1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <drm/drm_print.h> 26 27 #include "gem/i915_gem_context.h" 28 29 #include "i915_drv.h" 30 31 #include "intel_context.h" 32 #include "intel_engine.h" 33 #include "intel_engine_pm.h" 34 #include "intel_engine_pool.h" 35 #include "intel_engine_user.h" 36 #include "intel_gt.h" 37 #include "intel_gt_requests.h" 38 #include "intel_gt_pm.h" 39 #include "intel_lrc.h" 40 #include "intel_reset.h" 41 #include "intel_ring.h" 42 43 /* Haswell does have the CXT_SIZE register however it does not appear to be 44 * valid. Now, docs explain in dwords what is in the context object. The full 45 * size is 70720 bytes, however, the power context and execlist context will 46 * never be saved (power context is stored elsewhere, and execlists don't work 47 * on HSW) - so the final size, including the extra state required for the 48 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 49 */ 50 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 51 52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 53 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 54 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 55 #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE) 56 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 57 58 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) 59 60 #define MAX_MMIO_BASES 3 61 struct engine_info { 62 unsigned int hw_id; 63 u8 class; 64 u8 instance; 65 /* mmio bases table *must* be sorted in reverse gen order */ 66 struct engine_mmio_base { 67 u32 gen : 8; 68 u32 base : 24; 69 } mmio_bases[MAX_MMIO_BASES]; 70 }; 71 72 static const struct engine_info intel_engines[] = { 73 [RCS0] = { 74 .hw_id = RCS0_HW, 75 .class = RENDER_CLASS, 76 .instance = 0, 77 .mmio_bases = { 78 { .gen = 1, .base = RENDER_RING_BASE } 79 }, 80 }, 81 [BCS0] = { 82 .hw_id = BCS0_HW, 83 .class = COPY_ENGINE_CLASS, 84 .instance = 0, 85 .mmio_bases = { 86 { .gen = 6, .base = BLT_RING_BASE } 87 }, 88 }, 89 [VCS0] = { 90 .hw_id = VCS0_HW, 91 .class = VIDEO_DECODE_CLASS, 92 .instance = 0, 93 .mmio_bases = { 94 { .gen = 11, .base = GEN11_BSD_RING_BASE }, 95 { .gen = 6, .base = GEN6_BSD_RING_BASE }, 96 { .gen = 4, .base = BSD_RING_BASE } 97 }, 98 }, 99 [VCS1] = { 100 .hw_id = VCS1_HW, 101 .class = VIDEO_DECODE_CLASS, 102 .instance = 1, 103 .mmio_bases = { 104 { .gen = 11, .base = GEN11_BSD2_RING_BASE }, 105 { .gen = 8, .base = GEN8_BSD2_RING_BASE } 106 }, 107 }, 108 [VCS2] = { 109 .hw_id = VCS2_HW, 110 .class = VIDEO_DECODE_CLASS, 111 .instance = 2, 112 .mmio_bases = { 113 { .gen = 11, .base = GEN11_BSD3_RING_BASE } 114 }, 115 }, 116 [VCS3] = { 117 .hw_id = VCS3_HW, 118 .class = VIDEO_DECODE_CLASS, 119 .instance = 3, 120 .mmio_bases = { 121 { .gen = 11, .base = GEN11_BSD4_RING_BASE } 122 }, 123 }, 124 [VECS0] = { 125 .hw_id = VECS0_HW, 126 .class = VIDEO_ENHANCEMENT_CLASS, 127 .instance = 0, 128 .mmio_bases = { 129 { .gen = 11, .base = GEN11_VEBOX_RING_BASE }, 130 { .gen = 7, .base = VEBOX_RING_BASE } 131 }, 132 }, 133 [VECS1] = { 134 .hw_id = VECS1_HW, 135 .class = VIDEO_ENHANCEMENT_CLASS, 136 .instance = 1, 137 .mmio_bases = { 138 { .gen = 11, .base = GEN11_VEBOX2_RING_BASE } 139 }, 140 }, 141 }; 142 143 /** 144 * intel_engine_context_size() - return the size of the context for an engine 145 * @gt: the gt 146 * @class: engine class 147 * 148 * Each engine class may require a different amount of space for a context 149 * image. 150 * 151 * Return: size (in bytes) of an engine class specific context image 152 * 153 * Note: this size includes the HWSP, which is part of the context image 154 * in LRC mode, but does not include the "shared data page" used with 155 * GuC submission. The caller should account for this if using the GuC. 156 */ 157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 158 { 159 struct intel_uncore *uncore = gt->uncore; 160 u32 cxt_size; 161 162 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 163 164 switch (class) { 165 case RENDER_CLASS: 166 switch (INTEL_GEN(gt->i915)) { 167 default: 168 MISSING_CASE(INTEL_GEN(gt->i915)); 169 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 170 case 12: 171 case 11: 172 return GEN11_LR_CONTEXT_RENDER_SIZE; 173 case 10: 174 return GEN10_LR_CONTEXT_RENDER_SIZE; 175 case 9: 176 return GEN9_LR_CONTEXT_RENDER_SIZE; 177 case 8: 178 return GEN8_LR_CONTEXT_RENDER_SIZE; 179 case 7: 180 if (IS_HASWELL(gt->i915)) 181 return HSW_CXT_TOTAL_SIZE; 182 183 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 184 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 185 PAGE_SIZE); 186 case 6: 187 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 188 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 189 PAGE_SIZE); 190 case 5: 191 case 4: 192 /* 193 * There is a discrepancy here between the size reported 194 * by the register and the size of the context layout 195 * in the docs. Both are described as authorative! 196 * 197 * The discrepancy is on the order of a few cachelines, 198 * but the total is under one page (4k), which is our 199 * minimum allocation anyway so it should all come 200 * out in the wash. 201 */ 202 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 203 drm_dbg(>->i915->drm, 204 "gen%d CXT_SIZE = %d bytes [0x%08x]\n", 205 INTEL_GEN(gt->i915), cxt_size * 64, 206 cxt_size - 1); 207 return round_up(cxt_size * 64, PAGE_SIZE); 208 case 3: 209 case 2: 210 /* For the special day when i810 gets merged. */ 211 case 1: 212 return 0; 213 } 214 break; 215 default: 216 MISSING_CASE(class); 217 /* fall through */ 218 case VIDEO_DECODE_CLASS: 219 case VIDEO_ENHANCEMENT_CLASS: 220 case COPY_ENGINE_CLASS: 221 if (INTEL_GEN(gt->i915) < 8) 222 return 0; 223 return GEN8_LR_CONTEXT_OTHER_SIZE; 224 } 225 } 226 227 static u32 __engine_mmio_base(struct drm_i915_private *i915, 228 const struct engine_mmio_base *bases) 229 { 230 int i; 231 232 for (i = 0; i < MAX_MMIO_BASES; i++) 233 if (INTEL_GEN(i915) >= bases[i].gen) 234 break; 235 236 GEM_BUG_ON(i == MAX_MMIO_BASES); 237 GEM_BUG_ON(!bases[i].base); 238 239 return bases[i].base; 240 } 241 242 static void __sprint_engine_name(struct intel_engine_cs *engine) 243 { 244 /* 245 * Before we know what the uABI name for this engine will be, 246 * we still would like to keep track of this engine in the debug logs. 247 * We throw in a ' here as a reminder that this isn't its final name. 248 */ 249 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 250 intel_engine_class_repr(engine->class), 251 engine->instance) >= sizeof(engine->name)); 252 } 253 254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 255 { 256 /* 257 * Though they added more rings on g4x/ilk, they did not add 258 * per-engine HWSTAM until gen6. 259 */ 260 if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS) 261 return; 262 263 if (INTEL_GEN(engine->i915) >= 3) 264 ENGINE_WRITE(engine, RING_HWSTAM, mask); 265 else 266 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 267 } 268 269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 270 { 271 /* Mask off all writes into the unknown HWSP */ 272 intel_engine_set_hwsp_writemask(engine, ~0u); 273 } 274 275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id) 276 { 277 const struct engine_info *info = &intel_engines[id]; 278 struct drm_i915_private *i915 = gt->i915; 279 struct intel_engine_cs *engine; 280 281 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 282 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 283 284 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 285 return -EINVAL; 286 287 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 288 return -EINVAL; 289 290 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 291 return -EINVAL; 292 293 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 294 return -EINVAL; 295 296 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 297 if (!engine) 298 return -ENOMEM; 299 300 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 301 302 engine->id = id; 303 engine->legacy_idx = INVALID_ENGINE; 304 engine->mask = BIT(id); 305 engine->i915 = i915; 306 engine->gt = gt; 307 engine->uncore = gt->uncore; 308 engine->hw_id = engine->guc_id = info->hw_id; 309 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 310 311 engine->class = info->class; 312 engine->instance = info->instance; 313 __sprint_engine_name(engine); 314 315 engine->props.heartbeat_interval_ms = 316 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 317 engine->props.max_busywait_duration_ns = 318 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 319 engine->props.preempt_timeout_ms = 320 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 321 engine->props.stop_timeout_ms = 322 CONFIG_DRM_I915_STOP_TIMEOUT; 323 engine->props.timeslice_duration_ms = 324 CONFIG_DRM_I915_TIMESLICE_DURATION; 325 326 /* Override to uninterruptible for OpenCL workloads. */ 327 if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS) 328 engine->props.preempt_timeout_ms = 0; 329 330 engine->context_size = intel_engine_context_size(gt, engine->class); 331 if (WARN_ON(engine->context_size > BIT(20))) 332 engine->context_size = 0; 333 if (engine->context_size) 334 DRIVER_CAPS(i915)->has_logical_contexts = true; 335 336 /* Nothing to do here, execute in order of dependencies */ 337 engine->schedule = NULL; 338 339 ewma__engine_latency_init(&engine->latency); 340 seqlock_init(&engine->stats.lock); 341 342 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 343 344 /* Scrub mmio state on takeover */ 345 intel_engine_sanitize_mmio(engine); 346 347 gt->engine_class[info->class][info->instance] = engine; 348 gt->engine[id] = engine; 349 350 i915->engine[id] = engine; 351 352 return 0; 353 } 354 355 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 356 { 357 struct drm_i915_private *i915 = engine->i915; 358 359 if (engine->class == VIDEO_DECODE_CLASS) { 360 /* 361 * HEVC support is present on first engine instance 362 * before Gen11 and on all instances afterwards. 363 */ 364 if (INTEL_GEN(i915) >= 11 || 365 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 366 engine->uabi_capabilities |= 367 I915_VIDEO_CLASS_CAPABILITY_HEVC; 368 369 /* 370 * SFC block is present only on even logical engine 371 * instances. 372 */ 373 if ((INTEL_GEN(i915) >= 11 && 374 RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) || 375 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 376 engine->uabi_capabilities |= 377 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 378 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 379 if (INTEL_GEN(i915) >= 9) 380 engine->uabi_capabilities |= 381 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 382 } 383 } 384 385 static void intel_setup_engine_capabilities(struct intel_gt *gt) 386 { 387 struct intel_engine_cs *engine; 388 enum intel_engine_id id; 389 390 for_each_engine(engine, gt, id) 391 __setup_engine_capabilities(engine); 392 } 393 394 /** 395 * intel_engines_release() - free the resources allocated for Command Streamers 396 * @gt: pointer to struct intel_gt 397 */ 398 void intel_engines_release(struct intel_gt *gt) 399 { 400 struct intel_engine_cs *engine; 401 enum intel_engine_id id; 402 403 /* 404 * Before we release the resources held by engine, we must be certain 405 * that the HW is no longer accessing them -- having the GPU scribble 406 * to or read from a page being used for something else causes no end 407 * of fun. 408 * 409 * The GPU should be reset by this point, but assume the worst just 410 * in case we aborted before completely initialising the engines. 411 */ 412 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 413 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 414 __intel_gt_reset(gt, ALL_ENGINES); 415 416 /* Decouple the backend; but keep the layout for late GPU resets */ 417 for_each_engine(engine, gt, id) { 418 intel_wakeref_wait_for_idle(&engine->wakeref); 419 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 420 421 if (!engine->release) 422 continue; 423 424 engine->release(engine); 425 engine->release = NULL; 426 427 memset(&engine->reset, 0, sizeof(engine->reset)); 428 429 gt->i915->engine[id] = NULL; 430 } 431 } 432 433 void intel_engines_free(struct intel_gt *gt) 434 { 435 struct intel_engine_cs *engine; 436 enum intel_engine_id id; 437 438 for_each_engine(engine, gt, id) { 439 kfree(engine); 440 gt->engine[id] = NULL; 441 } 442 } 443 444 /** 445 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 446 * @gt: pointer to struct intel_gt 447 * 448 * Return: non-zero if the initialization failed. 449 */ 450 int intel_engines_init_mmio(struct intel_gt *gt) 451 { 452 struct drm_i915_private *i915 = gt->i915; 453 struct intel_device_info *device_info = mkwrite_device_info(i915); 454 const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask; 455 unsigned int mask = 0; 456 unsigned int i; 457 int err; 458 459 drm_WARN_ON(&i915->drm, engine_mask == 0); 460 drm_WARN_ON(&i915->drm, engine_mask & 461 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 462 463 if (i915_inject_probe_failure(i915)) 464 return -ENODEV; 465 466 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { 467 if (!HAS_ENGINE(i915, i)) 468 continue; 469 470 err = intel_engine_setup(gt, i); 471 if (err) 472 goto cleanup; 473 474 mask |= BIT(i); 475 } 476 477 /* 478 * Catch failures to update intel_engines table when the new engines 479 * are added to the driver by a warning and disabling the forgotten 480 * engines. 481 */ 482 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 483 device_info->engine_mask = mask; 484 485 RUNTIME_INFO(i915)->num_engines = hweight32(mask); 486 487 intel_gt_check_and_clear_faults(gt); 488 489 intel_setup_engine_capabilities(gt); 490 491 return 0; 492 493 cleanup: 494 intel_engines_free(gt); 495 return err; 496 } 497 498 void intel_engine_init_execlists(struct intel_engine_cs *engine) 499 { 500 struct intel_engine_execlists * const execlists = &engine->execlists; 501 502 execlists->port_mask = 1; 503 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 504 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 505 506 memset(execlists->pending, 0, sizeof(execlists->pending)); 507 execlists->active = 508 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 509 510 execlists->queue_priority_hint = INT_MIN; 511 execlists->queue = RB_ROOT_CACHED; 512 } 513 514 static void cleanup_status_page(struct intel_engine_cs *engine) 515 { 516 struct i915_vma *vma; 517 518 /* Prevent writes into HWSP after returning the page to the system */ 519 intel_engine_set_hwsp_writemask(engine, ~0u); 520 521 vma = fetch_and_zero(&engine->status_page.vma); 522 if (!vma) 523 return; 524 525 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 526 i915_vma_unpin(vma); 527 528 i915_gem_object_unpin_map(vma->obj); 529 i915_gem_object_put(vma->obj); 530 } 531 532 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 533 struct i915_vma *vma) 534 { 535 unsigned int flags; 536 537 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 538 /* 539 * On g33, we cannot place HWS above 256MiB, so 540 * restrict its pinning to the low mappable arena. 541 * Though this restriction is not documented for 542 * gen4, gen5, or byt, they also behave similarly 543 * and hang if the HWS is placed at the top of the 544 * GTT. To generalise, it appears that all !llc 545 * platforms have issues with us placing the HWS 546 * above the mappable region (even though we never 547 * actually map it). 548 */ 549 flags = PIN_MAPPABLE; 550 else 551 flags = PIN_HIGH; 552 553 return i915_ggtt_pin(vma, 0, flags); 554 } 555 556 static int init_status_page(struct intel_engine_cs *engine) 557 { 558 struct drm_i915_gem_object *obj; 559 struct i915_vma *vma; 560 void *vaddr; 561 int ret; 562 563 /* 564 * Though the HWS register does support 36bit addresses, historically 565 * we have had hangs and corruption reported due to wild writes if 566 * the HWS is placed above 4G. We only allow objects to be allocated 567 * in GFP_DMA32 for i965, and no earlier physical address users had 568 * access to more than 4G. 569 */ 570 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 571 if (IS_ERR(obj)) { 572 drm_err(&engine->i915->drm, 573 "Failed to allocate status page\n"); 574 return PTR_ERR(obj); 575 } 576 577 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 578 579 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 580 if (IS_ERR(vma)) { 581 ret = PTR_ERR(vma); 582 goto err; 583 } 584 585 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 586 if (IS_ERR(vaddr)) { 587 ret = PTR_ERR(vaddr); 588 goto err; 589 } 590 591 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 592 engine->status_page.vma = vma; 593 594 if (!HWS_NEEDS_PHYSICAL(engine->i915)) { 595 ret = pin_ggtt_status_page(engine, vma); 596 if (ret) 597 goto err_unpin; 598 } 599 600 return 0; 601 602 err_unpin: 603 i915_gem_object_unpin_map(obj); 604 err: 605 i915_gem_object_put(obj); 606 return ret; 607 } 608 609 static int engine_setup_common(struct intel_engine_cs *engine) 610 { 611 int err; 612 613 init_llist_head(&engine->barrier_tasks); 614 615 err = init_status_page(engine); 616 if (err) 617 return err; 618 619 intel_engine_init_active(engine, ENGINE_PHYSICAL); 620 intel_engine_init_breadcrumbs(engine); 621 intel_engine_init_execlists(engine); 622 intel_engine_init_cmd_parser(engine); 623 intel_engine_init__pm(engine); 624 intel_engine_init_retire(engine); 625 626 intel_engine_pool_init(&engine->pool); 627 628 /* Use the whole device by default */ 629 engine->sseu = 630 intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu); 631 632 intel_engine_init_workarounds(engine); 633 intel_engine_init_whitelist(engine); 634 intel_engine_init_ctx_wa(engine); 635 636 return 0; 637 } 638 639 struct measure_breadcrumb { 640 struct i915_request rq; 641 struct intel_ring ring; 642 u32 cs[1024]; 643 }; 644 645 static int measure_breadcrumb_dw(struct intel_context *ce) 646 { 647 struct intel_engine_cs *engine = ce->engine; 648 struct measure_breadcrumb *frame; 649 int dw; 650 651 GEM_BUG_ON(!engine->gt->scratch); 652 653 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 654 if (!frame) 655 return -ENOMEM; 656 657 frame->rq.i915 = engine->i915; 658 frame->rq.engine = engine; 659 frame->rq.context = ce; 660 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 661 662 frame->ring.vaddr = frame->cs; 663 frame->ring.size = sizeof(frame->cs); 664 frame->ring.effective_size = frame->ring.size; 665 intel_ring_update_space(&frame->ring); 666 frame->rq.ring = &frame->ring; 667 668 mutex_lock(&ce->timeline->mutex); 669 spin_lock_irq(&engine->active.lock); 670 671 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 672 673 spin_unlock_irq(&engine->active.lock); 674 mutex_unlock(&ce->timeline->mutex); 675 676 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 677 678 kfree(frame); 679 return dw; 680 } 681 682 void 683 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass) 684 { 685 INIT_LIST_HEAD(&engine->active.requests); 686 INIT_LIST_HEAD(&engine->active.hold); 687 688 spin_lock_init(&engine->active.lock); 689 lockdep_set_subclass(&engine->active.lock, subclass); 690 691 /* 692 * Due to an interesting quirk in lockdep's internal debug tracking, 693 * after setting a subclass we must ensure the lock is used. Otherwise, 694 * nr_unused_locks is incremented once too often. 695 */ 696 #ifdef CONFIG_DEBUG_LOCK_ALLOC 697 local_irq_disable(); 698 lock_map_acquire(&engine->active.lock.dep_map); 699 lock_map_release(&engine->active.lock.dep_map); 700 local_irq_enable(); 701 #endif 702 } 703 704 static struct intel_context * 705 create_kernel_context(struct intel_engine_cs *engine) 706 { 707 static struct lock_class_key kernel; 708 struct intel_context *ce; 709 int err; 710 711 ce = intel_context_create(engine); 712 if (IS_ERR(ce)) 713 return ce; 714 715 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 716 717 err = intel_context_pin(ce); /* perma-pin so it is always available */ 718 if (err) { 719 intel_context_put(ce); 720 return ERR_PTR(err); 721 } 722 723 /* 724 * Give our perma-pinned kernel timelines a separate lockdep class, 725 * so that we can use them from within the normal user timelines 726 * should we need to inject GPU operations during their request 727 * construction. 728 */ 729 lockdep_set_class(&ce->timeline->mutex, &kernel); 730 731 return ce; 732 } 733 734 /** 735 * intel_engines_init_common - initialize cengine state which might require hw access 736 * @engine: Engine to initialize. 737 * 738 * Initializes @engine@ structure members shared between legacy and execlists 739 * submission modes which do require hardware access. 740 * 741 * Typcally done at later stages of submission mode specific engine setup. 742 * 743 * Returns zero on success or an error code on failure. 744 */ 745 static int engine_init_common(struct intel_engine_cs *engine) 746 { 747 struct intel_context *ce; 748 int ret; 749 750 engine->set_default_submission(engine); 751 752 /* 753 * We may need to do things with the shrinker which 754 * require us to immediately switch back to the default 755 * context. This can cause a problem as pinning the 756 * default context also requires GTT space which may not 757 * be available. To avoid this we always pin the default 758 * context. 759 */ 760 ce = create_kernel_context(engine); 761 if (IS_ERR(ce)) 762 return PTR_ERR(ce); 763 764 ret = measure_breadcrumb_dw(ce); 765 if (ret < 0) 766 goto err_context; 767 768 engine->emit_fini_breadcrumb_dw = ret; 769 engine->kernel_context = ce; 770 771 return 0; 772 773 err_context: 774 intel_context_put(ce); 775 return ret; 776 } 777 778 int intel_engines_init(struct intel_gt *gt) 779 { 780 int (*setup)(struct intel_engine_cs *engine); 781 struct intel_engine_cs *engine; 782 enum intel_engine_id id; 783 int err; 784 785 if (HAS_EXECLISTS(gt->i915)) 786 setup = intel_execlists_submission_setup; 787 else 788 setup = intel_ring_submission_setup; 789 790 for_each_engine(engine, gt, id) { 791 err = engine_setup_common(engine); 792 if (err) 793 return err; 794 795 err = setup(engine); 796 if (err) 797 return err; 798 799 err = engine_init_common(engine); 800 if (err) 801 return err; 802 803 intel_engine_add_user(engine); 804 } 805 806 return 0; 807 } 808 809 /** 810 * intel_engines_cleanup_common - cleans up the engine state created by 811 * the common initiailizers. 812 * @engine: Engine to cleanup. 813 * 814 * This cleans up everything created by the common helpers. 815 */ 816 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 817 { 818 GEM_BUG_ON(!list_empty(&engine->active.requests)); 819 tasklet_kill(&engine->execlists.tasklet); /* flush the callback */ 820 821 cleanup_status_page(engine); 822 823 intel_engine_fini_retire(engine); 824 intel_engine_pool_fini(&engine->pool); 825 intel_engine_fini_breadcrumbs(engine); 826 intel_engine_cleanup_cmd_parser(engine); 827 828 if (engine->default_state) 829 i915_gem_object_put(engine->default_state); 830 831 if (engine->kernel_context) { 832 intel_context_unpin(engine->kernel_context); 833 intel_context_put(engine->kernel_context); 834 } 835 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 836 837 intel_wa_list_free(&engine->ctx_wa_list); 838 intel_wa_list_free(&engine->wa_list); 839 intel_wa_list_free(&engine->whitelist); 840 } 841 842 /** 843 * intel_engine_resume - re-initializes the HW state of the engine 844 * @engine: Engine to resume. 845 * 846 * Returns zero on success or an error code on failure. 847 */ 848 int intel_engine_resume(struct intel_engine_cs *engine) 849 { 850 intel_engine_apply_workarounds(engine); 851 intel_engine_apply_whitelist(engine); 852 853 return engine->resume(engine); 854 } 855 856 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 857 { 858 struct drm_i915_private *i915 = engine->i915; 859 860 u64 acthd; 861 862 if (INTEL_GEN(i915) >= 8) 863 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 864 else if (INTEL_GEN(i915) >= 4) 865 acthd = ENGINE_READ(engine, RING_ACTHD); 866 else 867 acthd = ENGINE_READ(engine, ACTHD); 868 869 return acthd; 870 } 871 872 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 873 { 874 u64 bbaddr; 875 876 if (INTEL_GEN(engine->i915) >= 8) 877 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 878 else 879 bbaddr = ENGINE_READ(engine, RING_BBADDR); 880 881 return bbaddr; 882 } 883 884 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 885 { 886 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 887 return 0; 888 889 /* 890 * If we are doing a normal GPU reset, we can take our time and allow 891 * the engine to quiesce. We've stopped submission to the engine, and 892 * if we wait long enough an innocent context should complete and 893 * leave the engine idle. So they should not be caught unaware by 894 * the forthcoming GPU reset (which usually follows the stop_cs)! 895 */ 896 return READ_ONCE(engine->props.stop_timeout_ms); 897 } 898 899 int intel_engine_stop_cs(struct intel_engine_cs *engine) 900 { 901 struct intel_uncore *uncore = engine->uncore; 902 const u32 base = engine->mmio_base; 903 const i915_reg_t mode = RING_MI_MODE(base); 904 int err; 905 906 if (INTEL_GEN(engine->i915) < 3) 907 return -ENODEV; 908 909 ENGINE_TRACE(engine, "\n"); 910 911 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 912 913 err = 0; 914 if (__intel_wait_for_register_fw(uncore, 915 mode, MODE_IDLE, MODE_IDLE, 916 1000, stop_timeout(engine), 917 NULL)) { 918 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n"); 919 err = -ETIMEDOUT; 920 } 921 922 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 923 intel_uncore_posting_read_fw(uncore, mode); 924 925 return err; 926 } 927 928 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 929 { 930 ENGINE_TRACE(engine, "\n"); 931 932 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 933 } 934 935 const char *i915_cache_level_str(struct drm_i915_private *i915, int type) 936 { 937 switch (type) { 938 case I915_CACHE_NONE: return " uncached"; 939 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; 940 case I915_CACHE_L3_LLC: return " L3+LLC"; 941 case I915_CACHE_WT: return " WT"; 942 default: return ""; 943 } 944 } 945 946 static u32 947 read_subslice_reg(const struct intel_engine_cs *engine, 948 int slice, int subslice, i915_reg_t reg) 949 { 950 struct drm_i915_private *i915 = engine->i915; 951 struct intel_uncore *uncore = engine->uncore; 952 u32 mcr_mask, mcr_ss, mcr, old_mcr, val; 953 enum forcewake_domains fw_domains; 954 955 if (INTEL_GEN(i915) >= 11) { 956 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 957 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 958 } else { 959 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 960 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 961 } 962 963 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, 964 FW_REG_READ); 965 fw_domains |= intel_uncore_forcewake_for_reg(uncore, 966 GEN8_MCR_SELECTOR, 967 FW_REG_READ | FW_REG_WRITE); 968 969 spin_lock_irq(&uncore->lock); 970 intel_uncore_forcewake_get__locked(uncore, fw_domains); 971 972 old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); 973 974 mcr &= ~mcr_mask; 975 mcr |= mcr_ss; 976 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 977 978 val = intel_uncore_read_fw(uncore, reg); 979 980 mcr &= ~mcr_mask; 981 mcr |= old_mcr & mcr_mask; 982 983 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 984 985 intel_uncore_forcewake_put__locked(uncore, fw_domains); 986 spin_unlock_irq(&uncore->lock); 987 988 return val; 989 } 990 991 /* NB: please notice the memset */ 992 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 993 struct intel_instdone *instdone) 994 { 995 struct drm_i915_private *i915 = engine->i915; 996 const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu; 997 struct intel_uncore *uncore = engine->uncore; 998 u32 mmio_base = engine->mmio_base; 999 int slice; 1000 int subslice; 1001 1002 memset(instdone, 0, sizeof(*instdone)); 1003 1004 switch (INTEL_GEN(i915)) { 1005 default: 1006 instdone->instdone = 1007 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1008 1009 if (engine->id != RCS0) 1010 break; 1011 1012 instdone->slice_common = 1013 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1014 if (INTEL_GEN(i915) >= 12) { 1015 instdone->slice_common_extra[0] = 1016 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1017 instdone->slice_common_extra[1] = 1018 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1019 } 1020 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) { 1021 instdone->sampler[slice][subslice] = 1022 read_subslice_reg(engine, slice, subslice, 1023 GEN7_SAMPLER_INSTDONE); 1024 instdone->row[slice][subslice] = 1025 read_subslice_reg(engine, slice, subslice, 1026 GEN7_ROW_INSTDONE); 1027 } 1028 break; 1029 case 7: 1030 instdone->instdone = 1031 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1032 1033 if (engine->id != RCS0) 1034 break; 1035 1036 instdone->slice_common = 1037 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1038 instdone->sampler[0][0] = 1039 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1040 instdone->row[0][0] = 1041 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1042 1043 break; 1044 case 6: 1045 case 5: 1046 case 4: 1047 instdone->instdone = 1048 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1049 if (engine->id == RCS0) 1050 /* HACK: Using the wrong struct member */ 1051 instdone->slice_common = 1052 intel_uncore_read(uncore, GEN4_INSTDONE1); 1053 break; 1054 case 3: 1055 case 2: 1056 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1057 break; 1058 } 1059 } 1060 1061 static bool ring_is_idle(struct intel_engine_cs *engine) 1062 { 1063 bool idle = true; 1064 1065 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1066 return true; 1067 1068 if (!intel_engine_pm_get_if_awake(engine)) 1069 return true; 1070 1071 /* First check that no commands are left in the ring */ 1072 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1073 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1074 idle = false; 1075 1076 /* No bit for gen2, so assume the CS parser is idle */ 1077 if (INTEL_GEN(engine->i915) > 2 && 1078 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1079 idle = false; 1080 1081 intel_engine_pm_put(engine); 1082 1083 return idle; 1084 } 1085 1086 void intel_engine_flush_submission(struct intel_engine_cs *engine) 1087 { 1088 struct tasklet_struct *t = &engine->execlists.tasklet; 1089 1090 if (__tasklet_is_scheduled(t)) { 1091 local_bh_disable(); 1092 if (tasklet_trylock(t)) { 1093 /* Must wait for any GPU reset in progress. */ 1094 if (__tasklet_is_enabled(t)) 1095 t->func(t->data); 1096 tasklet_unlock(t); 1097 } 1098 local_bh_enable(); 1099 } 1100 1101 /* Otherwise flush the tasklet if it was running on another cpu */ 1102 tasklet_unlock_wait(t); 1103 } 1104 1105 /** 1106 * intel_engine_is_idle() - Report if the engine has finished process all work 1107 * @engine: the intel_engine_cs 1108 * 1109 * Return true if there are no requests pending, nothing left to be submitted 1110 * to hardware, and that the engine is idle. 1111 */ 1112 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1113 { 1114 /* More white lies, if wedged, hw state is inconsistent */ 1115 if (intel_gt_is_wedged(engine->gt)) 1116 return true; 1117 1118 if (!intel_engine_pm_is_awake(engine)) 1119 return true; 1120 1121 /* Waiting to drain ELSP? */ 1122 if (execlists_active(&engine->execlists)) { 1123 synchronize_hardirq(engine->i915->drm.pdev->irq); 1124 1125 intel_engine_flush_submission(engine); 1126 1127 if (execlists_active(&engine->execlists)) 1128 return false; 1129 } 1130 1131 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1132 if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) 1133 return false; 1134 1135 /* Ring stopped? */ 1136 return ring_is_idle(engine); 1137 } 1138 1139 bool intel_engines_are_idle(struct intel_gt *gt) 1140 { 1141 struct intel_engine_cs *engine; 1142 enum intel_engine_id id; 1143 1144 /* 1145 * If the driver is wedged, HW state may be very inconsistent and 1146 * report that it is still busy, even though we have stopped using it. 1147 */ 1148 if (intel_gt_is_wedged(gt)) 1149 return true; 1150 1151 /* Already parked (and passed an idleness test); must still be idle */ 1152 if (!READ_ONCE(gt->awake)) 1153 return true; 1154 1155 for_each_engine(engine, gt, id) { 1156 if (!intel_engine_is_idle(engine)) 1157 return false; 1158 } 1159 1160 return true; 1161 } 1162 1163 void intel_engines_reset_default_submission(struct intel_gt *gt) 1164 { 1165 struct intel_engine_cs *engine; 1166 enum intel_engine_id id; 1167 1168 for_each_engine(engine, gt, id) 1169 engine->set_default_submission(engine); 1170 } 1171 1172 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1173 { 1174 switch (INTEL_GEN(engine->i915)) { 1175 case 2: 1176 return false; /* uses physical not virtual addresses */ 1177 case 3: 1178 /* maybe only uses physical not virtual addresses */ 1179 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1180 case 4: 1181 return !IS_I965G(engine->i915); /* who knows! */ 1182 case 6: 1183 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1184 default: 1185 return true; 1186 } 1187 } 1188 1189 static int print_sched_attr(struct drm_i915_private *i915, 1190 const struct i915_sched_attr *attr, 1191 char *buf, int x, int len) 1192 { 1193 if (attr->priority == I915_PRIORITY_INVALID) 1194 return x; 1195 1196 x += snprintf(buf + x, len - x, 1197 " prio=%d", attr->priority); 1198 1199 return x; 1200 } 1201 1202 static void print_request(struct drm_printer *m, 1203 struct i915_request *rq, 1204 const char *prefix) 1205 { 1206 const char *name = rq->fence.ops->get_timeline_name(&rq->fence); 1207 char buf[80] = ""; 1208 int x = 0; 1209 1210 x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf)); 1211 1212 drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n", 1213 prefix, 1214 rq->fence.context, rq->fence.seqno, 1215 i915_request_completed(rq) ? "!" : 1216 i915_request_started(rq) ? "*" : 1217 "", 1218 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1219 &rq->fence.flags) ? "+" : 1220 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 1221 &rq->fence.flags) ? "-" : 1222 "", 1223 buf, 1224 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 1225 name); 1226 } 1227 1228 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 1229 { 1230 const size_t rowsize = 8 * sizeof(u32); 1231 const void *prev = NULL; 1232 bool skip = false; 1233 size_t pos; 1234 1235 for (pos = 0; pos < len; pos += rowsize) { 1236 char line[128]; 1237 1238 if (prev && !memcmp(prev, buf + pos, rowsize)) { 1239 if (!skip) { 1240 drm_printf(m, "*\n"); 1241 skip = true; 1242 } 1243 continue; 1244 } 1245 1246 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 1247 rowsize, sizeof(u32), 1248 line, sizeof(line), 1249 false) >= sizeof(line)); 1250 drm_printf(m, "[%04zx] %s\n", pos, line); 1251 1252 prev = buf + pos; 1253 skip = false; 1254 } 1255 } 1256 1257 static struct intel_timeline *get_timeline(struct i915_request *rq) 1258 { 1259 struct intel_timeline *tl; 1260 1261 /* 1262 * Even though we are holding the engine->active.lock here, there 1263 * is no control over the submission queue per-se and we are 1264 * inspecting the active state at a random point in time, with an 1265 * unknown queue. Play safe and make sure the timeline remains valid. 1266 * (Only being used for pretty printing, one extra kref shouldn't 1267 * cause a camel stampede!) 1268 */ 1269 rcu_read_lock(); 1270 tl = rcu_dereference(rq->timeline); 1271 if (!kref_get_unless_zero(&tl->kref)) 1272 tl = NULL; 1273 rcu_read_unlock(); 1274 1275 return tl; 1276 } 1277 1278 static const char *repr_timer(const struct timer_list *t) 1279 { 1280 if (!READ_ONCE(t->expires)) 1281 return "inactive"; 1282 1283 if (timer_pending(t)) 1284 return "active"; 1285 1286 return "expired"; 1287 } 1288 1289 static void intel_engine_print_registers(struct intel_engine_cs *engine, 1290 struct drm_printer *m) 1291 { 1292 struct drm_i915_private *dev_priv = engine->i915; 1293 struct intel_engine_execlists * const execlists = &engine->execlists; 1294 u64 addr; 1295 1296 if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7)) 1297 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 1298 drm_printf(m, "\tRING_START: 0x%08x\n", 1299 ENGINE_READ(engine, RING_START)); 1300 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 1301 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 1302 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 1303 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 1304 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 1305 ENGINE_READ(engine, RING_CTL), 1306 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 1307 if (INTEL_GEN(engine->i915) > 2) { 1308 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 1309 ENGINE_READ(engine, RING_MI_MODE), 1310 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 1311 } 1312 1313 if (INTEL_GEN(dev_priv) >= 6) { 1314 drm_printf(m, "\tRING_IMR: 0x%08x\n", 1315 ENGINE_READ(engine, RING_IMR)); 1316 drm_printf(m, "\tRING_ESR: 0x%08x\n", 1317 ENGINE_READ(engine, RING_ESR)); 1318 drm_printf(m, "\tRING_EMR: 0x%08x\n", 1319 ENGINE_READ(engine, RING_EMR)); 1320 drm_printf(m, "\tRING_EIR: 0x%08x\n", 1321 ENGINE_READ(engine, RING_EIR)); 1322 } 1323 1324 addr = intel_engine_get_active_head(engine); 1325 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 1326 upper_32_bits(addr), lower_32_bits(addr)); 1327 addr = intel_engine_get_last_batch_head(engine); 1328 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 1329 upper_32_bits(addr), lower_32_bits(addr)); 1330 if (INTEL_GEN(dev_priv) >= 8) 1331 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 1332 else if (INTEL_GEN(dev_priv) >= 4) 1333 addr = ENGINE_READ(engine, RING_DMA_FADD); 1334 else 1335 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 1336 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 1337 upper_32_bits(addr), lower_32_bits(addr)); 1338 if (INTEL_GEN(dev_priv) >= 4) { 1339 drm_printf(m, "\tIPEIR: 0x%08x\n", 1340 ENGINE_READ(engine, RING_IPEIR)); 1341 drm_printf(m, "\tIPEHR: 0x%08x\n", 1342 ENGINE_READ(engine, RING_IPEHR)); 1343 } else { 1344 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 1345 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 1346 } 1347 1348 if (HAS_EXECLISTS(dev_priv)) { 1349 struct i915_request * const *port, *rq; 1350 const u32 *hws = 1351 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 1352 const u8 num_entries = execlists->csb_size; 1353 unsigned int idx; 1354 u8 read, write; 1355 1356 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 1357 yesno(test_bit(TASKLET_STATE_SCHED, 1358 &engine->execlists.tasklet.state)), 1359 enableddisabled(!atomic_read(&engine->execlists.tasklet.count)), 1360 repr_timer(&engine->execlists.preempt), 1361 repr_timer(&engine->execlists.timer)); 1362 1363 read = execlists->csb_head; 1364 write = READ_ONCE(*execlists->csb_write); 1365 1366 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 1367 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 1368 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 1369 read, write, num_entries); 1370 1371 if (read >= num_entries) 1372 read = 0; 1373 if (write >= num_entries) 1374 write = 0; 1375 if (read > write) 1376 write += num_entries; 1377 while (read < write) { 1378 idx = ++read % num_entries; 1379 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 1380 idx, hws[idx * 2], hws[idx * 2 + 1]); 1381 } 1382 1383 execlists_active_lock_bh(execlists); 1384 rcu_read_lock(); 1385 for (port = execlists->active; (rq = *port); port++) { 1386 char hdr[160]; 1387 int len; 1388 1389 len = scnprintf(hdr, sizeof(hdr), 1390 "\t\tActive[%d]: ", 1391 (int)(port - execlists->active)); 1392 if (!i915_request_signaled(rq)) { 1393 struct intel_timeline *tl = get_timeline(rq); 1394 1395 len += scnprintf(hdr + len, sizeof(hdr) - len, 1396 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 1397 i915_ggtt_offset(rq->ring->vma), 1398 tl ? tl->hwsp_offset : 0, 1399 hwsp_seqno(rq), 1400 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 1401 1000 * 1000)); 1402 1403 if (tl) 1404 intel_timeline_put(tl); 1405 } 1406 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 1407 print_request(m, rq, hdr); 1408 } 1409 for (port = execlists->pending; (rq = *port); port++) { 1410 struct intel_timeline *tl = get_timeline(rq); 1411 char hdr[80]; 1412 1413 snprintf(hdr, sizeof(hdr), 1414 "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ", 1415 (int)(port - execlists->pending), 1416 i915_ggtt_offset(rq->ring->vma), 1417 tl ? tl->hwsp_offset : 0, 1418 hwsp_seqno(rq)); 1419 print_request(m, rq, hdr); 1420 1421 if (tl) 1422 intel_timeline_put(tl); 1423 } 1424 rcu_read_unlock(); 1425 execlists_active_unlock_bh(execlists); 1426 } else if (INTEL_GEN(dev_priv) > 6) { 1427 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 1428 ENGINE_READ(engine, RING_PP_DIR_BASE)); 1429 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 1430 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 1431 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 1432 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 1433 } 1434 } 1435 1436 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 1437 { 1438 void *ring; 1439 int size; 1440 1441 drm_printf(m, 1442 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 1443 rq->head, rq->postfix, rq->tail, 1444 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, 1445 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); 1446 1447 size = rq->tail - rq->head; 1448 if (rq->tail < rq->head) 1449 size += rq->ring->size; 1450 1451 ring = kmalloc(size, GFP_ATOMIC); 1452 if (ring) { 1453 const void *vaddr = rq->ring->vaddr; 1454 unsigned int head = rq->head; 1455 unsigned int len = 0; 1456 1457 if (rq->tail < head) { 1458 len = rq->ring->size - head; 1459 memcpy(ring, vaddr + head, len); 1460 head = 0; 1461 } 1462 memcpy(ring + len, vaddr + head, size - len); 1463 1464 hexdump(m, ring, size); 1465 kfree(ring); 1466 } 1467 } 1468 1469 static unsigned long list_count(struct list_head *list) 1470 { 1471 struct list_head *pos; 1472 unsigned long count = 0; 1473 1474 list_for_each(pos, list) 1475 count++; 1476 1477 return count; 1478 } 1479 1480 void intel_engine_dump(struct intel_engine_cs *engine, 1481 struct drm_printer *m, 1482 const char *header, ...) 1483 { 1484 struct i915_gpu_error * const error = &engine->i915->gpu_error; 1485 struct i915_request *rq; 1486 intel_wakeref_t wakeref; 1487 unsigned long flags; 1488 1489 if (header) { 1490 va_list ap; 1491 1492 va_start(ap, header); 1493 drm_vprintf(m, header, &ap); 1494 va_end(ap); 1495 } 1496 1497 if (intel_gt_is_wedged(engine->gt)) 1498 drm_printf(m, "*** WEDGED ***\n"); 1499 1500 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 1501 drm_printf(m, "\tBarriers?: %s\n", 1502 yesno(!llist_empty(&engine->barrier_tasks))); 1503 drm_printf(m, "\tLatency: %luus\n", 1504 ewma__engine_latency_read(&engine->latency)); 1505 1506 rcu_read_lock(); 1507 rq = READ_ONCE(engine->heartbeat.systole); 1508 if (rq) 1509 drm_printf(m, "\tHeartbeat: %d ms ago\n", 1510 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 1511 rcu_read_unlock(); 1512 drm_printf(m, "\tReset count: %d (global %d)\n", 1513 i915_reset_engine_count(error, engine), 1514 i915_reset_count(error)); 1515 1516 drm_printf(m, "\tRequests:\n"); 1517 1518 spin_lock_irqsave(&engine->active.lock, flags); 1519 rq = intel_engine_find_active_request(engine); 1520 if (rq) { 1521 struct intel_timeline *tl = get_timeline(rq); 1522 1523 print_request(m, rq, "\t\tactive "); 1524 1525 drm_printf(m, "\t\tring->start: 0x%08x\n", 1526 i915_ggtt_offset(rq->ring->vma)); 1527 drm_printf(m, "\t\tring->head: 0x%08x\n", 1528 rq->ring->head); 1529 drm_printf(m, "\t\tring->tail: 0x%08x\n", 1530 rq->ring->tail); 1531 drm_printf(m, "\t\tring->emit: 0x%08x\n", 1532 rq->ring->emit); 1533 drm_printf(m, "\t\tring->space: 0x%08x\n", 1534 rq->ring->space); 1535 1536 if (tl) { 1537 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 1538 tl->hwsp_offset); 1539 intel_timeline_put(tl); 1540 } 1541 1542 print_request_ring(m, rq); 1543 1544 if (rq->context->lrc_reg_state) { 1545 drm_printf(m, "Logical Ring Context:\n"); 1546 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 1547 } 1548 } 1549 drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold)); 1550 spin_unlock_irqrestore(&engine->active.lock, flags); 1551 1552 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 1553 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 1554 if (wakeref) { 1555 intel_engine_print_registers(engine, m); 1556 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1557 } else { 1558 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 1559 } 1560 1561 intel_execlists_show_requests(engine, m, print_request, 8); 1562 1563 drm_printf(m, "HWSP:\n"); 1564 hexdump(m, engine->status_page.addr, PAGE_SIZE); 1565 1566 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); 1567 1568 intel_engine_print_breadcrumbs(engine, m); 1569 } 1570 1571 /** 1572 * intel_enable_engine_stats() - Enable engine busy tracking on engine 1573 * @engine: engine to enable stats collection 1574 * 1575 * Start collecting the engine busyness data for @engine. 1576 * 1577 * Returns 0 on success or a negative error code. 1578 */ 1579 int intel_enable_engine_stats(struct intel_engine_cs *engine) 1580 { 1581 struct intel_engine_execlists *execlists = &engine->execlists; 1582 unsigned long flags; 1583 int err = 0; 1584 1585 if (!intel_engine_supports_stats(engine)) 1586 return -ENODEV; 1587 1588 execlists_active_lock_bh(execlists); 1589 write_seqlock_irqsave(&engine->stats.lock, flags); 1590 1591 if (unlikely(engine->stats.enabled == ~0)) { 1592 err = -EBUSY; 1593 goto unlock; 1594 } 1595 1596 if (engine->stats.enabled++ == 0) { 1597 struct i915_request * const *port; 1598 struct i915_request *rq; 1599 1600 engine->stats.enabled_at = ktime_get(); 1601 1602 /* XXX submission method oblivious? */ 1603 for (port = execlists->active; (rq = *port); port++) 1604 engine->stats.active++; 1605 1606 for (port = execlists->pending; (rq = *port); port++) { 1607 /* Exclude any contexts already counted in active */ 1608 if (!intel_context_inflight_count(rq->context)) 1609 engine->stats.active++; 1610 } 1611 1612 if (engine->stats.active) 1613 engine->stats.start = engine->stats.enabled_at; 1614 } 1615 1616 unlock: 1617 write_sequnlock_irqrestore(&engine->stats.lock, flags); 1618 execlists_active_unlock_bh(execlists); 1619 1620 return err; 1621 } 1622 1623 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine) 1624 { 1625 ktime_t total = engine->stats.total; 1626 1627 /* 1628 * If the engine is executing something at the moment 1629 * add it to the total. 1630 */ 1631 if (engine->stats.active) 1632 total = ktime_add(total, 1633 ktime_sub(ktime_get(), engine->stats.start)); 1634 1635 return total; 1636 } 1637 1638 /** 1639 * intel_engine_get_busy_time() - Return current accumulated engine busyness 1640 * @engine: engine to report on 1641 * 1642 * Returns accumulated time @engine was busy since engine stats were enabled. 1643 */ 1644 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine) 1645 { 1646 unsigned int seq; 1647 ktime_t total; 1648 1649 do { 1650 seq = read_seqbegin(&engine->stats.lock); 1651 total = __intel_engine_get_busy_time(engine); 1652 } while (read_seqretry(&engine->stats.lock, seq)); 1653 1654 return total; 1655 } 1656 1657 /** 1658 * intel_disable_engine_stats() - Disable engine busy tracking on engine 1659 * @engine: engine to disable stats collection 1660 * 1661 * Stops collecting the engine busyness data for @engine. 1662 */ 1663 void intel_disable_engine_stats(struct intel_engine_cs *engine) 1664 { 1665 unsigned long flags; 1666 1667 if (!intel_engine_supports_stats(engine)) 1668 return; 1669 1670 write_seqlock_irqsave(&engine->stats.lock, flags); 1671 WARN_ON_ONCE(engine->stats.enabled == 0); 1672 if (--engine->stats.enabled == 0) { 1673 engine->stats.total = __intel_engine_get_busy_time(engine); 1674 engine->stats.active = 0; 1675 } 1676 write_sequnlock_irqrestore(&engine->stats.lock, flags); 1677 } 1678 1679 static bool match_ring(struct i915_request *rq) 1680 { 1681 u32 ring = ENGINE_READ(rq->engine, RING_START); 1682 1683 return ring == i915_ggtt_offset(rq->ring->vma); 1684 } 1685 1686 struct i915_request * 1687 intel_engine_find_active_request(struct intel_engine_cs *engine) 1688 { 1689 struct i915_request *request, *active = NULL; 1690 1691 /* 1692 * We are called by the error capture, reset and to dump engine 1693 * state at random points in time. In particular, note that neither is 1694 * crucially ordered with an interrupt. After a hang, the GPU is dead 1695 * and we assume that no more writes can happen (we waited long enough 1696 * for all writes that were in transaction to be flushed) - adding an 1697 * extra delay for a recent interrupt is pointless. Hence, we do 1698 * not need an engine->irq_seqno_barrier() before the seqno reads. 1699 * At all other times, we must assume the GPU is still running, but 1700 * we only care about the snapshot of this moment. 1701 */ 1702 lockdep_assert_held(&engine->active.lock); 1703 1704 rcu_read_lock(); 1705 request = execlists_active(&engine->execlists); 1706 if (request) { 1707 struct intel_timeline *tl = request->context->timeline; 1708 1709 list_for_each_entry_from_reverse(request, &tl->requests, link) { 1710 if (i915_request_completed(request)) 1711 break; 1712 1713 active = request; 1714 } 1715 } 1716 rcu_read_unlock(); 1717 if (active) 1718 return active; 1719 1720 list_for_each_entry(request, &engine->active.requests, sched.link) { 1721 if (i915_request_completed(request)) 1722 continue; 1723 1724 if (!i915_request_started(request)) 1725 continue; 1726 1727 /* More than one preemptible request may match! */ 1728 if (!match_ring(request)) 1729 continue; 1730 1731 active = request; 1732 break; 1733 } 1734 1735 return active; 1736 } 1737 1738 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1739 #include "mock_engine.c" 1740 #include "selftest_engine.c" 1741 #include "selftest_engine_cs.c" 1742 #endif 1743