2361 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2362 			if (__i915_request_is_complete(request))
2363 				break;
2364 
2365 			active = request;
2366 		}
2367 	}
2368 	rcu_read_unlock();
2369 	if (active)
2370 		return active;
2371 
2372 	list_for_each_entry(request, &engine->sched_engine->requests,
2373 			    sched.link) {
2374 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2375 			continue;
2376 
2377 		active = request;
2378 		break;
2379 	}
2380 
2381 	return active;
2382 }
2383 
2384 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2385 {
2386 	/*
2387 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2388 	 * support in the RCU_MODE register.  This only needs to be done once,
2389 	 * so for simplicity we'll take care of this in the RCS engine's
2390 	 * resume handler; since the RCS and all CCS engines belong to the
2391 	 * same reset domain and are reset together, this will also take care
2392 	 * of re-applying the setting after i915-triggered resets.
2393 	 */
2394 	if (!CCS_MASK(engine->gt))
2395 		return;
2396 
2397 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2398 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2399 }
2400 
2401 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2402 #include "mock_engine.c"
2403 #include "selftest_engine.c"
2404 #include "selftest_engine_cs.c"
2405 #endif
2406