1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14 
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35 
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
44 
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
49 
50 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
51 
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 	u8 class;
55 	u8 instance;
56 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
57 	struct engine_mmio_base {
58 		u32 graphics_ver : 8;
59 		u32 base : 24;
60 	} mmio_bases[MAX_MMIO_BASES];
61 };
62 
63 static const struct engine_info intel_engines[] = {
64 	[RCS0] = {
65 		.class = RENDER_CLASS,
66 		.instance = 0,
67 		.mmio_bases = {
68 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
69 		},
70 	},
71 	[BCS0] = {
72 		.class = COPY_ENGINE_CLASS,
73 		.instance = 0,
74 		.mmio_bases = {
75 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
76 		},
77 	},
78 	[BCS1] = {
79 		.class = COPY_ENGINE_CLASS,
80 		.instance = 1,
81 		.mmio_bases = {
82 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 		},
84 	},
85 	[BCS2] = {
86 		.class = COPY_ENGINE_CLASS,
87 		.instance = 2,
88 		.mmio_bases = {
89 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 		},
91 	},
92 	[BCS3] = {
93 		.class = COPY_ENGINE_CLASS,
94 		.instance = 3,
95 		.mmio_bases = {
96 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 		},
98 	},
99 	[BCS4] = {
100 		.class = COPY_ENGINE_CLASS,
101 		.instance = 4,
102 		.mmio_bases = {
103 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 		},
105 	},
106 	[BCS5] = {
107 		.class = COPY_ENGINE_CLASS,
108 		.instance = 5,
109 		.mmio_bases = {
110 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 		},
112 	},
113 	[BCS6] = {
114 		.class = COPY_ENGINE_CLASS,
115 		.instance = 6,
116 		.mmio_bases = {
117 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 		},
119 	},
120 	[BCS7] = {
121 		.class = COPY_ENGINE_CLASS,
122 		.instance = 7,
123 		.mmio_bases = {
124 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 		},
126 	},
127 	[BCS8] = {
128 		.class = COPY_ENGINE_CLASS,
129 		.instance = 8,
130 		.mmio_bases = {
131 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 		},
133 	},
134 	[VCS0] = {
135 		.class = VIDEO_DECODE_CLASS,
136 		.instance = 0,
137 		.mmio_bases = {
138 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
141 		},
142 	},
143 	[VCS1] = {
144 		.class = VIDEO_DECODE_CLASS,
145 		.instance = 1,
146 		.mmio_bases = {
147 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 		},
150 	},
151 	[VCS2] = {
152 		.class = VIDEO_DECODE_CLASS,
153 		.instance = 2,
154 		.mmio_bases = {
155 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 		},
157 	},
158 	[VCS3] = {
159 		.class = VIDEO_DECODE_CLASS,
160 		.instance = 3,
161 		.mmio_bases = {
162 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 		},
164 	},
165 	[VCS4] = {
166 		.class = VIDEO_DECODE_CLASS,
167 		.instance = 4,
168 		.mmio_bases = {
169 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 		},
171 	},
172 	[VCS5] = {
173 		.class = VIDEO_DECODE_CLASS,
174 		.instance = 5,
175 		.mmio_bases = {
176 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 		},
178 	},
179 	[VCS6] = {
180 		.class = VIDEO_DECODE_CLASS,
181 		.instance = 6,
182 		.mmio_bases = {
183 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 		},
185 	},
186 	[VCS7] = {
187 		.class = VIDEO_DECODE_CLASS,
188 		.instance = 7,
189 		.mmio_bases = {
190 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 		},
192 	},
193 	[VECS0] = {
194 		.class = VIDEO_ENHANCEMENT_CLASS,
195 		.instance = 0,
196 		.mmio_bases = {
197 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 		},
200 	},
201 	[VECS1] = {
202 		.class = VIDEO_ENHANCEMENT_CLASS,
203 		.instance = 1,
204 		.mmio_bases = {
205 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 		},
207 	},
208 	[VECS2] = {
209 		.class = VIDEO_ENHANCEMENT_CLASS,
210 		.instance = 2,
211 		.mmio_bases = {
212 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 		},
214 	},
215 	[VECS3] = {
216 		.class = VIDEO_ENHANCEMENT_CLASS,
217 		.instance = 3,
218 		.mmio_bases = {
219 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 		},
221 	},
222 	[CCS0] = {
223 		.class = COMPUTE_CLASS,
224 		.instance = 0,
225 		.mmio_bases = {
226 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 		}
228 	},
229 	[CCS1] = {
230 		.class = COMPUTE_CLASS,
231 		.instance = 1,
232 		.mmio_bases = {
233 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 		}
235 	},
236 	[CCS2] = {
237 		.class = COMPUTE_CLASS,
238 		.instance = 2,
239 		.mmio_bases = {
240 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 		}
242 	},
243 	[CCS3] = {
244 		.class = COMPUTE_CLASS,
245 		.instance = 3,
246 		.mmio_bases = {
247 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 		}
249 	},
250 	[GSC0] = {
251 		.class = OTHER_CLASS,
252 		.instance = OTHER_GSC_INSTANCE,
253 		.mmio_bases = {
254 			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 		}
256 	},
257 };
258 
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 	struct intel_uncore *uncore = gt->uncore;
276 	u32 cxt_size;
277 
278 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279 
280 	switch (class) {
281 	case COMPUTE_CLASS:
282 		fallthrough;
283 	case RENDER_CLASS:
284 		switch (GRAPHICS_VER(gt->i915)) {
285 		default:
286 			MISSING_CASE(GRAPHICS_VER(gt->i915));
287 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 		case 12:
289 		case 11:
290 			return GEN11_LR_CONTEXT_RENDER_SIZE;
291 		case 9:
292 			return GEN9_LR_CONTEXT_RENDER_SIZE;
293 		case 8:
294 			return GEN8_LR_CONTEXT_RENDER_SIZE;
295 		case 7:
296 			if (IS_HASWELL(gt->i915))
297 				return HSW_CXT_TOTAL_SIZE;
298 
299 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 					PAGE_SIZE);
302 		case 6:
303 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 					PAGE_SIZE);
306 		case 5:
307 		case 4:
308 			/*
309 			 * There is a discrepancy here between the size reported
310 			 * by the register and the size of the context layout
311 			 * in the docs. Both are described as authorative!
312 			 *
313 			 * The discrepancy is on the order of a few cachelines,
314 			 * but the total is under one page (4k), which is our
315 			 * minimum allocation anyway so it should all come
316 			 * out in the wash.
317 			 */
318 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 			drm_dbg(&gt->i915->drm,
320 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
321 				GRAPHICS_VER(gt->i915), cxt_size * 64,
322 				cxt_size - 1);
323 			return round_up(cxt_size * 64, PAGE_SIZE);
324 		case 3:
325 		case 2:
326 		/* For the special day when i810 gets merged. */
327 		case 1:
328 			return 0;
329 		}
330 		break;
331 	default:
332 		MISSING_CASE(class);
333 		fallthrough;
334 	case VIDEO_DECODE_CLASS:
335 	case VIDEO_ENHANCEMENT_CLASS:
336 	case COPY_ENGINE_CLASS:
337 	case OTHER_CLASS:
338 		if (GRAPHICS_VER(gt->i915) < 8)
339 			return 0;
340 		return GEN8_LR_CONTEXT_OTHER_SIZE;
341 	}
342 }
343 
344 static u32 __engine_mmio_base(struct drm_i915_private *i915,
345 			      const struct engine_mmio_base *bases)
346 {
347 	int i;
348 
349 	for (i = 0; i < MAX_MMIO_BASES; i++)
350 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
351 			break;
352 
353 	GEM_BUG_ON(i == MAX_MMIO_BASES);
354 	GEM_BUG_ON(!bases[i].base);
355 
356 	return bases[i].base;
357 }
358 
359 static void __sprint_engine_name(struct intel_engine_cs *engine)
360 {
361 	/*
362 	 * Before we know what the uABI name for this engine will be,
363 	 * we still would like to keep track of this engine in the debug logs.
364 	 * We throw in a ' here as a reminder that this isn't its final name.
365 	 */
366 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
367 			     intel_engine_class_repr(engine->class),
368 			     engine->instance) >= sizeof(engine->name));
369 }
370 
371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
372 {
373 	/*
374 	 * Though they added more rings on g4x/ilk, they did not add
375 	 * per-engine HWSTAM until gen6.
376 	 */
377 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
378 		return;
379 
380 	if (GRAPHICS_VER(engine->i915) >= 3)
381 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
382 	else
383 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
384 }
385 
386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 {
388 	/* Mask off all writes into the unknown HWSP */
389 	intel_engine_set_hwsp_writemask(engine, ~0u);
390 }
391 
392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 {
394 	GEM_DEBUG_WARN_ON(iir);
395 }
396 
397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
398 {
399 	u32 reset_domain;
400 
401 	if (ver >= 11) {
402 		static const u32 engine_reset_domains[] = {
403 			[RCS0]  = GEN11_GRDOM_RENDER,
404 			[BCS0]  = GEN11_GRDOM_BLT,
405 			[BCS1]  = XEHPC_GRDOM_BLT1,
406 			[BCS2]  = XEHPC_GRDOM_BLT2,
407 			[BCS3]  = XEHPC_GRDOM_BLT3,
408 			[BCS4]  = XEHPC_GRDOM_BLT4,
409 			[BCS5]  = XEHPC_GRDOM_BLT5,
410 			[BCS6]  = XEHPC_GRDOM_BLT6,
411 			[BCS7]  = XEHPC_GRDOM_BLT7,
412 			[BCS8]  = XEHPC_GRDOM_BLT8,
413 			[VCS0]  = GEN11_GRDOM_MEDIA,
414 			[VCS1]  = GEN11_GRDOM_MEDIA2,
415 			[VCS2]  = GEN11_GRDOM_MEDIA3,
416 			[VCS3]  = GEN11_GRDOM_MEDIA4,
417 			[VCS4]  = GEN11_GRDOM_MEDIA5,
418 			[VCS5]  = GEN11_GRDOM_MEDIA6,
419 			[VCS6]  = GEN11_GRDOM_MEDIA7,
420 			[VCS7]  = GEN11_GRDOM_MEDIA8,
421 			[VECS0] = GEN11_GRDOM_VECS,
422 			[VECS1] = GEN11_GRDOM_VECS2,
423 			[VECS2] = GEN11_GRDOM_VECS3,
424 			[VECS3] = GEN11_GRDOM_VECS4,
425 			[CCS0]  = GEN11_GRDOM_RENDER,
426 			[CCS1]  = GEN11_GRDOM_RENDER,
427 			[CCS2]  = GEN11_GRDOM_RENDER,
428 			[CCS3]  = GEN11_GRDOM_RENDER,
429 			[GSC0]  = GEN12_GRDOM_GSC,
430 		};
431 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
432 			   !engine_reset_domains[id]);
433 		reset_domain = engine_reset_domains[id];
434 	} else {
435 		static const u32 engine_reset_domains[] = {
436 			[RCS0]  = GEN6_GRDOM_RENDER,
437 			[BCS0]  = GEN6_GRDOM_BLT,
438 			[VCS0]  = GEN6_GRDOM_MEDIA,
439 			[VCS1]  = GEN8_GRDOM_MEDIA2,
440 			[VECS0] = GEN6_GRDOM_VECS,
441 		};
442 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
443 			   !engine_reset_domains[id]);
444 		reset_domain = engine_reset_domains[id];
445 	}
446 
447 	return reset_domain;
448 }
449 
450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
451 			      u8 logical_instance)
452 {
453 	const struct engine_info *info = &intel_engines[id];
454 	struct drm_i915_private *i915 = gt->i915;
455 	struct intel_engine_cs *engine;
456 	u8 guc_class;
457 
458 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
459 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
460 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
461 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462 
463 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
464 		return -EINVAL;
465 
466 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
467 		return -EINVAL;
468 
469 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
470 		return -EINVAL;
471 
472 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
473 		return -EINVAL;
474 
475 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
476 	if (!engine)
477 		return -ENOMEM;
478 
479 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480 
481 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
482 	engine->id = id;
483 	engine->legacy_idx = INVALID_ENGINE;
484 	engine->mask = BIT(id);
485 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
486 						id);
487 	engine->i915 = i915;
488 	engine->gt = gt;
489 	engine->uncore = gt->uncore;
490 	guc_class = engine_class_to_guc_class(info->class);
491 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
492 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493 
494 	engine->irq_handler = nop_irq_handler;
495 
496 	engine->class = info->class;
497 	engine->instance = info->instance;
498 	engine->logical_mask = BIT(logical_instance);
499 	__sprint_engine_name(engine);
500 
501 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
502 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
503 	     engine->class == RENDER_CLASS)
504 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
505 
506 	/* features common between engines sharing EUs */
507 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
508 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
509 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
510 	}
511 
512 	engine->props.heartbeat_interval_ms =
513 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
514 	engine->props.max_busywait_duration_ns =
515 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
516 	engine->props.preempt_timeout_ms =
517 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
518 	engine->props.stop_timeout_ms =
519 		CONFIG_DRM_I915_STOP_TIMEOUT;
520 	engine->props.timeslice_duration_ms =
521 		CONFIG_DRM_I915_TIMESLICE_DURATION;
522 
523 	/*
524 	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
525 	 * some compute workloads run quite long threads. That means they get
526 	 * reset due to not pre-empting in a timely manner. So, bump the
527 	 * pre-emption timeout value to be much higher for compute engines.
528 	 */
529 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
530 		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
531 
532 	/* Cap properties according to any system limits */
533 #define CLAMP_PROP(field) \
534 	do { \
535 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
536 		if (clamp != engine->props.field) { \
537 			drm_notice(&engine->i915->drm, \
538 				   "Warning, clamping %s to %lld to prevent overflow\n", \
539 				   #field, clamp); \
540 			engine->props.field = clamp; \
541 		} \
542 	} while (0)
543 
544 	CLAMP_PROP(heartbeat_interval_ms);
545 	CLAMP_PROP(max_busywait_duration_ns);
546 	CLAMP_PROP(preempt_timeout_ms);
547 	CLAMP_PROP(stop_timeout_ms);
548 	CLAMP_PROP(timeslice_duration_ms);
549 
550 #undef CLAMP_PROP
551 
552 	engine->defaults = engine->props; /* never to change again */
553 
554 	engine->context_size = intel_engine_context_size(gt, engine->class);
555 	if (WARN_ON(engine->context_size > BIT(20)))
556 		engine->context_size = 0;
557 	if (engine->context_size)
558 		DRIVER_CAPS(i915)->has_logical_contexts = true;
559 
560 	ewma__engine_latency_init(&engine->latency);
561 	seqcount_init(&engine->stats.execlists.lock);
562 
563 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
564 
565 	/* Scrub mmio state on takeover */
566 	intel_engine_sanitize_mmio(engine);
567 
568 	gt->engine_class[info->class][info->instance] = engine;
569 	gt->engine[id] = engine;
570 
571 	return 0;
572 }
573 
574 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
575 {
576 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
577 
578 	return value;
579 }
580 
581 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
582 {
583 	value = min(value, jiffies_to_nsecs(2));
584 
585 	return value;
586 }
587 
588 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
589 {
590 	/*
591 	 * NB: The GuC API only supports 32bit values. However, the limit is further
592 	 * reduced due to internal calculations which would otherwise overflow.
593 	 */
594 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
595 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
596 
597 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
598 
599 	return value;
600 }
601 
602 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
603 {
604 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
605 
606 	return value;
607 }
608 
609 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
610 {
611 	/*
612 	 * NB: The GuC API only supports 32bit values. However, the limit is further
613 	 * reduced due to internal calculations which would otherwise overflow.
614 	 */
615 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
616 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
617 
618 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
619 
620 	return value;
621 }
622 
623 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
624 {
625 	struct drm_i915_private *i915 = engine->i915;
626 
627 	if (engine->class == VIDEO_DECODE_CLASS) {
628 		/*
629 		 * HEVC support is present on first engine instance
630 		 * before Gen11 and on all instances afterwards.
631 		 */
632 		if (GRAPHICS_VER(i915) >= 11 ||
633 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
634 			engine->uabi_capabilities |=
635 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
636 
637 		/*
638 		 * SFC block is present only on even logical engine
639 		 * instances.
640 		 */
641 		if ((GRAPHICS_VER(i915) >= 11 &&
642 		     (engine->gt->info.vdbox_sfc_access &
643 		      BIT(engine->instance))) ||
644 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
645 			engine->uabi_capabilities |=
646 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
647 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
648 		if (GRAPHICS_VER(i915) >= 9 &&
649 		    engine->gt->info.sfc_mask & BIT(engine->instance))
650 			engine->uabi_capabilities |=
651 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
652 	}
653 }
654 
655 static void intel_setup_engine_capabilities(struct intel_gt *gt)
656 {
657 	struct intel_engine_cs *engine;
658 	enum intel_engine_id id;
659 
660 	for_each_engine(engine, gt, id)
661 		__setup_engine_capabilities(engine);
662 }
663 
664 /**
665  * intel_engines_release() - free the resources allocated for Command Streamers
666  * @gt: pointer to struct intel_gt
667  */
668 void intel_engines_release(struct intel_gt *gt)
669 {
670 	struct intel_engine_cs *engine;
671 	enum intel_engine_id id;
672 
673 	/*
674 	 * Before we release the resources held by engine, we must be certain
675 	 * that the HW is no longer accessing them -- having the GPU scribble
676 	 * to or read from a page being used for something else causes no end
677 	 * of fun.
678 	 *
679 	 * The GPU should be reset by this point, but assume the worst just
680 	 * in case we aborted before completely initialising the engines.
681 	 */
682 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
683 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
684 		__intel_gt_reset(gt, ALL_ENGINES);
685 
686 	/* Decouple the backend; but keep the layout for late GPU resets */
687 	for_each_engine(engine, gt, id) {
688 		if (!engine->release)
689 			continue;
690 
691 		intel_wakeref_wait_for_idle(&engine->wakeref);
692 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
693 
694 		engine->release(engine);
695 		engine->release = NULL;
696 
697 		memset(&engine->reset, 0, sizeof(engine->reset));
698 	}
699 }
700 
701 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
702 {
703 	if (!engine->request_pool)
704 		return;
705 
706 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
707 }
708 
709 void intel_engines_free(struct intel_gt *gt)
710 {
711 	struct intel_engine_cs *engine;
712 	enum intel_engine_id id;
713 
714 	/* Free the requests! dma-resv keeps fences around for an eternity */
715 	rcu_barrier();
716 
717 	for_each_engine(engine, gt, id) {
718 		intel_engine_free_request_pool(engine);
719 		kfree(engine);
720 		gt->engine[id] = NULL;
721 	}
722 }
723 
724 static
725 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
726 			 unsigned int physical_vdbox,
727 			 unsigned int logical_vdbox, u16 vdbox_mask)
728 {
729 	struct drm_i915_private *i915 = gt->i915;
730 
731 	/*
732 	 * In Gen11, only even numbered logical VDBOXes are hooked
733 	 * up to an SFC (Scaler & Format Converter) unit.
734 	 * In Gen12, Even numbered physical instance always are connected
735 	 * to an SFC. Odd numbered physical instances have SFC only if
736 	 * previous even instance is fused off.
737 	 *
738 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
739 	 * in the fuse register that tells us whether a specific SFC is present.
740 	 */
741 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
742 		return false;
743 	else if (MEDIA_VER(i915) >= 12)
744 		return (physical_vdbox % 2 == 0) ||
745 			!(BIT(physical_vdbox - 1) & vdbox_mask);
746 	else if (MEDIA_VER(i915) == 11)
747 		return logical_vdbox % 2 == 0;
748 
749 	return false;
750 }
751 
752 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
753 {
754 	struct drm_i915_private *i915 = gt->i915;
755 	unsigned int logical_vdbox = 0;
756 	unsigned int i;
757 	u32 media_fuse, fuse1;
758 	u16 vdbox_mask;
759 	u16 vebox_mask;
760 
761 	if (MEDIA_VER(gt->i915) < 11)
762 		return;
763 
764 	/*
765 	 * On newer platforms the fusing register is called 'enable' and has
766 	 * enable semantics, while on older platforms it is called 'disable'
767 	 * and bits have disable semantices.
768 	 */
769 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
770 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
771 		media_fuse = ~media_fuse;
772 
773 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
774 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
775 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
776 
777 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
778 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
779 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
780 	} else {
781 		gt->info.sfc_mask = ~0;
782 	}
783 
784 	for (i = 0; i < I915_MAX_VCS; i++) {
785 		if (!HAS_ENGINE(gt, _VCS(i))) {
786 			vdbox_mask &= ~BIT(i);
787 			continue;
788 		}
789 
790 		if (!(BIT(i) & vdbox_mask)) {
791 			gt->info.engine_mask &= ~BIT(_VCS(i));
792 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
793 			continue;
794 		}
795 
796 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
797 			gt->info.vdbox_sfc_access |= BIT(i);
798 		logical_vdbox++;
799 	}
800 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
801 		vdbox_mask, VDBOX_MASK(gt));
802 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
803 
804 	for (i = 0; i < I915_MAX_VECS; i++) {
805 		if (!HAS_ENGINE(gt, _VECS(i))) {
806 			vebox_mask &= ~BIT(i);
807 			continue;
808 		}
809 
810 		if (!(BIT(i) & vebox_mask)) {
811 			gt->info.engine_mask &= ~BIT(_VECS(i));
812 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
813 		}
814 	}
815 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
816 		vebox_mask, VEBOX_MASK(gt));
817 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
818 }
819 
820 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
821 {
822 	struct drm_i915_private *i915 = gt->i915;
823 	struct intel_gt_info *info = &gt->info;
824 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
825 	unsigned long ccs_mask;
826 	unsigned int i;
827 
828 	if (GRAPHICS_VER(i915) < 11)
829 		return;
830 
831 	if (hweight32(CCS_MASK(gt)) <= 1)
832 		return;
833 
834 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
835 						     ss_per_ccs);
836 	/*
837 	 * If all DSS in a quadrant are fused off, the corresponding CCS
838 	 * engine is not available for use.
839 	 */
840 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
841 		info->engine_mask &= ~BIT(_CCS(i));
842 		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
843 	}
844 }
845 
846 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
847 {
848 	struct drm_i915_private *i915 = gt->i915;
849 	struct intel_gt_info *info = &gt->info;
850 	unsigned long meml3_mask;
851 	unsigned long quad;
852 
853 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
854 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
855 		return;
856 
857 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
858 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
859 
860 	/*
861 	 * Link Copy engines may be fused off according to meml3_mask. Each
862 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
863 	 */
864 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
865 		unsigned int instance = quad * 2 + 1;
866 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
867 						   _BCS(instance));
868 
869 		if (mask & info->engine_mask) {
870 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
871 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
872 
873 			info->engine_mask &= ~mask;
874 		}
875 	}
876 }
877 
878 /*
879  * Determine which engines are fused off in our particular hardware.
880  * Note that we have a catch-22 situation where we need to be able to access
881  * the blitter forcewake domain to read the engine fuses, but at the same time
882  * we need to know which engines are available on the system to know which
883  * forcewake domains are present. We solve this by intializing the forcewake
884  * domains based on the full engine mask in the platform capabilities before
885  * calling this function and pruning the domains for fused-off engines
886  * afterwards.
887  */
888 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
889 {
890 	struct intel_gt_info *info = &gt->info;
891 
892 	GEM_BUG_ON(!info->engine_mask);
893 
894 	engine_mask_apply_media_fuses(gt);
895 	engine_mask_apply_compute_fuses(gt);
896 	engine_mask_apply_copy_fuses(gt);
897 
898 	/*
899 	 * The only use of the GSC CS is to load and communicate with the GSC
900 	 * FW, so we have no use for it if we don't have the FW.
901 	 *
902 	 * IMPORTANT: in cases where we don't have the GSC FW, we have a
903 	 * catch-22 situation that breaks media C6 due to 2 requirements:
904 	 * 1) once turned on, the GSC power well will not go to sleep unless the
905 	 *    GSC FW is loaded.
906 	 * 2) to enable idling (which is required for media C6) we need to
907 	 *    initialize the IDLE_MSG register for the GSC CS and do at least 1
908 	 *    submission, which will wake up the GSC power well.
909 	 */
910 	if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
911 		drm_notice(&gt->i915->drm,
912 			   "No GSC FW selected, disabling GSC CS and media C6\n");
913 		info->engine_mask &= ~BIT(GSC0);
914 	}
915 
916 	return info->engine_mask;
917 }
918 
919 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
920 				 u8 class, const u8 *map, u8 num_instances)
921 {
922 	int i, j;
923 	u8 current_logical_id = 0;
924 
925 	for (j = 0; j < num_instances; ++j) {
926 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
927 			if (!HAS_ENGINE(gt, i) ||
928 			    intel_engines[i].class != class)
929 				continue;
930 
931 			if (intel_engines[i].instance == map[j]) {
932 				logical_ids[intel_engines[i].instance] =
933 					current_logical_id++;
934 				break;
935 			}
936 		}
937 	}
938 }
939 
940 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
941 {
942 	/*
943 	 * Logical to physical mapping is needed for proper support
944 	 * to split-frame feature.
945 	 */
946 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
947 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
948 
949 		populate_logical_ids(gt, logical_ids, class,
950 				     map, ARRAY_SIZE(map));
951 	} else {
952 		int i;
953 		u8 map[MAX_ENGINE_INSTANCE + 1];
954 
955 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
956 			map[i] = i;
957 		populate_logical_ids(gt, logical_ids, class,
958 				     map, ARRAY_SIZE(map));
959 	}
960 }
961 
962 /**
963  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
964  * @gt: pointer to struct intel_gt
965  *
966  * Return: non-zero if the initialization failed.
967  */
968 int intel_engines_init_mmio(struct intel_gt *gt)
969 {
970 	struct drm_i915_private *i915 = gt->i915;
971 	const unsigned int engine_mask = init_engine_mask(gt);
972 	unsigned int mask = 0;
973 	unsigned int i, class;
974 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
975 	int err;
976 
977 	drm_WARN_ON(&i915->drm, engine_mask == 0);
978 	drm_WARN_ON(&i915->drm, engine_mask &
979 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
980 
981 	if (i915_inject_probe_failure(i915))
982 		return -ENODEV;
983 
984 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
985 		setup_logical_ids(gt, logical_ids, class);
986 
987 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
988 			u8 instance = intel_engines[i].instance;
989 
990 			if (intel_engines[i].class != class ||
991 			    !HAS_ENGINE(gt, i))
992 				continue;
993 
994 			err = intel_engine_setup(gt, i,
995 						 logical_ids[instance]);
996 			if (err)
997 				goto cleanup;
998 
999 			mask |= BIT(i);
1000 		}
1001 	}
1002 
1003 	/*
1004 	 * Catch failures to update intel_engines table when the new engines
1005 	 * are added to the driver by a warning and disabling the forgotten
1006 	 * engines.
1007 	 */
1008 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1009 		gt->info.engine_mask = mask;
1010 
1011 	gt->info.num_engines = hweight32(mask);
1012 
1013 	intel_gt_check_and_clear_faults(gt);
1014 
1015 	intel_setup_engine_capabilities(gt);
1016 
1017 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1018 
1019 	return 0;
1020 
1021 cleanup:
1022 	intel_engines_free(gt);
1023 	return err;
1024 }
1025 
1026 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1027 {
1028 	struct intel_engine_execlists * const execlists = &engine->execlists;
1029 
1030 	execlists->port_mask = 1;
1031 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1032 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1033 
1034 	memset(execlists->pending, 0, sizeof(execlists->pending));
1035 	execlists->active =
1036 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1037 }
1038 
1039 static void cleanup_status_page(struct intel_engine_cs *engine)
1040 {
1041 	struct i915_vma *vma;
1042 
1043 	/* Prevent writes into HWSP after returning the page to the system */
1044 	intel_engine_set_hwsp_writemask(engine, ~0u);
1045 
1046 	vma = fetch_and_zero(&engine->status_page.vma);
1047 	if (!vma)
1048 		return;
1049 
1050 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1051 		i915_vma_unpin(vma);
1052 
1053 	i915_gem_object_unpin_map(vma->obj);
1054 	i915_gem_object_put(vma->obj);
1055 }
1056 
1057 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1058 				struct i915_gem_ww_ctx *ww,
1059 				struct i915_vma *vma)
1060 {
1061 	unsigned int flags;
1062 
1063 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1064 		/*
1065 		 * On g33, we cannot place HWS above 256MiB, so
1066 		 * restrict its pinning to the low mappable arena.
1067 		 * Though this restriction is not documented for
1068 		 * gen4, gen5, or byt, they also behave similarly
1069 		 * and hang if the HWS is placed at the top of the
1070 		 * GTT. To generalise, it appears that all !llc
1071 		 * platforms have issues with us placing the HWS
1072 		 * above the mappable region (even though we never
1073 		 * actually map it).
1074 		 */
1075 		flags = PIN_MAPPABLE;
1076 	else
1077 		flags = PIN_HIGH;
1078 
1079 	return i915_ggtt_pin(vma, ww, 0, flags);
1080 }
1081 
1082 static int init_status_page(struct intel_engine_cs *engine)
1083 {
1084 	struct drm_i915_gem_object *obj;
1085 	struct i915_gem_ww_ctx ww;
1086 	struct i915_vma *vma;
1087 	void *vaddr;
1088 	int ret;
1089 
1090 	INIT_LIST_HEAD(&engine->status_page.timelines);
1091 
1092 	/*
1093 	 * Though the HWS register does support 36bit addresses, historically
1094 	 * we have had hangs and corruption reported due to wild writes if
1095 	 * the HWS is placed above 4G. We only allow objects to be allocated
1096 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1097 	 * access to more than 4G.
1098 	 */
1099 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1100 	if (IS_ERR(obj)) {
1101 		drm_err(&engine->i915->drm,
1102 			"Failed to allocate status page\n");
1103 		return PTR_ERR(obj);
1104 	}
1105 
1106 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1107 
1108 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1109 	if (IS_ERR(vma)) {
1110 		ret = PTR_ERR(vma);
1111 		goto err_put;
1112 	}
1113 
1114 	i915_gem_ww_ctx_init(&ww, true);
1115 retry:
1116 	ret = i915_gem_object_lock(obj, &ww);
1117 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1118 		ret = pin_ggtt_status_page(engine, &ww, vma);
1119 	if (ret)
1120 		goto err;
1121 
1122 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1123 	if (IS_ERR(vaddr)) {
1124 		ret = PTR_ERR(vaddr);
1125 		goto err_unpin;
1126 	}
1127 
1128 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1129 	engine->status_page.vma = vma;
1130 
1131 err_unpin:
1132 	if (ret)
1133 		i915_vma_unpin(vma);
1134 err:
1135 	if (ret == -EDEADLK) {
1136 		ret = i915_gem_ww_ctx_backoff(&ww);
1137 		if (!ret)
1138 			goto retry;
1139 	}
1140 	i915_gem_ww_ctx_fini(&ww);
1141 err_put:
1142 	if (ret)
1143 		i915_gem_object_put(obj);
1144 	return ret;
1145 }
1146 
1147 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1148 {
1149 	static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1150 		[RENDER_CLASS].reg		= GEN8_RTCR,
1151 		[VIDEO_DECODE_CLASS].reg	= GEN8_M1TCR, /* , GEN8_M2TCR */
1152 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN8_VTCR,
1153 		[COPY_ENGINE_CLASS].reg		= GEN8_BTCR,
1154 	};
1155 	static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1156 		[RENDER_CLASS].reg		= GEN12_GFX_TLB_INV_CR,
1157 		[VIDEO_DECODE_CLASS].reg	= GEN12_VD_TLB_INV_CR,
1158 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN12_VE_TLB_INV_CR,
1159 		[COPY_ENGINE_CLASS].reg		= GEN12_BLT_TLB_INV_CR,
1160 		[COMPUTE_CLASS].reg		= GEN12_COMPCTX_TLB_INV_CR,
1161 	};
1162 	static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1163 		[RENDER_CLASS].mcr_reg		  = XEHP_GFX_TLB_INV_CR,
1164 		[VIDEO_DECODE_CLASS].mcr_reg	  = XEHP_VD_TLB_INV_CR,
1165 		[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1166 		[COPY_ENGINE_CLASS].mcr_reg	  = XEHP_BLT_TLB_INV_CR,
1167 		[COMPUTE_CLASS].mcr_reg		  = XEHP_COMPCTX_TLB_INV_CR,
1168 	};
1169 	struct drm_i915_private *i915 = engine->i915;
1170 	const unsigned int instance = engine->instance;
1171 	const unsigned int class = engine->class;
1172 	const union intel_engine_tlb_inv_reg *regs;
1173 	union intel_engine_tlb_inv_reg reg;
1174 	unsigned int num = 0;
1175 	u32 val;
1176 
1177 	/*
1178 	 * New platforms should not be added with catch-all-newer (>=)
1179 	 * condition so that any later platform added triggers the below warning
1180 	 * and in turn mandates a human cross-check of whether the invalidation
1181 	 * flows have compatible semantics.
1182 	 *
1183 	 * For instance with the 11.00 -> 12.00 transition three out of five
1184 	 * respective engine registers were moved to masked type. Then after the
1185 	 * 12.00 -> 12.50 transition multi cast handling is required too.
1186 	 */
1187 
1188 	if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1189 	    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1190 		regs = xehp_regs;
1191 		num = ARRAY_SIZE(xehp_regs);
1192 	} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1193 		   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1194 		regs = gen12_regs;
1195 		num = ARRAY_SIZE(gen12_regs);
1196 	} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1197 		regs = gen8_regs;
1198 		num = ARRAY_SIZE(gen8_regs);
1199 	} else if (GRAPHICS_VER(i915) < 8) {
1200 		return 0;
1201 	}
1202 
1203 	if (gt_WARN_ONCE(engine->gt, !num,
1204 			 "Platform does not implement TLB invalidation!"))
1205 		return -ENODEV;
1206 
1207 	if (gt_WARN_ON_ONCE(engine->gt,
1208 			    class >= num ||
1209 			    (!regs[class].reg.reg &&
1210 			     !regs[class].mcr_reg.reg)))
1211 		return -ERANGE;
1212 
1213 	reg = regs[class];
1214 
1215 	if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1216 		reg.reg = GEN8_M2TCR;
1217 		val = 0;
1218 	} else {
1219 		val = instance;
1220 	}
1221 
1222 	val = BIT(val);
1223 
1224 	engine->tlb_inv.mcr = regs == xehp_regs;
1225 	engine->tlb_inv.reg = reg;
1226 	engine->tlb_inv.done = val;
1227 
1228 	if (GRAPHICS_VER(i915) >= 12 &&
1229 	    (engine->class == VIDEO_DECODE_CLASS ||
1230 	     engine->class == VIDEO_ENHANCEMENT_CLASS ||
1231 	     engine->class == COMPUTE_CLASS))
1232 		engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1233 	else
1234 		engine->tlb_inv.request = val;
1235 
1236 	return 0;
1237 }
1238 
1239 static int engine_setup_common(struct intel_engine_cs *engine)
1240 {
1241 	int err;
1242 
1243 	init_llist_head(&engine->barrier_tasks);
1244 
1245 	err = intel_engine_init_tlb_invalidation(engine);
1246 	if (err)
1247 		return err;
1248 
1249 	err = init_status_page(engine);
1250 	if (err)
1251 		return err;
1252 
1253 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1254 	if (!engine->breadcrumbs) {
1255 		err = -ENOMEM;
1256 		goto err_status;
1257 	}
1258 
1259 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1260 	if (!engine->sched_engine) {
1261 		err = -ENOMEM;
1262 		goto err_sched_engine;
1263 	}
1264 	engine->sched_engine->private_data = engine;
1265 
1266 	err = intel_engine_init_cmd_parser(engine);
1267 	if (err)
1268 		goto err_cmd_parser;
1269 
1270 	intel_engine_init_execlists(engine);
1271 	intel_engine_init__pm(engine);
1272 	intel_engine_init_retire(engine);
1273 
1274 	/* Use the whole device by default */
1275 	engine->sseu =
1276 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1277 
1278 	intel_engine_init_workarounds(engine);
1279 	intel_engine_init_whitelist(engine);
1280 	intel_engine_init_ctx_wa(engine);
1281 
1282 	if (GRAPHICS_VER(engine->i915) >= 12)
1283 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1284 
1285 	return 0;
1286 
1287 err_cmd_parser:
1288 	i915_sched_engine_put(engine->sched_engine);
1289 err_sched_engine:
1290 	intel_breadcrumbs_put(engine->breadcrumbs);
1291 err_status:
1292 	cleanup_status_page(engine);
1293 	return err;
1294 }
1295 
1296 struct measure_breadcrumb {
1297 	struct i915_request rq;
1298 	struct intel_ring ring;
1299 	u32 cs[2048];
1300 };
1301 
1302 static int measure_breadcrumb_dw(struct intel_context *ce)
1303 {
1304 	struct intel_engine_cs *engine = ce->engine;
1305 	struct measure_breadcrumb *frame;
1306 	int dw;
1307 
1308 	GEM_BUG_ON(!engine->gt->scratch);
1309 
1310 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1311 	if (!frame)
1312 		return -ENOMEM;
1313 
1314 	frame->rq.engine = engine;
1315 	frame->rq.context = ce;
1316 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1317 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1318 
1319 	frame->ring.vaddr = frame->cs;
1320 	frame->ring.size = sizeof(frame->cs);
1321 	frame->ring.wrap =
1322 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1323 	frame->ring.effective_size = frame->ring.size;
1324 	intel_ring_update_space(&frame->ring);
1325 	frame->rq.ring = &frame->ring;
1326 
1327 	mutex_lock(&ce->timeline->mutex);
1328 	spin_lock_irq(&engine->sched_engine->lock);
1329 
1330 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1331 
1332 	spin_unlock_irq(&engine->sched_engine->lock);
1333 	mutex_unlock(&ce->timeline->mutex);
1334 
1335 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1336 
1337 	kfree(frame);
1338 	return dw;
1339 }
1340 
1341 struct intel_context *
1342 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1343 				   struct i915_address_space *vm,
1344 				   unsigned int ring_size,
1345 				   unsigned int hwsp,
1346 				   struct lock_class_key *key,
1347 				   const char *name)
1348 {
1349 	struct intel_context *ce;
1350 	int err;
1351 
1352 	ce = intel_context_create(engine);
1353 	if (IS_ERR(ce))
1354 		return ce;
1355 
1356 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1357 	ce->timeline = page_pack_bits(NULL, hwsp);
1358 	ce->ring = NULL;
1359 	ce->ring_size = ring_size;
1360 
1361 	i915_vm_put(ce->vm);
1362 	ce->vm = i915_vm_get(vm);
1363 
1364 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1365 	if (err) {
1366 		intel_context_put(ce);
1367 		return ERR_PTR(err);
1368 	}
1369 
1370 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1371 
1372 	/*
1373 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1374 	 * so that we can use them from within the normal user timelines
1375 	 * should we need to inject GPU operations during their request
1376 	 * construction.
1377 	 */
1378 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1379 
1380 	return ce;
1381 }
1382 
1383 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1384 {
1385 	struct intel_engine_cs *engine = ce->engine;
1386 	struct i915_vma *hwsp = engine->status_page.vma;
1387 
1388 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1389 
1390 	mutex_lock(&hwsp->vm->mutex);
1391 	list_del(&ce->timeline->engine_link);
1392 	mutex_unlock(&hwsp->vm->mutex);
1393 
1394 	list_del(&ce->pinned_contexts_link);
1395 	intel_context_unpin(ce);
1396 	intel_context_put(ce);
1397 }
1398 
1399 static struct intel_context *
1400 create_kernel_context(struct intel_engine_cs *engine)
1401 {
1402 	static struct lock_class_key kernel;
1403 
1404 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1405 						  I915_GEM_HWS_SEQNO_ADDR,
1406 						  &kernel, "kernel_context");
1407 }
1408 
1409 /**
1410  * intel_engines_init_common - initialize cengine state which might require hw access
1411  * @engine: Engine to initialize.
1412  *
1413  * Initializes @engine@ structure members shared between legacy and execlists
1414  * submission modes which do require hardware access.
1415  *
1416  * Typcally done at later stages of submission mode specific engine setup.
1417  *
1418  * Returns zero on success or an error code on failure.
1419  */
1420 static int engine_init_common(struct intel_engine_cs *engine)
1421 {
1422 	struct intel_context *ce;
1423 	int ret;
1424 
1425 	engine->set_default_submission(engine);
1426 
1427 	/*
1428 	 * We may need to do things with the shrinker which
1429 	 * require us to immediately switch back to the default
1430 	 * context. This can cause a problem as pinning the
1431 	 * default context also requires GTT space which may not
1432 	 * be available. To avoid this we always pin the default
1433 	 * context.
1434 	 */
1435 	ce = create_kernel_context(engine);
1436 	if (IS_ERR(ce))
1437 		return PTR_ERR(ce);
1438 
1439 	ret = measure_breadcrumb_dw(ce);
1440 	if (ret < 0)
1441 		goto err_context;
1442 
1443 	engine->emit_fini_breadcrumb_dw = ret;
1444 	engine->kernel_context = ce;
1445 
1446 	return 0;
1447 
1448 err_context:
1449 	intel_engine_destroy_pinned_context(ce);
1450 	return ret;
1451 }
1452 
1453 int intel_engines_init(struct intel_gt *gt)
1454 {
1455 	int (*setup)(struct intel_engine_cs *engine);
1456 	struct intel_engine_cs *engine;
1457 	enum intel_engine_id id;
1458 	int err;
1459 
1460 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1461 		gt->submission_method = INTEL_SUBMISSION_GUC;
1462 		setup = intel_guc_submission_setup;
1463 	} else if (HAS_EXECLISTS(gt->i915)) {
1464 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1465 		setup = intel_execlists_submission_setup;
1466 	} else {
1467 		gt->submission_method = INTEL_SUBMISSION_RING;
1468 		setup = intel_ring_submission_setup;
1469 	}
1470 
1471 	for_each_engine(engine, gt, id) {
1472 		err = engine_setup_common(engine);
1473 		if (err)
1474 			return err;
1475 
1476 		err = setup(engine);
1477 		if (err) {
1478 			intel_engine_cleanup_common(engine);
1479 			return err;
1480 		}
1481 
1482 		/* The backend should now be responsible for cleanup */
1483 		GEM_BUG_ON(engine->release == NULL);
1484 
1485 		err = engine_init_common(engine);
1486 		if (err)
1487 			return err;
1488 
1489 		intel_engine_add_user(engine);
1490 	}
1491 
1492 	return 0;
1493 }
1494 
1495 /**
1496  * intel_engines_cleanup_common - cleans up the engine state created by
1497  *                                the common initiailizers.
1498  * @engine: Engine to cleanup.
1499  *
1500  * This cleans up everything created by the common helpers.
1501  */
1502 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1503 {
1504 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1505 
1506 	i915_sched_engine_put(engine->sched_engine);
1507 	intel_breadcrumbs_put(engine->breadcrumbs);
1508 
1509 	intel_engine_fini_retire(engine);
1510 	intel_engine_cleanup_cmd_parser(engine);
1511 
1512 	if (engine->default_state)
1513 		fput(engine->default_state);
1514 
1515 	if (engine->kernel_context)
1516 		intel_engine_destroy_pinned_context(engine->kernel_context);
1517 
1518 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1519 	cleanup_status_page(engine);
1520 
1521 	intel_wa_list_free(&engine->ctx_wa_list);
1522 	intel_wa_list_free(&engine->wa_list);
1523 	intel_wa_list_free(&engine->whitelist);
1524 }
1525 
1526 /**
1527  * intel_engine_resume - re-initializes the HW state of the engine
1528  * @engine: Engine to resume.
1529  *
1530  * Returns zero on success or an error code on failure.
1531  */
1532 int intel_engine_resume(struct intel_engine_cs *engine)
1533 {
1534 	intel_engine_apply_workarounds(engine);
1535 	intel_engine_apply_whitelist(engine);
1536 
1537 	return engine->resume(engine);
1538 }
1539 
1540 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1541 {
1542 	struct drm_i915_private *i915 = engine->i915;
1543 
1544 	u64 acthd;
1545 
1546 	if (GRAPHICS_VER(i915) >= 8)
1547 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1548 	else if (GRAPHICS_VER(i915) >= 4)
1549 		acthd = ENGINE_READ(engine, RING_ACTHD);
1550 	else
1551 		acthd = ENGINE_READ(engine, ACTHD);
1552 
1553 	return acthd;
1554 }
1555 
1556 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1557 {
1558 	u64 bbaddr;
1559 
1560 	if (GRAPHICS_VER(engine->i915) >= 8)
1561 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1562 	else
1563 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1564 
1565 	return bbaddr;
1566 }
1567 
1568 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1569 {
1570 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1571 		return 0;
1572 
1573 	/*
1574 	 * If we are doing a normal GPU reset, we can take our time and allow
1575 	 * the engine to quiesce. We've stopped submission to the engine, and
1576 	 * if we wait long enough an innocent context should complete and
1577 	 * leave the engine idle. So they should not be caught unaware by
1578 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1579 	 */
1580 	return READ_ONCE(engine->props.stop_timeout_ms);
1581 }
1582 
1583 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1584 				  int fast_timeout_us,
1585 				  int slow_timeout_ms)
1586 {
1587 	struct intel_uncore *uncore = engine->uncore;
1588 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1589 	int err;
1590 
1591 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1592 
1593 	/*
1594 	 * Wa_22011802037: Prior to doing a reset, ensure CS is
1595 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1596 	 */
1597 	if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
1598 	    (GRAPHICS_VER(engine->i915) >= 11 &&
1599 	    GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70)))
1600 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1601 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1602 
1603 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1604 					   MODE_IDLE, MODE_IDLE,
1605 					   fast_timeout_us,
1606 					   slow_timeout_ms,
1607 					   NULL);
1608 
1609 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1610 	intel_uncore_posting_read_fw(uncore, mode);
1611 	return err;
1612 }
1613 
1614 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1615 {
1616 	int err = 0;
1617 
1618 	if (GRAPHICS_VER(engine->i915) < 3)
1619 		return -ENODEV;
1620 
1621 	ENGINE_TRACE(engine, "\n");
1622 	/*
1623 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1624 	 * especially with gem_eio tests.
1625 	 *
1626 	 * Occasionally trying to stop the cs times out, but does not adversely
1627 	 * affect functionality. The timeout is set as a config parameter that
1628 	 * defaults to 100ms. In most cases the follow up operation is to wait
1629 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1630 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1631 	 * caused, the caller must check and handle the return from this
1632 	 * function.
1633 	 */
1634 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1635 		ENGINE_TRACE(engine,
1636 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1637 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1638 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1639 
1640 		/*
1641 		 * Sometimes we observe that the idle flag is not
1642 		 * set even though the ring is empty. So double
1643 		 * check before giving up.
1644 		 */
1645 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1646 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1647 			err = -ETIMEDOUT;
1648 	}
1649 
1650 	return err;
1651 }
1652 
1653 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1654 {
1655 	ENGINE_TRACE(engine, "\n");
1656 
1657 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1658 }
1659 
1660 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1661 {
1662 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1663 		[RCS0] = MSG_IDLE_CS,
1664 		[BCS0] = MSG_IDLE_BCS,
1665 		[VCS0] = MSG_IDLE_VCS0,
1666 		[VCS1] = MSG_IDLE_VCS1,
1667 		[VCS2] = MSG_IDLE_VCS2,
1668 		[VCS3] = MSG_IDLE_VCS3,
1669 		[VCS4] = MSG_IDLE_VCS4,
1670 		[VCS5] = MSG_IDLE_VCS5,
1671 		[VCS6] = MSG_IDLE_VCS6,
1672 		[VCS7] = MSG_IDLE_VCS7,
1673 		[VECS0] = MSG_IDLE_VECS0,
1674 		[VECS1] = MSG_IDLE_VECS1,
1675 		[VECS2] = MSG_IDLE_VECS2,
1676 		[VECS3] = MSG_IDLE_VECS3,
1677 		[CCS0] = MSG_IDLE_CS,
1678 		[CCS1] = MSG_IDLE_CS,
1679 		[CCS2] = MSG_IDLE_CS,
1680 		[CCS3] = MSG_IDLE_CS,
1681 	};
1682 	u32 val;
1683 
1684 	if (!_reg[engine->id].reg)
1685 		return 0;
1686 
1687 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1688 
1689 	/* bits[29:25] & bits[13:9] >> shift */
1690 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1691 }
1692 
1693 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1694 {
1695 	int ret;
1696 
1697 	/* Ensure GPM receives fw up/down after CS is stopped */
1698 	udelay(1);
1699 
1700 	/* Wait for forcewake request to complete in GPM */
1701 	ret =  __intel_wait_for_register_fw(gt->uncore,
1702 					    GEN9_PWRGT_DOMAIN_STATUS,
1703 					    fw_mask, fw_mask, 5000, 0, NULL);
1704 
1705 	/* Ensure CS receives fw ack from GPM */
1706 	udelay(1);
1707 
1708 	if (ret)
1709 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1710 }
1711 
1712 /*
1713  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1714  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1715  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1716  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1717  * are concerned only with the gt reset here, we use a logical OR of pending
1718  * forcewakeups from all reset domains and then wait for them to complete by
1719  * querying PWRGT_DOMAIN_STATUS.
1720  */
1721 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1722 {
1723 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1724 
1725 	if (fw_pending)
1726 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1727 }
1728 
1729 /* NB: please notice the memset */
1730 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1731 			       struct intel_instdone *instdone)
1732 {
1733 	struct drm_i915_private *i915 = engine->i915;
1734 	struct intel_uncore *uncore = engine->uncore;
1735 	u32 mmio_base = engine->mmio_base;
1736 	int slice;
1737 	int subslice;
1738 	int iter;
1739 
1740 	memset(instdone, 0, sizeof(*instdone));
1741 
1742 	if (GRAPHICS_VER(i915) >= 8) {
1743 		instdone->instdone =
1744 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1745 
1746 		if (engine->id != RCS0)
1747 			return;
1748 
1749 		instdone->slice_common =
1750 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1751 		if (GRAPHICS_VER(i915) >= 12) {
1752 			instdone->slice_common_extra[0] =
1753 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1754 			instdone->slice_common_extra[1] =
1755 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1756 		}
1757 
1758 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1759 			instdone->sampler[slice][subslice] =
1760 				intel_gt_mcr_read(engine->gt,
1761 						  GEN8_SAMPLER_INSTDONE,
1762 						  slice, subslice);
1763 			instdone->row[slice][subslice] =
1764 				intel_gt_mcr_read(engine->gt,
1765 						  GEN8_ROW_INSTDONE,
1766 						  slice, subslice);
1767 		}
1768 
1769 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1770 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1771 				instdone->geom_svg[slice][subslice] =
1772 					intel_gt_mcr_read(engine->gt,
1773 							  XEHPG_INSTDONE_GEOM_SVG,
1774 							  slice, subslice);
1775 		}
1776 	} else if (GRAPHICS_VER(i915) >= 7) {
1777 		instdone->instdone =
1778 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1779 
1780 		if (engine->id != RCS0)
1781 			return;
1782 
1783 		instdone->slice_common =
1784 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1785 		instdone->sampler[0][0] =
1786 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1787 		instdone->row[0][0] =
1788 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1789 	} else if (GRAPHICS_VER(i915) >= 4) {
1790 		instdone->instdone =
1791 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1792 		if (engine->id == RCS0)
1793 			/* HACK: Using the wrong struct member */
1794 			instdone->slice_common =
1795 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1796 	} else {
1797 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1798 	}
1799 }
1800 
1801 static bool ring_is_idle(struct intel_engine_cs *engine)
1802 {
1803 	bool idle = true;
1804 
1805 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1806 		return true;
1807 
1808 	if (!intel_engine_pm_get_if_awake(engine))
1809 		return true;
1810 
1811 	/* First check that no commands are left in the ring */
1812 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1813 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1814 		idle = false;
1815 
1816 	/* No bit for gen2, so assume the CS parser is idle */
1817 	if (GRAPHICS_VER(engine->i915) > 2 &&
1818 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1819 		idle = false;
1820 
1821 	intel_engine_pm_put(engine);
1822 
1823 	return idle;
1824 }
1825 
1826 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1827 {
1828 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1829 
1830 	if (!t->callback)
1831 		return;
1832 
1833 	local_bh_disable();
1834 	if (tasklet_trylock(t)) {
1835 		/* Must wait for any GPU reset in progress. */
1836 		if (__tasklet_is_enabled(t))
1837 			t->callback(t);
1838 		tasklet_unlock(t);
1839 	}
1840 	local_bh_enable();
1841 
1842 	/* Synchronise and wait for the tasklet on another CPU */
1843 	if (sync)
1844 		tasklet_unlock_wait(t);
1845 }
1846 
1847 /**
1848  * intel_engine_is_idle() - Report if the engine has finished process all work
1849  * @engine: the intel_engine_cs
1850  *
1851  * Return true if there are no requests pending, nothing left to be submitted
1852  * to hardware, and that the engine is idle.
1853  */
1854 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1855 {
1856 	/* More white lies, if wedged, hw state is inconsistent */
1857 	if (intel_gt_is_wedged(engine->gt))
1858 		return true;
1859 
1860 	if (!intel_engine_pm_is_awake(engine))
1861 		return true;
1862 
1863 	/* Waiting to drain ELSP? */
1864 	intel_synchronize_hardirq(engine->i915);
1865 	intel_engine_flush_submission(engine);
1866 
1867 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1868 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1869 		return false;
1870 
1871 	/* Ring stopped? */
1872 	return ring_is_idle(engine);
1873 }
1874 
1875 bool intel_engines_are_idle(struct intel_gt *gt)
1876 {
1877 	struct intel_engine_cs *engine;
1878 	enum intel_engine_id id;
1879 
1880 	/*
1881 	 * If the driver is wedged, HW state may be very inconsistent and
1882 	 * report that it is still busy, even though we have stopped using it.
1883 	 */
1884 	if (intel_gt_is_wedged(gt))
1885 		return true;
1886 
1887 	/* Already parked (and passed an idleness test); must still be idle */
1888 	if (!READ_ONCE(gt->awake))
1889 		return true;
1890 
1891 	for_each_engine(engine, gt, id) {
1892 		if (!intel_engine_is_idle(engine))
1893 			return false;
1894 	}
1895 
1896 	return true;
1897 }
1898 
1899 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1900 {
1901 	if (!engine->irq_enable)
1902 		return false;
1903 
1904 	/* Caller disables interrupts */
1905 	spin_lock(engine->gt->irq_lock);
1906 	engine->irq_enable(engine);
1907 	spin_unlock(engine->gt->irq_lock);
1908 
1909 	return true;
1910 }
1911 
1912 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1913 {
1914 	if (!engine->irq_disable)
1915 		return;
1916 
1917 	/* Caller disables interrupts */
1918 	spin_lock(engine->gt->irq_lock);
1919 	engine->irq_disable(engine);
1920 	spin_unlock(engine->gt->irq_lock);
1921 }
1922 
1923 void intel_engines_reset_default_submission(struct intel_gt *gt)
1924 {
1925 	struct intel_engine_cs *engine;
1926 	enum intel_engine_id id;
1927 
1928 	for_each_engine(engine, gt, id) {
1929 		if (engine->sanitize)
1930 			engine->sanitize(engine);
1931 
1932 		engine->set_default_submission(engine);
1933 	}
1934 }
1935 
1936 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1937 {
1938 	switch (GRAPHICS_VER(engine->i915)) {
1939 	case 2:
1940 		return false; /* uses physical not virtual addresses */
1941 	case 3:
1942 		/* maybe only uses physical not virtual addresses */
1943 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1944 	case 4:
1945 		return !IS_I965G(engine->i915); /* who knows! */
1946 	case 6:
1947 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1948 	default:
1949 		return true;
1950 	}
1951 }
1952 
1953 static struct intel_timeline *get_timeline(struct i915_request *rq)
1954 {
1955 	struct intel_timeline *tl;
1956 
1957 	/*
1958 	 * Even though we are holding the engine->sched_engine->lock here, there
1959 	 * is no control over the submission queue per-se and we are
1960 	 * inspecting the active state at a random point in time, with an
1961 	 * unknown queue. Play safe and make sure the timeline remains valid.
1962 	 * (Only being used for pretty printing, one extra kref shouldn't
1963 	 * cause a camel stampede!)
1964 	 */
1965 	rcu_read_lock();
1966 	tl = rcu_dereference(rq->timeline);
1967 	if (!kref_get_unless_zero(&tl->kref))
1968 		tl = NULL;
1969 	rcu_read_unlock();
1970 
1971 	return tl;
1972 }
1973 
1974 static int print_ring(char *buf, int sz, struct i915_request *rq)
1975 {
1976 	int len = 0;
1977 
1978 	if (!i915_request_signaled(rq)) {
1979 		struct intel_timeline *tl = get_timeline(rq);
1980 
1981 		len = scnprintf(buf, sz,
1982 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1983 				i915_ggtt_offset(rq->ring->vma),
1984 				tl ? tl->hwsp_offset : 0,
1985 				hwsp_seqno(rq),
1986 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1987 						      1000 * 1000));
1988 
1989 		if (tl)
1990 			intel_timeline_put(tl);
1991 	}
1992 
1993 	return len;
1994 }
1995 
1996 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1997 {
1998 	const size_t rowsize = 8 * sizeof(u32);
1999 	const void *prev = NULL;
2000 	bool skip = false;
2001 	size_t pos;
2002 
2003 	for (pos = 0; pos < len; pos += rowsize) {
2004 		char line[128];
2005 
2006 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
2007 			if (!skip) {
2008 				drm_printf(m, "*\n");
2009 				skip = true;
2010 			}
2011 			continue;
2012 		}
2013 
2014 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2015 						rowsize, sizeof(u32),
2016 						line, sizeof(line),
2017 						false) >= sizeof(line));
2018 		drm_printf(m, "[%04zx] %s\n", pos, line);
2019 
2020 		prev = buf + pos;
2021 		skip = false;
2022 	}
2023 }
2024 
2025 static const char *repr_timer(const struct timer_list *t)
2026 {
2027 	if (!READ_ONCE(t->expires))
2028 		return "inactive";
2029 
2030 	if (timer_pending(t))
2031 		return "active";
2032 
2033 	return "expired";
2034 }
2035 
2036 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2037 					 struct drm_printer *m)
2038 {
2039 	struct drm_i915_private *dev_priv = engine->i915;
2040 	struct intel_engine_execlists * const execlists = &engine->execlists;
2041 	u64 addr;
2042 
2043 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
2044 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2045 	if (HAS_EXECLISTS(dev_priv)) {
2046 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2047 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2048 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2049 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2050 	}
2051 	drm_printf(m, "\tRING_START: 0x%08x\n",
2052 		   ENGINE_READ(engine, RING_START));
2053 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2054 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2055 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2056 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2057 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2058 		   ENGINE_READ(engine, RING_CTL),
2059 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2060 	if (GRAPHICS_VER(engine->i915) > 2) {
2061 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2062 			   ENGINE_READ(engine, RING_MI_MODE),
2063 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2064 	}
2065 
2066 	if (GRAPHICS_VER(dev_priv) >= 6) {
2067 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
2068 			   ENGINE_READ(engine, RING_IMR));
2069 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
2070 			   ENGINE_READ(engine, RING_ESR));
2071 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
2072 			   ENGINE_READ(engine, RING_EMR));
2073 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
2074 			   ENGINE_READ(engine, RING_EIR));
2075 	}
2076 
2077 	addr = intel_engine_get_active_head(engine);
2078 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2079 		   upper_32_bits(addr), lower_32_bits(addr));
2080 	addr = intel_engine_get_last_batch_head(engine);
2081 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2082 		   upper_32_bits(addr), lower_32_bits(addr));
2083 	if (GRAPHICS_VER(dev_priv) >= 8)
2084 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2085 	else if (GRAPHICS_VER(dev_priv) >= 4)
2086 		addr = ENGINE_READ(engine, RING_DMA_FADD);
2087 	else
2088 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2089 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2090 		   upper_32_bits(addr), lower_32_bits(addr));
2091 	if (GRAPHICS_VER(dev_priv) >= 4) {
2092 		drm_printf(m, "\tIPEIR: 0x%08x\n",
2093 			   ENGINE_READ(engine, RING_IPEIR));
2094 		drm_printf(m, "\tIPEHR: 0x%08x\n",
2095 			   ENGINE_READ(engine, RING_IPEHR));
2096 	} else {
2097 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2098 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2099 	}
2100 
2101 	if (HAS_EXECLISTS(dev_priv) && !intel_engine_uses_guc(engine)) {
2102 		struct i915_request * const *port, *rq;
2103 		const u32 *hws =
2104 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2105 		const u8 num_entries = execlists->csb_size;
2106 		unsigned int idx;
2107 		u8 read, write;
2108 
2109 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2110 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2111 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2112 			   repr_timer(&engine->execlists.preempt),
2113 			   repr_timer(&engine->execlists.timer));
2114 
2115 		read = execlists->csb_head;
2116 		write = READ_ONCE(*execlists->csb_write);
2117 
2118 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2119 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2120 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2121 			   read, write, num_entries);
2122 
2123 		if (read >= num_entries)
2124 			read = 0;
2125 		if (write >= num_entries)
2126 			write = 0;
2127 		if (read > write)
2128 			write += num_entries;
2129 		while (read < write) {
2130 			idx = ++read % num_entries;
2131 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2132 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2133 		}
2134 
2135 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2136 		rcu_read_lock();
2137 		for (port = execlists->active; (rq = *port); port++) {
2138 			char hdr[160];
2139 			int len;
2140 
2141 			len = scnprintf(hdr, sizeof(hdr),
2142 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2143 					(int)(port - execlists->active),
2144 					rq->context->lrc.ccid,
2145 					intel_context_is_closed(rq->context) ? "!" : "",
2146 					intel_context_is_banned(rq->context) ? "*" : "");
2147 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2148 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2149 			i915_request_show(m, rq, hdr, 0);
2150 		}
2151 		for (port = execlists->pending; (rq = *port); port++) {
2152 			char hdr[160];
2153 			int len;
2154 
2155 			len = scnprintf(hdr, sizeof(hdr),
2156 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2157 					(int)(port - execlists->pending),
2158 					rq->context->lrc.ccid,
2159 					intel_context_is_closed(rq->context) ? "!" : "",
2160 					intel_context_is_banned(rq->context) ? "*" : "");
2161 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2162 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2163 			i915_request_show(m, rq, hdr, 0);
2164 		}
2165 		rcu_read_unlock();
2166 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2167 	} else if (GRAPHICS_VER(dev_priv) > 6) {
2168 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2169 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2170 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2171 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2172 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2173 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2174 	}
2175 }
2176 
2177 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2178 {
2179 	struct i915_vma_resource *vma_res = rq->batch_res;
2180 	void *ring;
2181 	int size;
2182 
2183 	drm_printf(m,
2184 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2185 		   rq->head, rq->postfix, rq->tail,
2186 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2187 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2188 
2189 	size = rq->tail - rq->head;
2190 	if (rq->tail < rq->head)
2191 		size += rq->ring->size;
2192 
2193 	ring = kmalloc(size, GFP_ATOMIC);
2194 	if (ring) {
2195 		const void *vaddr = rq->ring->vaddr;
2196 		unsigned int head = rq->head;
2197 		unsigned int len = 0;
2198 
2199 		if (rq->tail < head) {
2200 			len = rq->ring->size - head;
2201 			memcpy(ring, vaddr + head, len);
2202 			head = 0;
2203 		}
2204 		memcpy(ring + len, vaddr + head, size - len);
2205 
2206 		hexdump(m, ring, size);
2207 		kfree(ring);
2208 	}
2209 }
2210 
2211 static unsigned long read_ul(void *p, size_t x)
2212 {
2213 	return *(unsigned long *)(p + x);
2214 }
2215 
2216 static void print_properties(struct intel_engine_cs *engine,
2217 			     struct drm_printer *m)
2218 {
2219 	static const struct pmap {
2220 		size_t offset;
2221 		const char *name;
2222 	} props[] = {
2223 #define P(x) { \
2224 	.offset = offsetof(typeof(engine->props), x), \
2225 	.name = #x \
2226 }
2227 		P(heartbeat_interval_ms),
2228 		P(max_busywait_duration_ns),
2229 		P(preempt_timeout_ms),
2230 		P(stop_timeout_ms),
2231 		P(timeslice_duration_ms),
2232 
2233 		{},
2234 #undef P
2235 	};
2236 	const struct pmap *p;
2237 
2238 	drm_printf(m, "\tProperties:\n");
2239 	for (p = props; p->name; p++)
2240 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2241 			   p->name,
2242 			   read_ul(&engine->props, p->offset),
2243 			   read_ul(&engine->defaults, p->offset));
2244 }
2245 
2246 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2247 {
2248 	struct intel_timeline *tl = get_timeline(rq);
2249 
2250 	i915_request_show(m, rq, msg, 0);
2251 
2252 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2253 		   i915_ggtt_offset(rq->ring->vma));
2254 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2255 		   rq->ring->head);
2256 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2257 		   rq->ring->tail);
2258 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2259 		   rq->ring->emit);
2260 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2261 		   rq->ring->space);
2262 
2263 	if (tl) {
2264 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2265 			   tl->hwsp_offset);
2266 		intel_timeline_put(tl);
2267 	}
2268 
2269 	print_request_ring(m, rq);
2270 
2271 	if (rq->context->lrc_reg_state) {
2272 		drm_printf(m, "Logical Ring Context:\n");
2273 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2274 	}
2275 }
2276 
2277 void intel_engine_dump_active_requests(struct list_head *requests,
2278 				       struct i915_request *hung_rq,
2279 				       struct drm_printer *m)
2280 {
2281 	struct i915_request *rq;
2282 	const char *msg;
2283 	enum i915_request_state state;
2284 
2285 	list_for_each_entry(rq, requests, sched.link) {
2286 		if (rq == hung_rq)
2287 			continue;
2288 
2289 		state = i915_test_request_state(rq);
2290 		if (state < I915_REQUEST_QUEUED)
2291 			continue;
2292 
2293 		if (state == I915_REQUEST_ACTIVE)
2294 			msg = "\t\tactive on engine";
2295 		else
2296 			msg = "\t\tactive in queue";
2297 
2298 		engine_dump_request(rq, m, msg);
2299 	}
2300 }
2301 
2302 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2303 					struct drm_printer *m)
2304 {
2305 	struct intel_context *hung_ce = NULL;
2306 	struct i915_request *hung_rq = NULL;
2307 
2308 	/*
2309 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2310 	 * The GPU is still running so requests are still executing and any
2311 	 * hardware reads will be out of date by the time they are reported.
2312 	 * But the intention here is just to report an instantaneous snapshot
2313 	 * so that's fine.
2314 	 */
2315 	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2316 
2317 	drm_printf(m, "\tRequests:\n");
2318 
2319 	if (hung_rq)
2320 		engine_dump_request(hung_rq, m, "\t\thung");
2321 	else if (hung_ce)
2322 		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2323 
2324 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2325 		intel_guc_dump_active_requests(engine, hung_rq, m);
2326 	else
2327 		intel_execlists_dump_active_requests(engine, hung_rq, m);
2328 
2329 	if (hung_rq)
2330 		i915_request_put(hung_rq);
2331 }
2332 
2333 void intel_engine_dump(struct intel_engine_cs *engine,
2334 		       struct drm_printer *m,
2335 		       const char *header, ...)
2336 {
2337 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2338 	struct i915_request *rq;
2339 	intel_wakeref_t wakeref;
2340 	ktime_t dummy;
2341 
2342 	if (header) {
2343 		va_list ap;
2344 
2345 		va_start(ap, header);
2346 		drm_vprintf(m, header, &ap);
2347 		va_end(ap);
2348 	}
2349 
2350 	if (intel_gt_is_wedged(engine->gt))
2351 		drm_printf(m, "*** WEDGED ***\n");
2352 
2353 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2354 	drm_printf(m, "\tBarriers?: %s\n",
2355 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2356 	drm_printf(m, "\tLatency: %luus\n",
2357 		   ewma__engine_latency_read(&engine->latency));
2358 	if (intel_engine_supports_stats(engine))
2359 		drm_printf(m, "\tRuntime: %llums\n",
2360 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2361 								  &dummy)));
2362 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2363 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2364 
2365 	rcu_read_lock();
2366 	rq = READ_ONCE(engine->heartbeat.systole);
2367 	if (rq)
2368 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2369 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2370 	rcu_read_unlock();
2371 	drm_printf(m, "\tReset count: %d (global %d)\n",
2372 		   i915_reset_engine_count(error, engine),
2373 		   i915_reset_count(error));
2374 	print_properties(engine, m);
2375 
2376 	engine_dump_active_requests(engine, m);
2377 
2378 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2379 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2380 	if (wakeref) {
2381 		intel_engine_print_registers(engine, m);
2382 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2383 	} else {
2384 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2385 	}
2386 
2387 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2388 
2389 	drm_printf(m, "HWSP:\n");
2390 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2391 
2392 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2393 
2394 	intel_engine_print_breadcrumbs(engine, m);
2395 }
2396 
2397 /**
2398  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2399  * @engine: engine to report on
2400  * @now: monotonic timestamp of sampling
2401  *
2402  * Returns accumulated time @engine was busy since engine stats were enabled.
2403  */
2404 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2405 {
2406 	return engine->busyness(engine, now);
2407 }
2408 
2409 struct intel_context *
2410 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2411 			    unsigned int count, unsigned long flags)
2412 {
2413 	if (count == 0)
2414 		return ERR_PTR(-EINVAL);
2415 
2416 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2417 		return intel_context_create(siblings[0]);
2418 
2419 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2420 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2421 }
2422 
2423 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2424 {
2425 	struct i915_request *request, *active = NULL;
2426 
2427 	/*
2428 	 * This search does not work in GuC submission mode. However, the GuC
2429 	 * will report the hanging context directly to the driver itself. So
2430 	 * the driver should never get here when in GuC mode.
2431 	 */
2432 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2433 
2434 	/*
2435 	 * We are called by the error capture, reset and to dump engine
2436 	 * state at random points in time. In particular, note that neither is
2437 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2438 	 * and we assume that no more writes can happen (we waited long enough
2439 	 * for all writes that were in transaction to be flushed) - adding an
2440 	 * extra delay for a recent interrupt is pointless. Hence, we do
2441 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2442 	 * At all other times, we must assume the GPU is still running, but
2443 	 * we only care about the snapshot of this moment.
2444 	 */
2445 	lockdep_assert_held(&engine->sched_engine->lock);
2446 
2447 	rcu_read_lock();
2448 	request = execlists_active(&engine->execlists);
2449 	if (request) {
2450 		struct intel_timeline *tl = request->context->timeline;
2451 
2452 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2453 			if (__i915_request_is_complete(request))
2454 				break;
2455 
2456 			active = request;
2457 		}
2458 	}
2459 	rcu_read_unlock();
2460 	if (active)
2461 		return active;
2462 
2463 	list_for_each_entry(request, &engine->sched_engine->requests,
2464 			    sched.link) {
2465 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2466 			continue;
2467 
2468 		active = request;
2469 		break;
2470 	}
2471 
2472 	return active;
2473 }
2474 
2475 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2476 				  struct intel_context **ce, struct i915_request **rq)
2477 {
2478 	unsigned long flags;
2479 
2480 	*ce = intel_engine_get_hung_context(engine);
2481 	if (*ce) {
2482 		intel_engine_clear_hung_context(engine);
2483 
2484 		*rq = intel_context_get_active_request(*ce);
2485 		return;
2486 	}
2487 
2488 	/*
2489 	 * Getting here with GuC enabled means it is a forced error capture
2490 	 * with no actual hang. So, no need to attempt the execlist search.
2491 	 */
2492 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2493 		return;
2494 
2495 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2496 	*rq = engine_execlist_find_hung_request(engine);
2497 	if (*rq)
2498 		*rq = i915_request_get_rcu(*rq);
2499 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2500 }
2501 
2502 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2503 {
2504 	/*
2505 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2506 	 * support in the RCU_MODE register.  This only needs to be done once,
2507 	 * so for simplicity we'll take care of this in the RCS engine's
2508 	 * resume handler; since the RCS and all CCS engines belong to the
2509 	 * same reset domain and are reset together, this will also take care
2510 	 * of re-applying the setting after i915-triggered resets.
2511 	 */
2512 	if (!CCS_MASK(engine->gt))
2513 		return;
2514 
2515 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2516 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2517 }
2518 
2519 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2520 #include "mock_engine.c"
2521 #include "selftest_engine.c"
2522 #include "selftest_engine_cs.c"
2523 #endif
2524