xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "gem/i915_gem_context.h"
28 
29 #include "i915_drv.h"
30 
31 #include "intel_context.h"
32 #include "intel_engine.h"
33 #include "intel_engine_pm.h"
34 #include "intel_engine_pool.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_gt_pm.h"
39 #include "intel_lrc.h"
40 #include "intel_reset.h"
41 #include "intel_ring.h"
42 
43 /* Haswell does have the CXT_SIZE register however it does not appear to be
44  * valid. Now, docs explain in dwords what is in the context object. The full
45  * size is 70720 bytes, however, the power context and execlist context will
46  * never be saved (power context is stored elsewhere, and execlists don't work
47  * on HSW) - so the final size, including the extra state required for the
48  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49  */
50 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
51 
52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
54 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55 #define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 
58 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
59 
60 #define MAX_MMIO_BASES 3
61 struct engine_info {
62 	unsigned int hw_id;
63 	u8 class;
64 	u8 instance;
65 	/* mmio bases table *must* be sorted in reverse gen order */
66 	struct engine_mmio_base {
67 		u32 gen : 8;
68 		u32 base : 24;
69 	} mmio_bases[MAX_MMIO_BASES];
70 };
71 
72 static const struct engine_info intel_engines[] = {
73 	[RCS0] = {
74 		.hw_id = RCS0_HW,
75 		.class = RENDER_CLASS,
76 		.instance = 0,
77 		.mmio_bases = {
78 			{ .gen = 1, .base = RENDER_RING_BASE }
79 		},
80 	},
81 	[BCS0] = {
82 		.hw_id = BCS0_HW,
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 0,
85 		.mmio_bases = {
86 			{ .gen = 6, .base = BLT_RING_BASE }
87 		},
88 	},
89 	[VCS0] = {
90 		.hw_id = VCS0_HW,
91 		.class = VIDEO_DECODE_CLASS,
92 		.instance = 0,
93 		.mmio_bases = {
94 			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
95 			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
96 			{ .gen = 4, .base = BSD_RING_BASE }
97 		},
98 	},
99 	[VCS1] = {
100 		.hw_id = VCS1_HW,
101 		.class = VIDEO_DECODE_CLASS,
102 		.instance = 1,
103 		.mmio_bases = {
104 			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
105 			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
106 		},
107 	},
108 	[VCS2] = {
109 		.hw_id = VCS2_HW,
110 		.class = VIDEO_DECODE_CLASS,
111 		.instance = 2,
112 		.mmio_bases = {
113 			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
114 		},
115 	},
116 	[VCS3] = {
117 		.hw_id = VCS3_HW,
118 		.class = VIDEO_DECODE_CLASS,
119 		.instance = 3,
120 		.mmio_bases = {
121 			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
122 		},
123 	},
124 	[VECS0] = {
125 		.hw_id = VECS0_HW,
126 		.class = VIDEO_ENHANCEMENT_CLASS,
127 		.instance = 0,
128 		.mmio_bases = {
129 			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
130 			{ .gen = 7, .base = VEBOX_RING_BASE }
131 		},
132 	},
133 	[VECS1] = {
134 		.hw_id = VECS1_HW,
135 		.class = VIDEO_ENHANCEMENT_CLASS,
136 		.instance = 1,
137 		.mmio_bases = {
138 			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
139 		},
140 	},
141 };
142 
143 /**
144  * intel_engine_context_size() - return the size of the context for an engine
145  * @gt: the gt
146  * @class: engine class
147  *
148  * Each engine class may require a different amount of space for a context
149  * image.
150  *
151  * Return: size (in bytes) of an engine class specific context image
152  *
153  * Note: this size includes the HWSP, which is part of the context image
154  * in LRC mode, but does not include the "shared data page" used with
155  * GuC submission. The caller should account for this if using the GuC.
156  */
157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158 {
159 	struct intel_uncore *uncore = gt->uncore;
160 	u32 cxt_size;
161 
162 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
163 
164 	switch (class) {
165 	case RENDER_CLASS:
166 		switch (INTEL_GEN(gt->i915)) {
167 		default:
168 			MISSING_CASE(INTEL_GEN(gt->i915));
169 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170 		case 12:
171 		case 11:
172 			return GEN11_LR_CONTEXT_RENDER_SIZE;
173 		case 10:
174 			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 		case 9:
176 			return GEN9_LR_CONTEXT_RENDER_SIZE;
177 		case 8:
178 			return GEN8_LR_CONTEXT_RENDER_SIZE;
179 		case 7:
180 			if (IS_HASWELL(gt->i915))
181 				return HSW_CXT_TOTAL_SIZE;
182 
183 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
185 					PAGE_SIZE);
186 		case 6:
187 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
189 					PAGE_SIZE);
190 		case 5:
191 		case 4:
192 			/*
193 			 * There is a discrepancy here between the size reported
194 			 * by the register and the size of the context layout
195 			 * in the docs. Both are described as authorative!
196 			 *
197 			 * The discrepancy is on the order of a few cachelines,
198 			 * but the total is under one page (4k), which is our
199 			 * minimum allocation anyway so it should all come
200 			 * out in the wash.
201 			 */
202 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 			drm_dbg(&gt->i915->drm,
204 				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
205 				INTEL_GEN(gt->i915), cxt_size * 64,
206 				cxt_size - 1);
207 			return round_up(cxt_size * 64, PAGE_SIZE);
208 		case 3:
209 		case 2:
210 		/* For the special day when i810 gets merged. */
211 		case 1:
212 			return 0;
213 		}
214 		break;
215 	default:
216 		MISSING_CASE(class);
217 		/* fall through */
218 	case VIDEO_DECODE_CLASS:
219 	case VIDEO_ENHANCEMENT_CLASS:
220 	case COPY_ENGINE_CLASS:
221 		if (INTEL_GEN(gt->i915) < 8)
222 			return 0;
223 		return GEN8_LR_CONTEXT_OTHER_SIZE;
224 	}
225 }
226 
227 static u32 __engine_mmio_base(struct drm_i915_private *i915,
228 			      const struct engine_mmio_base *bases)
229 {
230 	int i;
231 
232 	for (i = 0; i < MAX_MMIO_BASES; i++)
233 		if (INTEL_GEN(i915) >= bases[i].gen)
234 			break;
235 
236 	GEM_BUG_ON(i == MAX_MMIO_BASES);
237 	GEM_BUG_ON(!bases[i].base);
238 
239 	return bases[i].base;
240 }
241 
242 static void __sprint_engine_name(struct intel_engine_cs *engine)
243 {
244 	/*
245 	 * Before we know what the uABI name for this engine will be,
246 	 * we still would like to keep track of this engine in the debug logs.
247 	 * We throw in a ' here as a reminder that this isn't its final name.
248 	 */
249 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
250 			     intel_engine_class_repr(engine->class),
251 			     engine->instance) >= sizeof(engine->name));
252 }
253 
254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
255 {
256 	/*
257 	 * Though they added more rings on g4x/ilk, they did not add
258 	 * per-engine HWSTAM until gen6.
259 	 */
260 	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 		return;
262 
263 	if (INTEL_GEN(engine->i915) >= 3)
264 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265 	else
266 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 }
268 
269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
270 {
271 	/* Mask off all writes into the unknown HWSP */
272 	intel_engine_set_hwsp_writemask(engine, ~0u);
273 }
274 
275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 {
277 	const struct engine_info *info = &intel_engines[id];
278 	struct drm_i915_private *i915 = gt->i915;
279 	struct intel_engine_cs *engine;
280 
281 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
282 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
283 
284 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
285 		return -EINVAL;
286 
287 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 		return -EINVAL;
289 
290 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 		return -EINVAL;
292 
293 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 		return -EINVAL;
295 
296 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
297 	if (!engine)
298 		return -ENOMEM;
299 
300 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
301 
302 	engine->id = id;
303 	engine->legacy_idx = INVALID_ENGINE;
304 	engine->mask = BIT(id);
305 	engine->i915 = i915;
306 	engine->gt = gt;
307 	engine->uncore = gt->uncore;
308 	engine->hw_id = engine->guc_id = info->hw_id;
309 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
310 
311 	engine->class = info->class;
312 	engine->instance = info->instance;
313 	__sprint_engine_name(engine);
314 
315 	engine->props.heartbeat_interval_ms =
316 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
317 	engine->props.max_busywait_duration_ns =
318 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
319 	engine->props.preempt_timeout_ms =
320 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
321 	engine->props.stop_timeout_ms =
322 		CONFIG_DRM_I915_STOP_TIMEOUT;
323 	engine->props.timeslice_duration_ms =
324 		CONFIG_DRM_I915_TIMESLICE_DURATION;
325 
326 	/* Override to uninterruptible for OpenCL workloads. */
327 	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
328 		engine->props.preempt_timeout_ms = 0;
329 
330 	engine->context_size = intel_engine_context_size(gt, engine->class);
331 	if (WARN_ON(engine->context_size > BIT(20)))
332 		engine->context_size = 0;
333 	if (engine->context_size)
334 		DRIVER_CAPS(i915)->has_logical_contexts = true;
335 
336 	/* Nothing to do here, execute in order of dependencies */
337 	engine->schedule = NULL;
338 
339 	ewma__engine_latency_init(&engine->latency);
340 	seqlock_init(&engine->stats.lock);
341 
342 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
343 
344 	/* Scrub mmio state on takeover */
345 	intel_engine_sanitize_mmio(engine);
346 
347 	gt->engine_class[info->class][info->instance] = engine;
348 	gt->engine[id] = engine;
349 
350 	i915->engine[id] = engine;
351 
352 	return 0;
353 }
354 
355 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
356 {
357 	struct drm_i915_private *i915 = engine->i915;
358 
359 	if (engine->class == VIDEO_DECODE_CLASS) {
360 		/*
361 		 * HEVC support is present on first engine instance
362 		 * before Gen11 and on all instances afterwards.
363 		 */
364 		if (INTEL_GEN(i915) >= 11 ||
365 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
366 			engine->uabi_capabilities |=
367 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
368 
369 		/*
370 		 * SFC block is present only on even logical engine
371 		 * instances.
372 		 */
373 		if ((INTEL_GEN(i915) >= 11 &&
374 		     RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
375 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
376 			engine->uabi_capabilities |=
377 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
378 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
379 		if (INTEL_GEN(i915) >= 9)
380 			engine->uabi_capabilities |=
381 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
382 	}
383 }
384 
385 static void intel_setup_engine_capabilities(struct intel_gt *gt)
386 {
387 	struct intel_engine_cs *engine;
388 	enum intel_engine_id id;
389 
390 	for_each_engine(engine, gt, id)
391 		__setup_engine_capabilities(engine);
392 }
393 
394 /**
395  * intel_engines_release() - free the resources allocated for Command Streamers
396  * @gt: pointer to struct intel_gt
397  */
398 void intel_engines_release(struct intel_gt *gt)
399 {
400 	struct intel_engine_cs *engine;
401 	enum intel_engine_id id;
402 
403 	/*
404 	 * Before we release the resources held by engine, we must be certain
405 	 * that the HW is no longer accessing them -- having the GPU scribble
406 	 * to or read from a page being used for something else causes no end
407 	 * of fun.
408 	 *
409 	 * The GPU should be reset by this point, but assume the worst just
410 	 * in case we aborted before completely initialising the engines.
411 	 */
412 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
413 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
414 		__intel_gt_reset(gt, ALL_ENGINES);
415 
416 	/* Decouple the backend; but keep the layout for late GPU resets */
417 	for_each_engine(engine, gt, id) {
418 		intel_wakeref_wait_for_idle(&engine->wakeref);
419 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
420 
421 		if (!engine->release)
422 			continue;
423 
424 		engine->release(engine);
425 		engine->release = NULL;
426 
427 		memset(&engine->reset, 0, sizeof(engine->reset));
428 
429 		gt->i915->engine[id] = NULL;
430 	}
431 }
432 
433 void intel_engines_free(struct intel_gt *gt)
434 {
435 	struct intel_engine_cs *engine;
436 	enum intel_engine_id id;
437 
438 	for_each_engine(engine, gt, id) {
439 		kfree(engine);
440 		gt->engine[id] = NULL;
441 	}
442 }
443 
444 /**
445  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
446  * @gt: pointer to struct intel_gt
447  *
448  * Return: non-zero if the initialization failed.
449  */
450 int intel_engines_init_mmio(struct intel_gt *gt)
451 {
452 	struct drm_i915_private *i915 = gt->i915;
453 	struct intel_device_info *device_info = mkwrite_device_info(i915);
454 	const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
455 	unsigned int mask = 0;
456 	unsigned int i;
457 	int err;
458 
459 	drm_WARN_ON(&i915->drm, engine_mask == 0);
460 	drm_WARN_ON(&i915->drm, engine_mask &
461 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
462 
463 	if (i915_inject_probe_failure(i915))
464 		return -ENODEV;
465 
466 	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
467 		if (!HAS_ENGINE(i915, i))
468 			continue;
469 
470 		err = intel_engine_setup(gt, i);
471 		if (err)
472 			goto cleanup;
473 
474 		mask |= BIT(i);
475 	}
476 
477 	/*
478 	 * Catch failures to update intel_engines table when the new engines
479 	 * are added to the driver by a warning and disabling the forgotten
480 	 * engines.
481 	 */
482 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
483 		device_info->engine_mask = mask;
484 
485 	RUNTIME_INFO(i915)->num_engines = hweight32(mask);
486 
487 	intel_gt_check_and_clear_faults(gt);
488 
489 	intel_setup_engine_capabilities(gt);
490 
491 	return 0;
492 
493 cleanup:
494 	intel_engines_free(gt);
495 	return err;
496 }
497 
498 void intel_engine_init_execlists(struct intel_engine_cs *engine)
499 {
500 	struct intel_engine_execlists * const execlists = &engine->execlists;
501 
502 	execlists->port_mask = 1;
503 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
504 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
505 
506 	memset(execlists->pending, 0, sizeof(execlists->pending));
507 	execlists->active =
508 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
509 
510 	execlists->queue_priority_hint = INT_MIN;
511 	execlists->queue = RB_ROOT_CACHED;
512 }
513 
514 static void cleanup_status_page(struct intel_engine_cs *engine)
515 {
516 	struct i915_vma *vma;
517 
518 	/* Prevent writes into HWSP after returning the page to the system */
519 	intel_engine_set_hwsp_writemask(engine, ~0u);
520 
521 	vma = fetch_and_zero(&engine->status_page.vma);
522 	if (!vma)
523 		return;
524 
525 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
526 		i915_vma_unpin(vma);
527 
528 	i915_gem_object_unpin_map(vma->obj);
529 	i915_gem_object_put(vma->obj);
530 }
531 
532 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
533 				struct i915_vma *vma)
534 {
535 	unsigned int flags;
536 
537 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
538 		/*
539 		 * On g33, we cannot place HWS above 256MiB, so
540 		 * restrict its pinning to the low mappable arena.
541 		 * Though this restriction is not documented for
542 		 * gen4, gen5, or byt, they also behave similarly
543 		 * and hang if the HWS is placed at the top of the
544 		 * GTT. To generalise, it appears that all !llc
545 		 * platforms have issues with us placing the HWS
546 		 * above the mappable region (even though we never
547 		 * actually map it).
548 		 */
549 		flags = PIN_MAPPABLE;
550 	else
551 		flags = PIN_HIGH;
552 
553 	return i915_ggtt_pin(vma, 0, flags);
554 }
555 
556 static int init_status_page(struct intel_engine_cs *engine)
557 {
558 	struct drm_i915_gem_object *obj;
559 	struct i915_vma *vma;
560 	void *vaddr;
561 	int ret;
562 
563 	/*
564 	 * Though the HWS register does support 36bit addresses, historically
565 	 * we have had hangs and corruption reported due to wild writes if
566 	 * the HWS is placed above 4G. We only allow objects to be allocated
567 	 * in GFP_DMA32 for i965, and no earlier physical address users had
568 	 * access to more than 4G.
569 	 */
570 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
571 	if (IS_ERR(obj)) {
572 		drm_err(&engine->i915->drm,
573 			"Failed to allocate status page\n");
574 		return PTR_ERR(obj);
575 	}
576 
577 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
578 
579 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
580 	if (IS_ERR(vma)) {
581 		ret = PTR_ERR(vma);
582 		goto err;
583 	}
584 
585 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
586 	if (IS_ERR(vaddr)) {
587 		ret = PTR_ERR(vaddr);
588 		goto err;
589 	}
590 
591 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
592 	engine->status_page.vma = vma;
593 
594 	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
595 		ret = pin_ggtt_status_page(engine, vma);
596 		if (ret)
597 			goto err_unpin;
598 	}
599 
600 	return 0;
601 
602 err_unpin:
603 	i915_gem_object_unpin_map(obj);
604 err:
605 	i915_gem_object_put(obj);
606 	return ret;
607 }
608 
609 static int engine_setup_common(struct intel_engine_cs *engine)
610 {
611 	int err;
612 
613 	init_llist_head(&engine->barrier_tasks);
614 
615 	err = init_status_page(engine);
616 	if (err)
617 		return err;
618 
619 	intel_engine_init_active(engine, ENGINE_PHYSICAL);
620 	intel_engine_init_breadcrumbs(engine);
621 	intel_engine_init_execlists(engine);
622 	intel_engine_init_cmd_parser(engine);
623 	intel_engine_init__pm(engine);
624 	intel_engine_init_retire(engine);
625 
626 	intel_engine_pool_init(&engine->pool);
627 
628 	/* Use the whole device by default */
629 	engine->sseu =
630 		intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
631 
632 	intel_engine_init_workarounds(engine);
633 	intel_engine_init_whitelist(engine);
634 	intel_engine_init_ctx_wa(engine);
635 
636 	return 0;
637 }
638 
639 struct measure_breadcrumb {
640 	struct i915_request rq;
641 	struct intel_ring ring;
642 	u32 cs[1024];
643 };
644 
645 static int measure_breadcrumb_dw(struct intel_context *ce)
646 {
647 	struct intel_engine_cs *engine = ce->engine;
648 	struct measure_breadcrumb *frame;
649 	int dw;
650 
651 	GEM_BUG_ON(!engine->gt->scratch);
652 
653 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
654 	if (!frame)
655 		return -ENOMEM;
656 
657 	frame->rq.i915 = engine->i915;
658 	frame->rq.engine = engine;
659 	frame->rq.context = ce;
660 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
661 
662 	frame->ring.vaddr = frame->cs;
663 	frame->ring.size = sizeof(frame->cs);
664 	frame->ring.effective_size = frame->ring.size;
665 	intel_ring_update_space(&frame->ring);
666 	frame->rq.ring = &frame->ring;
667 
668 	mutex_lock(&ce->timeline->mutex);
669 	spin_lock_irq(&engine->active.lock);
670 
671 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
672 
673 	spin_unlock_irq(&engine->active.lock);
674 	mutex_unlock(&ce->timeline->mutex);
675 
676 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
677 
678 	kfree(frame);
679 	return dw;
680 }
681 
682 void
683 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
684 {
685 	INIT_LIST_HEAD(&engine->active.requests);
686 	INIT_LIST_HEAD(&engine->active.hold);
687 
688 	spin_lock_init(&engine->active.lock);
689 	lockdep_set_subclass(&engine->active.lock, subclass);
690 
691 	/*
692 	 * Due to an interesting quirk in lockdep's internal debug tracking,
693 	 * after setting a subclass we must ensure the lock is used. Otherwise,
694 	 * nr_unused_locks is incremented once too often.
695 	 */
696 #ifdef CONFIG_DEBUG_LOCK_ALLOC
697 	local_irq_disable();
698 	lock_map_acquire(&engine->active.lock.dep_map);
699 	lock_map_release(&engine->active.lock.dep_map);
700 	local_irq_enable();
701 #endif
702 }
703 
704 static struct intel_context *
705 create_kernel_context(struct intel_engine_cs *engine)
706 {
707 	static struct lock_class_key kernel;
708 	struct intel_context *ce;
709 	int err;
710 
711 	ce = intel_context_create(engine);
712 	if (IS_ERR(ce))
713 		return ce;
714 
715 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
716 
717 	err = intel_context_pin(ce); /* perma-pin so it is always available */
718 	if (err) {
719 		intel_context_put(ce);
720 		return ERR_PTR(err);
721 	}
722 
723 	/*
724 	 * Give our perma-pinned kernel timelines a separate lockdep class,
725 	 * so that we can use them from within the normal user timelines
726 	 * should we need to inject GPU operations during their request
727 	 * construction.
728 	 */
729 	lockdep_set_class(&ce->timeline->mutex, &kernel);
730 
731 	return ce;
732 }
733 
734 /**
735  * intel_engines_init_common - initialize cengine state which might require hw access
736  * @engine: Engine to initialize.
737  *
738  * Initializes @engine@ structure members shared between legacy and execlists
739  * submission modes which do require hardware access.
740  *
741  * Typcally done at later stages of submission mode specific engine setup.
742  *
743  * Returns zero on success or an error code on failure.
744  */
745 static int engine_init_common(struct intel_engine_cs *engine)
746 {
747 	struct intel_context *ce;
748 	int ret;
749 
750 	engine->set_default_submission(engine);
751 
752 	/*
753 	 * We may need to do things with the shrinker which
754 	 * require us to immediately switch back to the default
755 	 * context. This can cause a problem as pinning the
756 	 * default context also requires GTT space which may not
757 	 * be available. To avoid this we always pin the default
758 	 * context.
759 	 */
760 	ce = create_kernel_context(engine);
761 	if (IS_ERR(ce))
762 		return PTR_ERR(ce);
763 
764 	ret = measure_breadcrumb_dw(ce);
765 	if (ret < 0)
766 		goto err_context;
767 
768 	engine->emit_fini_breadcrumb_dw = ret;
769 	engine->kernel_context = ce;
770 
771 	return 0;
772 
773 err_context:
774 	intel_context_put(ce);
775 	return ret;
776 }
777 
778 int intel_engines_init(struct intel_gt *gt)
779 {
780 	int (*setup)(struct intel_engine_cs *engine);
781 	struct intel_engine_cs *engine;
782 	enum intel_engine_id id;
783 	int err;
784 
785 	if (HAS_EXECLISTS(gt->i915))
786 		setup = intel_execlists_submission_setup;
787 	else
788 		setup = intel_ring_submission_setup;
789 
790 	for_each_engine(engine, gt, id) {
791 		err = engine_setup_common(engine);
792 		if (err)
793 			return err;
794 
795 		err = setup(engine);
796 		if (err)
797 			return err;
798 
799 		err = engine_init_common(engine);
800 		if (err)
801 			return err;
802 
803 		intel_engine_add_user(engine);
804 	}
805 
806 	return 0;
807 }
808 
809 /**
810  * intel_engines_cleanup_common - cleans up the engine state created by
811  *                                the common initiailizers.
812  * @engine: Engine to cleanup.
813  *
814  * This cleans up everything created by the common helpers.
815  */
816 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
817 {
818 	GEM_BUG_ON(!list_empty(&engine->active.requests));
819 	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
820 
821 	cleanup_status_page(engine);
822 
823 	intel_engine_fini_retire(engine);
824 	intel_engine_pool_fini(&engine->pool);
825 	intel_engine_fini_breadcrumbs(engine);
826 	intel_engine_cleanup_cmd_parser(engine);
827 
828 	if (engine->default_state)
829 		i915_gem_object_put(engine->default_state);
830 
831 	if (engine->kernel_context) {
832 		intel_context_unpin(engine->kernel_context);
833 		intel_context_put(engine->kernel_context);
834 	}
835 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
836 
837 	intel_wa_list_free(&engine->ctx_wa_list);
838 	intel_wa_list_free(&engine->wa_list);
839 	intel_wa_list_free(&engine->whitelist);
840 }
841 
842 /**
843  * intel_engine_resume - re-initializes the HW state of the engine
844  * @engine: Engine to resume.
845  *
846  * Returns zero on success or an error code on failure.
847  */
848 int intel_engine_resume(struct intel_engine_cs *engine)
849 {
850 	intel_engine_apply_workarounds(engine);
851 	intel_engine_apply_whitelist(engine);
852 
853 	return engine->resume(engine);
854 }
855 
856 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
857 {
858 	struct drm_i915_private *i915 = engine->i915;
859 
860 	u64 acthd;
861 
862 	if (INTEL_GEN(i915) >= 8)
863 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
864 	else if (INTEL_GEN(i915) >= 4)
865 		acthd = ENGINE_READ(engine, RING_ACTHD);
866 	else
867 		acthd = ENGINE_READ(engine, ACTHD);
868 
869 	return acthd;
870 }
871 
872 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
873 {
874 	u64 bbaddr;
875 
876 	if (INTEL_GEN(engine->i915) >= 8)
877 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
878 	else
879 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
880 
881 	return bbaddr;
882 }
883 
884 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
885 {
886 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
887 		return 0;
888 
889 	/*
890 	 * If we are doing a normal GPU reset, we can take our time and allow
891 	 * the engine to quiesce. We've stopped submission to the engine, and
892 	 * if we wait long enough an innocent context should complete and
893 	 * leave the engine idle. So they should not be caught unaware by
894 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
895 	 */
896 	return READ_ONCE(engine->props.stop_timeout_ms);
897 }
898 
899 int intel_engine_stop_cs(struct intel_engine_cs *engine)
900 {
901 	struct intel_uncore *uncore = engine->uncore;
902 	const u32 base = engine->mmio_base;
903 	const i915_reg_t mode = RING_MI_MODE(base);
904 	int err;
905 
906 	if (INTEL_GEN(engine->i915) < 3)
907 		return -ENODEV;
908 
909 	ENGINE_TRACE(engine, "\n");
910 
911 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
912 
913 	err = 0;
914 	if (__intel_wait_for_register_fw(uncore,
915 					 mode, MODE_IDLE, MODE_IDLE,
916 					 1000, stop_timeout(engine),
917 					 NULL)) {
918 		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
919 		err = -ETIMEDOUT;
920 	}
921 
922 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
923 	intel_uncore_posting_read_fw(uncore, mode);
924 
925 	return err;
926 }
927 
928 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
929 {
930 	ENGINE_TRACE(engine, "\n");
931 
932 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
933 }
934 
935 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
936 {
937 	switch (type) {
938 	case I915_CACHE_NONE: return " uncached";
939 	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
940 	case I915_CACHE_L3_LLC: return " L3+LLC";
941 	case I915_CACHE_WT: return " WT";
942 	default: return "";
943 	}
944 }
945 
946 static u32
947 read_subslice_reg(const struct intel_engine_cs *engine,
948 		  int slice, int subslice, i915_reg_t reg)
949 {
950 	struct drm_i915_private *i915 = engine->i915;
951 	struct intel_uncore *uncore = engine->uncore;
952 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
953 	enum forcewake_domains fw_domains;
954 
955 	if (INTEL_GEN(i915) >= 11) {
956 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
957 		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
958 	} else {
959 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
960 		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
961 	}
962 
963 	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
964 						    FW_REG_READ);
965 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
966 						     GEN8_MCR_SELECTOR,
967 						     FW_REG_READ | FW_REG_WRITE);
968 
969 	spin_lock_irq(&uncore->lock);
970 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
971 
972 	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
973 
974 	mcr &= ~mcr_mask;
975 	mcr |= mcr_ss;
976 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
977 
978 	val = intel_uncore_read_fw(uncore, reg);
979 
980 	mcr &= ~mcr_mask;
981 	mcr |= old_mcr & mcr_mask;
982 
983 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
984 
985 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
986 	spin_unlock_irq(&uncore->lock);
987 
988 	return val;
989 }
990 
991 /* NB: please notice the memset */
992 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
993 			       struct intel_instdone *instdone)
994 {
995 	struct drm_i915_private *i915 = engine->i915;
996 	const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
997 	struct intel_uncore *uncore = engine->uncore;
998 	u32 mmio_base = engine->mmio_base;
999 	int slice;
1000 	int subslice;
1001 
1002 	memset(instdone, 0, sizeof(*instdone));
1003 
1004 	switch (INTEL_GEN(i915)) {
1005 	default:
1006 		instdone->instdone =
1007 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1008 
1009 		if (engine->id != RCS0)
1010 			break;
1011 
1012 		instdone->slice_common =
1013 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1014 		if (INTEL_GEN(i915) >= 12) {
1015 			instdone->slice_common_extra[0] =
1016 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1017 			instdone->slice_common_extra[1] =
1018 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1019 		}
1020 		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1021 			instdone->sampler[slice][subslice] =
1022 				read_subslice_reg(engine, slice, subslice,
1023 						  GEN7_SAMPLER_INSTDONE);
1024 			instdone->row[slice][subslice] =
1025 				read_subslice_reg(engine, slice, subslice,
1026 						  GEN7_ROW_INSTDONE);
1027 		}
1028 		break;
1029 	case 7:
1030 		instdone->instdone =
1031 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1032 
1033 		if (engine->id != RCS0)
1034 			break;
1035 
1036 		instdone->slice_common =
1037 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1038 		instdone->sampler[0][0] =
1039 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1040 		instdone->row[0][0] =
1041 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1042 
1043 		break;
1044 	case 6:
1045 	case 5:
1046 	case 4:
1047 		instdone->instdone =
1048 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1049 		if (engine->id == RCS0)
1050 			/* HACK: Using the wrong struct member */
1051 			instdone->slice_common =
1052 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1053 		break;
1054 	case 3:
1055 	case 2:
1056 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1057 		break;
1058 	}
1059 }
1060 
1061 static bool ring_is_idle(struct intel_engine_cs *engine)
1062 {
1063 	bool idle = true;
1064 
1065 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1066 		return true;
1067 
1068 	if (!intel_engine_pm_get_if_awake(engine))
1069 		return true;
1070 
1071 	/* First check that no commands are left in the ring */
1072 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1073 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1074 		idle = false;
1075 
1076 	/* No bit for gen2, so assume the CS parser is idle */
1077 	if (INTEL_GEN(engine->i915) > 2 &&
1078 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1079 		idle = false;
1080 
1081 	intel_engine_pm_put(engine);
1082 
1083 	return idle;
1084 }
1085 
1086 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1087 {
1088 	struct tasklet_struct *t = &engine->execlists.tasklet;
1089 
1090 	if (__tasklet_is_scheduled(t)) {
1091 		local_bh_disable();
1092 		if (tasklet_trylock(t)) {
1093 			/* Must wait for any GPU reset in progress. */
1094 			if (__tasklet_is_enabled(t))
1095 				t->func(t->data);
1096 			tasklet_unlock(t);
1097 		}
1098 		local_bh_enable();
1099 	}
1100 
1101 	/* Otherwise flush the tasklet if it was running on another cpu */
1102 	tasklet_unlock_wait(t);
1103 }
1104 
1105 /**
1106  * intel_engine_is_idle() - Report if the engine has finished process all work
1107  * @engine: the intel_engine_cs
1108  *
1109  * Return true if there are no requests pending, nothing left to be submitted
1110  * to hardware, and that the engine is idle.
1111  */
1112 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1113 {
1114 	/* More white lies, if wedged, hw state is inconsistent */
1115 	if (intel_gt_is_wedged(engine->gt))
1116 		return true;
1117 
1118 	if (!intel_engine_pm_is_awake(engine))
1119 		return true;
1120 
1121 	/* Waiting to drain ELSP? */
1122 	if (execlists_active(&engine->execlists)) {
1123 		synchronize_hardirq(engine->i915->drm.pdev->irq);
1124 
1125 		intel_engine_flush_submission(engine);
1126 
1127 		if (execlists_active(&engine->execlists))
1128 			return false;
1129 	}
1130 
1131 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1132 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1133 		return false;
1134 
1135 	/* Ring stopped? */
1136 	return ring_is_idle(engine);
1137 }
1138 
1139 bool intel_engines_are_idle(struct intel_gt *gt)
1140 {
1141 	struct intel_engine_cs *engine;
1142 	enum intel_engine_id id;
1143 
1144 	/*
1145 	 * If the driver is wedged, HW state may be very inconsistent and
1146 	 * report that it is still busy, even though we have stopped using it.
1147 	 */
1148 	if (intel_gt_is_wedged(gt))
1149 		return true;
1150 
1151 	/* Already parked (and passed an idleness test); must still be idle */
1152 	if (!READ_ONCE(gt->awake))
1153 		return true;
1154 
1155 	for_each_engine(engine, gt, id) {
1156 		if (!intel_engine_is_idle(engine))
1157 			return false;
1158 	}
1159 
1160 	return true;
1161 }
1162 
1163 void intel_engines_reset_default_submission(struct intel_gt *gt)
1164 {
1165 	struct intel_engine_cs *engine;
1166 	enum intel_engine_id id;
1167 
1168 	for_each_engine(engine, gt, id)
1169 		engine->set_default_submission(engine);
1170 }
1171 
1172 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1173 {
1174 	switch (INTEL_GEN(engine->i915)) {
1175 	case 2:
1176 		return false; /* uses physical not virtual addresses */
1177 	case 3:
1178 		/* maybe only uses physical not virtual addresses */
1179 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1180 	case 4:
1181 		return !IS_I965G(engine->i915); /* who knows! */
1182 	case 6:
1183 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1184 	default:
1185 		return true;
1186 	}
1187 }
1188 
1189 static int print_sched_attr(struct drm_i915_private *i915,
1190 			    const struct i915_sched_attr *attr,
1191 			    char *buf, int x, int len)
1192 {
1193 	if (attr->priority == I915_PRIORITY_INVALID)
1194 		return x;
1195 
1196 	x += snprintf(buf + x, len - x,
1197 		      " prio=%d", attr->priority);
1198 
1199 	return x;
1200 }
1201 
1202 static void print_request(struct drm_printer *m,
1203 			  struct i915_request *rq,
1204 			  const char *prefix)
1205 {
1206 	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1207 	char buf[80] = "";
1208 	int x = 0;
1209 
1210 	x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1211 
1212 	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1213 		   prefix,
1214 		   rq->fence.context, rq->fence.seqno,
1215 		   i915_request_completed(rq) ? "!" :
1216 		   i915_request_started(rq) ? "*" :
1217 		   "",
1218 		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1219 			    &rq->fence.flags) ? "+" :
1220 		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1221 			    &rq->fence.flags) ? "-" :
1222 		   "",
1223 		   buf,
1224 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1225 		   name);
1226 }
1227 
1228 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1229 {
1230 	const size_t rowsize = 8 * sizeof(u32);
1231 	const void *prev = NULL;
1232 	bool skip = false;
1233 	size_t pos;
1234 
1235 	for (pos = 0; pos < len; pos += rowsize) {
1236 		char line[128];
1237 
1238 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1239 			if (!skip) {
1240 				drm_printf(m, "*\n");
1241 				skip = true;
1242 			}
1243 			continue;
1244 		}
1245 
1246 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1247 						rowsize, sizeof(u32),
1248 						line, sizeof(line),
1249 						false) >= sizeof(line));
1250 		drm_printf(m, "[%04zx] %s\n", pos, line);
1251 
1252 		prev = buf + pos;
1253 		skip = false;
1254 	}
1255 }
1256 
1257 static struct intel_timeline *get_timeline(struct i915_request *rq)
1258 {
1259 	struct intel_timeline *tl;
1260 
1261 	/*
1262 	 * Even though we are holding the engine->active.lock here, there
1263 	 * is no control over the submission queue per-se and we are
1264 	 * inspecting the active state at a random point in time, with an
1265 	 * unknown queue. Play safe and make sure the timeline remains valid.
1266 	 * (Only being used for pretty printing, one extra kref shouldn't
1267 	 * cause a camel stampede!)
1268 	 */
1269 	rcu_read_lock();
1270 	tl = rcu_dereference(rq->timeline);
1271 	if (!kref_get_unless_zero(&tl->kref))
1272 		tl = NULL;
1273 	rcu_read_unlock();
1274 
1275 	return tl;
1276 }
1277 
1278 static const char *repr_timer(const struct timer_list *t)
1279 {
1280 	if (!READ_ONCE(t->expires))
1281 		return "inactive";
1282 
1283 	if (timer_pending(t))
1284 		return "active";
1285 
1286 	return "expired";
1287 }
1288 
1289 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1290 					 struct drm_printer *m)
1291 {
1292 	struct drm_i915_private *dev_priv = engine->i915;
1293 	struct intel_engine_execlists * const execlists = &engine->execlists;
1294 	u64 addr;
1295 
1296 	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1297 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1298 	drm_printf(m, "\tRING_START: 0x%08x\n",
1299 		   ENGINE_READ(engine, RING_START));
1300 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1301 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1302 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1303 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1304 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1305 		   ENGINE_READ(engine, RING_CTL),
1306 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1307 	if (INTEL_GEN(engine->i915) > 2) {
1308 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1309 			   ENGINE_READ(engine, RING_MI_MODE),
1310 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1311 	}
1312 
1313 	if (INTEL_GEN(dev_priv) >= 6) {
1314 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1315 			   ENGINE_READ(engine, RING_IMR));
1316 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1317 			   ENGINE_READ(engine, RING_ESR));
1318 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1319 			   ENGINE_READ(engine, RING_EMR));
1320 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1321 			   ENGINE_READ(engine, RING_EIR));
1322 	}
1323 
1324 	addr = intel_engine_get_active_head(engine);
1325 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1326 		   upper_32_bits(addr), lower_32_bits(addr));
1327 	addr = intel_engine_get_last_batch_head(engine);
1328 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1329 		   upper_32_bits(addr), lower_32_bits(addr));
1330 	if (INTEL_GEN(dev_priv) >= 8)
1331 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1332 	else if (INTEL_GEN(dev_priv) >= 4)
1333 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1334 	else
1335 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1336 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1337 		   upper_32_bits(addr), lower_32_bits(addr));
1338 	if (INTEL_GEN(dev_priv) >= 4) {
1339 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1340 			   ENGINE_READ(engine, RING_IPEIR));
1341 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1342 			   ENGINE_READ(engine, RING_IPEHR));
1343 	} else {
1344 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1345 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1346 	}
1347 
1348 	if (HAS_EXECLISTS(dev_priv)) {
1349 		struct i915_request * const *port, *rq;
1350 		const u32 *hws =
1351 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1352 		const u8 num_entries = execlists->csb_size;
1353 		unsigned int idx;
1354 		u8 read, write;
1355 
1356 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1357 			   yesno(test_bit(TASKLET_STATE_SCHED,
1358 					  &engine->execlists.tasklet.state)),
1359 			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1360 			   repr_timer(&engine->execlists.preempt),
1361 			   repr_timer(&engine->execlists.timer));
1362 
1363 		read = execlists->csb_head;
1364 		write = READ_ONCE(*execlists->csb_write);
1365 
1366 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1367 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1368 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1369 			   read, write, num_entries);
1370 
1371 		if (read >= num_entries)
1372 			read = 0;
1373 		if (write >= num_entries)
1374 			write = 0;
1375 		if (read > write)
1376 			write += num_entries;
1377 		while (read < write) {
1378 			idx = ++read % num_entries;
1379 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1380 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1381 		}
1382 
1383 		execlists_active_lock_bh(execlists);
1384 		rcu_read_lock();
1385 		for (port = execlists->active; (rq = *port); port++) {
1386 			char hdr[160];
1387 			int len;
1388 
1389 			len = scnprintf(hdr, sizeof(hdr),
1390 					"\t\tActive[%d]: ",
1391 					(int)(port - execlists->active));
1392 			if (!i915_request_signaled(rq)) {
1393 				struct intel_timeline *tl = get_timeline(rq);
1394 
1395 				len += scnprintf(hdr + len, sizeof(hdr) - len,
1396 						 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1397 						 i915_ggtt_offset(rq->ring->vma),
1398 						 tl ? tl->hwsp_offset : 0,
1399 						 hwsp_seqno(rq),
1400 						 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1401 								       1000 * 1000));
1402 
1403 				if (tl)
1404 					intel_timeline_put(tl);
1405 			}
1406 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1407 			print_request(m, rq, hdr);
1408 		}
1409 		for (port = execlists->pending; (rq = *port); port++) {
1410 			struct intel_timeline *tl = get_timeline(rq);
1411 			char hdr[80];
1412 
1413 			snprintf(hdr, sizeof(hdr),
1414 				 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1415 				 (int)(port - execlists->pending),
1416 				 i915_ggtt_offset(rq->ring->vma),
1417 				 tl ? tl->hwsp_offset : 0,
1418 				 hwsp_seqno(rq));
1419 			print_request(m, rq, hdr);
1420 
1421 			if (tl)
1422 				intel_timeline_put(tl);
1423 		}
1424 		rcu_read_unlock();
1425 		execlists_active_unlock_bh(execlists);
1426 	} else if (INTEL_GEN(dev_priv) > 6) {
1427 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1428 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1429 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1430 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1431 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1432 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1433 	}
1434 }
1435 
1436 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1437 {
1438 	void *ring;
1439 	int size;
1440 
1441 	drm_printf(m,
1442 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1443 		   rq->head, rq->postfix, rq->tail,
1444 		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1445 		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1446 
1447 	size = rq->tail - rq->head;
1448 	if (rq->tail < rq->head)
1449 		size += rq->ring->size;
1450 
1451 	ring = kmalloc(size, GFP_ATOMIC);
1452 	if (ring) {
1453 		const void *vaddr = rq->ring->vaddr;
1454 		unsigned int head = rq->head;
1455 		unsigned int len = 0;
1456 
1457 		if (rq->tail < head) {
1458 			len = rq->ring->size - head;
1459 			memcpy(ring, vaddr + head, len);
1460 			head = 0;
1461 		}
1462 		memcpy(ring + len, vaddr + head, size - len);
1463 
1464 		hexdump(m, ring, size);
1465 		kfree(ring);
1466 	}
1467 }
1468 
1469 static unsigned long list_count(struct list_head *list)
1470 {
1471 	struct list_head *pos;
1472 	unsigned long count = 0;
1473 
1474 	list_for_each(pos, list)
1475 		count++;
1476 
1477 	return count;
1478 }
1479 
1480 void intel_engine_dump(struct intel_engine_cs *engine,
1481 		       struct drm_printer *m,
1482 		       const char *header, ...)
1483 {
1484 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1485 	struct i915_request *rq;
1486 	intel_wakeref_t wakeref;
1487 	unsigned long flags;
1488 
1489 	if (header) {
1490 		va_list ap;
1491 
1492 		va_start(ap, header);
1493 		drm_vprintf(m, header, &ap);
1494 		va_end(ap);
1495 	}
1496 
1497 	if (intel_gt_is_wedged(engine->gt))
1498 		drm_printf(m, "*** WEDGED ***\n");
1499 
1500 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1501 	drm_printf(m, "\tBarriers?: %s\n",
1502 		   yesno(!llist_empty(&engine->barrier_tasks)));
1503 	drm_printf(m, "\tLatency: %luus\n",
1504 		   ewma__engine_latency_read(&engine->latency));
1505 
1506 	rcu_read_lock();
1507 	rq = READ_ONCE(engine->heartbeat.systole);
1508 	if (rq)
1509 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
1510 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1511 	rcu_read_unlock();
1512 	drm_printf(m, "\tReset count: %d (global %d)\n",
1513 		   i915_reset_engine_count(error, engine),
1514 		   i915_reset_count(error));
1515 
1516 	drm_printf(m, "\tRequests:\n");
1517 
1518 	spin_lock_irqsave(&engine->active.lock, flags);
1519 	rq = intel_engine_find_active_request(engine);
1520 	if (rq) {
1521 		struct intel_timeline *tl = get_timeline(rq);
1522 
1523 		print_request(m, rq, "\t\tactive ");
1524 
1525 		drm_printf(m, "\t\tring->start:  0x%08x\n",
1526 			   i915_ggtt_offset(rq->ring->vma));
1527 		drm_printf(m, "\t\tring->head:   0x%08x\n",
1528 			   rq->ring->head);
1529 		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1530 			   rq->ring->tail);
1531 		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1532 			   rq->ring->emit);
1533 		drm_printf(m, "\t\tring->space:  0x%08x\n",
1534 			   rq->ring->space);
1535 
1536 		if (tl) {
1537 			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1538 				   tl->hwsp_offset);
1539 			intel_timeline_put(tl);
1540 		}
1541 
1542 		print_request_ring(m, rq);
1543 
1544 		if (rq->context->lrc_reg_state) {
1545 			drm_printf(m, "Logical Ring Context:\n");
1546 			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1547 		}
1548 	}
1549 	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1550 	spin_unlock_irqrestore(&engine->active.lock, flags);
1551 
1552 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1553 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1554 	if (wakeref) {
1555 		intel_engine_print_registers(engine, m);
1556 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1557 	} else {
1558 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1559 	}
1560 
1561 	intel_execlists_show_requests(engine, m, print_request, 8);
1562 
1563 	drm_printf(m, "HWSP:\n");
1564 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1565 
1566 	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1567 
1568 	intel_engine_print_breadcrumbs(engine, m);
1569 }
1570 
1571 /**
1572  * intel_enable_engine_stats() - Enable engine busy tracking on engine
1573  * @engine: engine to enable stats collection
1574  *
1575  * Start collecting the engine busyness data for @engine.
1576  *
1577  * Returns 0 on success or a negative error code.
1578  */
1579 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1580 {
1581 	struct intel_engine_execlists *execlists = &engine->execlists;
1582 	unsigned long flags;
1583 	int err = 0;
1584 
1585 	if (!intel_engine_supports_stats(engine))
1586 		return -ENODEV;
1587 
1588 	execlists_active_lock_bh(execlists);
1589 	write_seqlock_irqsave(&engine->stats.lock, flags);
1590 
1591 	if (unlikely(engine->stats.enabled == ~0)) {
1592 		err = -EBUSY;
1593 		goto unlock;
1594 	}
1595 
1596 	if (engine->stats.enabled++ == 0) {
1597 		struct i915_request * const *port;
1598 		struct i915_request *rq;
1599 
1600 		engine->stats.enabled_at = ktime_get();
1601 
1602 		/* XXX submission method oblivious? */
1603 		for (port = execlists->active; (rq = *port); port++)
1604 			engine->stats.active++;
1605 
1606 		for (port = execlists->pending; (rq = *port); port++) {
1607 			/* Exclude any contexts already counted in active */
1608 			if (!intel_context_inflight_count(rq->context))
1609 				engine->stats.active++;
1610 		}
1611 
1612 		if (engine->stats.active)
1613 			engine->stats.start = engine->stats.enabled_at;
1614 	}
1615 
1616 unlock:
1617 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1618 	execlists_active_unlock_bh(execlists);
1619 
1620 	return err;
1621 }
1622 
1623 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1624 {
1625 	ktime_t total = engine->stats.total;
1626 
1627 	/*
1628 	 * If the engine is executing something at the moment
1629 	 * add it to the total.
1630 	 */
1631 	if (engine->stats.active)
1632 		total = ktime_add(total,
1633 				  ktime_sub(ktime_get(), engine->stats.start));
1634 
1635 	return total;
1636 }
1637 
1638 /**
1639  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1640  * @engine: engine to report on
1641  *
1642  * Returns accumulated time @engine was busy since engine stats were enabled.
1643  */
1644 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1645 {
1646 	unsigned int seq;
1647 	ktime_t total;
1648 
1649 	do {
1650 		seq = read_seqbegin(&engine->stats.lock);
1651 		total = __intel_engine_get_busy_time(engine);
1652 	} while (read_seqretry(&engine->stats.lock, seq));
1653 
1654 	return total;
1655 }
1656 
1657 /**
1658  * intel_disable_engine_stats() - Disable engine busy tracking on engine
1659  * @engine: engine to disable stats collection
1660  *
1661  * Stops collecting the engine busyness data for @engine.
1662  */
1663 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1664 {
1665 	unsigned long flags;
1666 
1667 	if (!intel_engine_supports_stats(engine))
1668 		return;
1669 
1670 	write_seqlock_irqsave(&engine->stats.lock, flags);
1671 	WARN_ON_ONCE(engine->stats.enabled == 0);
1672 	if (--engine->stats.enabled == 0) {
1673 		engine->stats.total = __intel_engine_get_busy_time(engine);
1674 		engine->stats.active = 0;
1675 	}
1676 	write_sequnlock_irqrestore(&engine->stats.lock, flags);
1677 }
1678 
1679 static bool match_ring(struct i915_request *rq)
1680 {
1681 	u32 ring = ENGINE_READ(rq->engine, RING_START);
1682 
1683 	return ring == i915_ggtt_offset(rq->ring->vma);
1684 }
1685 
1686 struct i915_request *
1687 intel_engine_find_active_request(struct intel_engine_cs *engine)
1688 {
1689 	struct i915_request *request, *active = NULL;
1690 
1691 	/*
1692 	 * We are called by the error capture, reset and to dump engine
1693 	 * state at random points in time. In particular, note that neither is
1694 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1695 	 * and we assume that no more writes can happen (we waited long enough
1696 	 * for all writes that were in transaction to be flushed) - adding an
1697 	 * extra delay for a recent interrupt is pointless. Hence, we do
1698 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1699 	 * At all other times, we must assume the GPU is still running, but
1700 	 * we only care about the snapshot of this moment.
1701 	 */
1702 	lockdep_assert_held(&engine->active.lock);
1703 
1704 	rcu_read_lock();
1705 	request = execlists_active(&engine->execlists);
1706 	if (request) {
1707 		struct intel_timeline *tl = request->context->timeline;
1708 
1709 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1710 			if (i915_request_completed(request))
1711 				break;
1712 
1713 			active = request;
1714 		}
1715 	}
1716 	rcu_read_unlock();
1717 	if (active)
1718 		return active;
1719 
1720 	list_for_each_entry(request, &engine->active.requests, sched.link) {
1721 		if (i915_request_completed(request))
1722 			continue;
1723 
1724 		if (!i915_request_started(request))
1725 			continue;
1726 
1727 		/* More than one preemptible request may match! */
1728 		if (!match_ring(request))
1729 			continue;
1730 
1731 		active = request;
1732 		break;
1733 	}
1734 
1735 	return active;
1736 }
1737 
1738 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1739 #include "mock_engine.c"
1740 #include "selftest_engine.c"
1741 #include "selftest_engine_cs.c"
1742 #endif
1743