1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <drm/drm_print.h>
7 
8 #include "gem/i915_gem_context.h"
9 
10 #include "i915_drv.h"
11 
12 #include "intel_breadcrumbs.h"
13 #include "intel_context.h"
14 #include "intel_engine.h"
15 #include "intel_engine_pm.h"
16 #include "intel_engine_user.h"
17 #include "intel_execlists_submission.h"
18 #include "intel_gt.h"
19 #include "intel_gt_requests.h"
20 #include "intel_gt_pm.h"
21 #include "intel_lrc_reg.h"
22 #include "intel_reset.h"
23 #include "intel_ring.h"
24 #include "uc/intel_guc_submission.h"
25 
26 /* Haswell does have the CXT_SIZE register however it does not appear to be
27  * valid. Now, docs explain in dwords what is in the context object. The full
28  * size is 70720 bytes, however, the power context and execlist context will
29  * never be saved (power context is stored elsewhere, and execlists don't work
30  * on HSW) - so the final size, including the extra state required for the
31  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
32  */
33 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
34 
35 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
37 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38 #define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 
41 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
42 
43 #define MAX_MMIO_BASES 3
44 struct engine_info {
45 	unsigned int hw_id;
46 	u8 class;
47 	u8 instance;
48 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
49 	struct engine_mmio_base {
50 		u32 graphics_ver : 8;
51 		u32 base : 24;
52 	} mmio_bases[MAX_MMIO_BASES];
53 };
54 
55 static const struct engine_info intel_engines[] = {
56 	[RCS0] = {
57 		.hw_id = RCS0_HW,
58 		.class = RENDER_CLASS,
59 		.instance = 0,
60 		.mmio_bases = {
61 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
62 		},
63 	},
64 	[BCS0] = {
65 		.hw_id = BCS0_HW,
66 		.class = COPY_ENGINE_CLASS,
67 		.instance = 0,
68 		.mmio_bases = {
69 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
70 		},
71 	},
72 	[VCS0] = {
73 		.hw_id = VCS0_HW,
74 		.class = VIDEO_DECODE_CLASS,
75 		.instance = 0,
76 		.mmio_bases = {
77 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
78 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
79 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
80 		},
81 	},
82 	[VCS1] = {
83 		.hw_id = VCS1_HW,
84 		.class = VIDEO_DECODE_CLASS,
85 		.instance = 1,
86 		.mmio_bases = {
87 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
88 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
89 		},
90 	},
91 	[VCS2] = {
92 		.hw_id = VCS2_HW,
93 		.class = VIDEO_DECODE_CLASS,
94 		.instance = 2,
95 		.mmio_bases = {
96 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
97 		},
98 	},
99 	[VCS3] = {
100 		.hw_id = VCS3_HW,
101 		.class = VIDEO_DECODE_CLASS,
102 		.instance = 3,
103 		.mmio_bases = {
104 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
105 		},
106 	},
107 	[VECS0] = {
108 		.hw_id = VECS0_HW,
109 		.class = VIDEO_ENHANCEMENT_CLASS,
110 		.instance = 0,
111 		.mmio_bases = {
112 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
113 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
114 		},
115 	},
116 	[VECS1] = {
117 		.hw_id = VECS1_HW,
118 		.class = VIDEO_ENHANCEMENT_CLASS,
119 		.instance = 1,
120 		.mmio_bases = {
121 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
122 		},
123 	},
124 };
125 
126 /**
127  * intel_engine_context_size() - return the size of the context for an engine
128  * @gt: the gt
129  * @class: engine class
130  *
131  * Each engine class may require a different amount of space for a context
132  * image.
133  *
134  * Return: size (in bytes) of an engine class specific context image
135  *
136  * Note: this size includes the HWSP, which is part of the context image
137  * in LRC mode, but does not include the "shared data page" used with
138  * GuC submission. The caller should account for this if using the GuC.
139  */
140 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141 {
142 	struct intel_uncore *uncore = gt->uncore;
143 	u32 cxt_size;
144 
145 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
146 
147 	switch (class) {
148 	case RENDER_CLASS:
149 		switch (GRAPHICS_VER(gt->i915)) {
150 		default:
151 			MISSING_CASE(GRAPHICS_VER(gt->i915));
152 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153 		case 12:
154 		case 11:
155 			return GEN11_LR_CONTEXT_RENDER_SIZE;
156 		case 10:
157 			return GEN10_LR_CONTEXT_RENDER_SIZE;
158 		case 9:
159 			return GEN9_LR_CONTEXT_RENDER_SIZE;
160 		case 8:
161 			return GEN8_LR_CONTEXT_RENDER_SIZE;
162 		case 7:
163 			if (IS_HASWELL(gt->i915))
164 				return HSW_CXT_TOTAL_SIZE;
165 
166 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
168 					PAGE_SIZE);
169 		case 6:
170 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
172 					PAGE_SIZE);
173 		case 5:
174 		case 4:
175 			/*
176 			 * There is a discrepancy here between the size reported
177 			 * by the register and the size of the context layout
178 			 * in the docs. Both are described as authorative!
179 			 *
180 			 * The discrepancy is on the order of a few cachelines,
181 			 * but the total is under one page (4k), which is our
182 			 * minimum allocation anyway so it should all come
183 			 * out in the wash.
184 			 */
185 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186 			drm_dbg(&gt->i915->drm,
187 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
188 				GRAPHICS_VER(gt->i915), cxt_size * 64,
189 				cxt_size - 1);
190 			return round_up(cxt_size * 64, PAGE_SIZE);
191 		case 3:
192 		case 2:
193 		/* For the special day when i810 gets merged. */
194 		case 1:
195 			return 0;
196 		}
197 		break;
198 	default:
199 		MISSING_CASE(class);
200 		fallthrough;
201 	case VIDEO_DECODE_CLASS:
202 	case VIDEO_ENHANCEMENT_CLASS:
203 	case COPY_ENGINE_CLASS:
204 		if (GRAPHICS_VER(gt->i915) < 8)
205 			return 0;
206 		return GEN8_LR_CONTEXT_OTHER_SIZE;
207 	}
208 }
209 
210 static u32 __engine_mmio_base(struct drm_i915_private *i915,
211 			      const struct engine_mmio_base *bases)
212 {
213 	int i;
214 
215 	for (i = 0; i < MAX_MMIO_BASES; i++)
216 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
217 			break;
218 
219 	GEM_BUG_ON(i == MAX_MMIO_BASES);
220 	GEM_BUG_ON(!bases[i].base);
221 
222 	return bases[i].base;
223 }
224 
225 static void __sprint_engine_name(struct intel_engine_cs *engine)
226 {
227 	/*
228 	 * Before we know what the uABI name for this engine will be,
229 	 * we still would like to keep track of this engine in the debug logs.
230 	 * We throw in a ' here as a reminder that this isn't its final name.
231 	 */
232 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
233 			     intel_engine_class_repr(engine->class),
234 			     engine->instance) >= sizeof(engine->name));
235 }
236 
237 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
238 {
239 	/*
240 	 * Though they added more rings on g4x/ilk, they did not add
241 	 * per-engine HWSTAM until gen6.
242 	 */
243 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
244 		return;
245 
246 	if (GRAPHICS_VER(engine->i915) >= 3)
247 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
248 	else
249 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 }
251 
252 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
253 {
254 	/* Mask off all writes into the unknown HWSP */
255 	intel_engine_set_hwsp_writemask(engine, ~0u);
256 }
257 
258 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
259 {
260 	GEM_DEBUG_WARN_ON(iir);
261 }
262 
263 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
264 {
265 	const struct engine_info *info = &intel_engines[id];
266 	struct drm_i915_private *i915 = gt->i915;
267 	struct intel_engine_cs *engine;
268 	u8 guc_class;
269 
270 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
271 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
272 
273 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
274 		return -EINVAL;
275 
276 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
277 		return -EINVAL;
278 
279 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
280 		return -EINVAL;
281 
282 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
283 		return -EINVAL;
284 
285 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
286 	if (!engine)
287 		return -ENOMEM;
288 
289 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
290 
291 	engine->id = id;
292 	engine->legacy_idx = INVALID_ENGINE;
293 	engine->mask = BIT(id);
294 	engine->i915 = i915;
295 	engine->gt = gt;
296 	engine->uncore = gt->uncore;
297 	engine->hw_id = info->hw_id;
298 	guc_class = engine_class_to_guc_class(info->class);
299 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
300 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
301 
302 	engine->irq_handler = nop_irq_handler;
303 
304 	engine->class = info->class;
305 	engine->instance = info->instance;
306 	__sprint_engine_name(engine);
307 
308 	engine->props.heartbeat_interval_ms =
309 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
310 	engine->props.max_busywait_duration_ns =
311 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
312 	engine->props.preempt_timeout_ms =
313 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
314 	engine->props.stop_timeout_ms =
315 		CONFIG_DRM_I915_STOP_TIMEOUT;
316 	engine->props.timeslice_duration_ms =
317 		CONFIG_DRM_I915_TIMESLICE_DURATION;
318 
319 	/* Override to uninterruptible for OpenCL workloads. */
320 	if (GRAPHICS_VER(i915) == 12 && engine->class == RENDER_CLASS)
321 		engine->props.preempt_timeout_ms = 0;
322 
323 	engine->defaults = engine->props; /* never to change again */
324 
325 	engine->context_size = intel_engine_context_size(gt, engine->class);
326 	if (WARN_ON(engine->context_size > BIT(20)))
327 		engine->context_size = 0;
328 	if (engine->context_size)
329 		DRIVER_CAPS(i915)->has_logical_contexts = true;
330 
331 	/* Nothing to do here, execute in order of dependencies */
332 	engine->schedule = NULL;
333 
334 	ewma__engine_latency_init(&engine->latency);
335 	seqcount_init(&engine->stats.lock);
336 
337 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
338 
339 	/* Scrub mmio state on takeover */
340 	intel_engine_sanitize_mmio(engine);
341 
342 	gt->engine_class[info->class][info->instance] = engine;
343 	gt->engine[id] = engine;
344 
345 	return 0;
346 }
347 
348 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
349 {
350 	struct drm_i915_private *i915 = engine->i915;
351 
352 	if (engine->class == VIDEO_DECODE_CLASS) {
353 		/*
354 		 * HEVC support is present on first engine instance
355 		 * before Gen11 and on all instances afterwards.
356 		 */
357 		if (GRAPHICS_VER(i915) >= 11 ||
358 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
359 			engine->uabi_capabilities |=
360 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
361 
362 		/*
363 		 * SFC block is present only on even logical engine
364 		 * instances.
365 		 */
366 		if ((GRAPHICS_VER(i915) >= 11 &&
367 		     (engine->gt->info.vdbox_sfc_access &
368 		      BIT(engine->instance))) ||
369 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
370 			engine->uabi_capabilities |=
371 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
372 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
373 		if (GRAPHICS_VER(i915) >= 9)
374 			engine->uabi_capabilities |=
375 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
376 	}
377 }
378 
379 static void intel_setup_engine_capabilities(struct intel_gt *gt)
380 {
381 	struct intel_engine_cs *engine;
382 	enum intel_engine_id id;
383 
384 	for_each_engine(engine, gt, id)
385 		__setup_engine_capabilities(engine);
386 }
387 
388 /**
389  * intel_engines_release() - free the resources allocated for Command Streamers
390  * @gt: pointer to struct intel_gt
391  */
392 void intel_engines_release(struct intel_gt *gt)
393 {
394 	struct intel_engine_cs *engine;
395 	enum intel_engine_id id;
396 
397 	/*
398 	 * Before we release the resources held by engine, we must be certain
399 	 * that the HW is no longer accessing them -- having the GPU scribble
400 	 * to or read from a page being used for something else causes no end
401 	 * of fun.
402 	 *
403 	 * The GPU should be reset by this point, but assume the worst just
404 	 * in case we aborted before completely initialising the engines.
405 	 */
406 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
407 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
408 		__intel_gt_reset(gt, ALL_ENGINES);
409 
410 	/* Decouple the backend; but keep the layout for late GPU resets */
411 	for_each_engine(engine, gt, id) {
412 		if (!engine->release)
413 			continue;
414 
415 		intel_wakeref_wait_for_idle(&engine->wakeref);
416 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
417 
418 		engine->release(engine);
419 		engine->release = NULL;
420 
421 		memset(&engine->reset, 0, sizeof(engine->reset));
422 	}
423 }
424 
425 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
426 {
427 	if (!engine->request_pool)
428 		return;
429 
430 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
431 }
432 
433 void intel_engines_free(struct intel_gt *gt)
434 {
435 	struct intel_engine_cs *engine;
436 	enum intel_engine_id id;
437 
438 	/* Free the requests! dma-resv keeps fences around for an eternity */
439 	rcu_barrier();
440 
441 	for_each_engine(engine, gt, id) {
442 		intel_engine_free_request_pool(engine);
443 		kfree(engine);
444 		gt->engine[id] = NULL;
445 	}
446 }
447 
448 /*
449  * Determine which engines are fused off in our particular hardware.
450  * Note that we have a catch-22 situation where we need to be able to access
451  * the blitter forcewake domain to read the engine fuses, but at the same time
452  * we need to know which engines are available on the system to know which
453  * forcewake domains are present. We solve this by intializing the forcewake
454  * domains based on the full engine mask in the platform capabilities before
455  * calling this function and pruning the domains for fused-off engines
456  * afterwards.
457  */
458 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
459 {
460 	struct drm_i915_private *i915 = gt->i915;
461 	struct intel_gt_info *info = &gt->info;
462 	struct intel_uncore *uncore = gt->uncore;
463 	unsigned int logical_vdbox = 0;
464 	unsigned int i;
465 	u32 media_fuse;
466 	u16 vdbox_mask;
467 	u16 vebox_mask;
468 
469 	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
470 
471 	if (GRAPHICS_VER(i915) < 11)
472 		return info->engine_mask;
473 
474 	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
475 
476 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
477 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
478 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
479 
480 	for (i = 0; i < I915_MAX_VCS; i++) {
481 		if (!HAS_ENGINE(gt, _VCS(i))) {
482 			vdbox_mask &= ~BIT(i);
483 			continue;
484 		}
485 
486 		if (!(BIT(i) & vdbox_mask)) {
487 			info->engine_mask &= ~BIT(_VCS(i));
488 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
489 			continue;
490 		}
491 
492 		/*
493 		 * In Gen11, only even numbered logical VDBOXes are
494 		 * hooked up to an SFC (Scaler & Format Converter) unit.
495 		 * In TGL each VDBOX has access to an SFC.
496 		 */
497 		if (GRAPHICS_VER(i915) >= 12 || logical_vdbox++ % 2 == 0)
498 			gt->info.vdbox_sfc_access |= BIT(i);
499 	}
500 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
501 		vdbox_mask, VDBOX_MASK(gt));
502 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
503 
504 	for (i = 0; i < I915_MAX_VECS; i++) {
505 		if (!HAS_ENGINE(gt, _VECS(i))) {
506 			vebox_mask &= ~BIT(i);
507 			continue;
508 		}
509 
510 		if (!(BIT(i) & vebox_mask)) {
511 			info->engine_mask &= ~BIT(_VECS(i));
512 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
513 		}
514 	}
515 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
516 		vebox_mask, VEBOX_MASK(gt));
517 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
518 
519 	return info->engine_mask;
520 }
521 
522 /**
523  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
524  * @gt: pointer to struct intel_gt
525  *
526  * Return: non-zero if the initialization failed.
527  */
528 int intel_engines_init_mmio(struct intel_gt *gt)
529 {
530 	struct drm_i915_private *i915 = gt->i915;
531 	const unsigned int engine_mask = init_engine_mask(gt);
532 	unsigned int mask = 0;
533 	unsigned int i;
534 	int err;
535 
536 	drm_WARN_ON(&i915->drm, engine_mask == 0);
537 	drm_WARN_ON(&i915->drm, engine_mask &
538 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
539 
540 	if (i915_inject_probe_failure(i915))
541 		return -ENODEV;
542 
543 	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
544 		if (!HAS_ENGINE(gt, i))
545 			continue;
546 
547 		err = intel_engine_setup(gt, i);
548 		if (err)
549 			goto cleanup;
550 
551 		mask |= BIT(i);
552 	}
553 
554 	/*
555 	 * Catch failures to update intel_engines table when the new engines
556 	 * are added to the driver by a warning and disabling the forgotten
557 	 * engines.
558 	 */
559 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
560 		gt->info.engine_mask = mask;
561 
562 	gt->info.num_engines = hweight32(mask);
563 
564 	intel_gt_check_and_clear_faults(gt);
565 
566 	intel_setup_engine_capabilities(gt);
567 
568 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
569 
570 	return 0;
571 
572 cleanup:
573 	intel_engines_free(gt);
574 	return err;
575 }
576 
577 void intel_engine_init_execlists(struct intel_engine_cs *engine)
578 {
579 	struct intel_engine_execlists * const execlists = &engine->execlists;
580 
581 	execlists->port_mask = 1;
582 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
583 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
584 
585 	memset(execlists->pending, 0, sizeof(execlists->pending));
586 	execlists->active =
587 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
588 
589 	execlists->queue_priority_hint = INT_MIN;
590 	execlists->queue = RB_ROOT_CACHED;
591 }
592 
593 static void cleanup_status_page(struct intel_engine_cs *engine)
594 {
595 	struct i915_vma *vma;
596 
597 	/* Prevent writes into HWSP after returning the page to the system */
598 	intel_engine_set_hwsp_writemask(engine, ~0u);
599 
600 	vma = fetch_and_zero(&engine->status_page.vma);
601 	if (!vma)
602 		return;
603 
604 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
605 		i915_vma_unpin(vma);
606 
607 	i915_gem_object_unpin_map(vma->obj);
608 	i915_gem_object_put(vma->obj);
609 }
610 
611 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
612 				struct i915_gem_ww_ctx *ww,
613 				struct i915_vma *vma)
614 {
615 	unsigned int flags;
616 
617 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
618 		/*
619 		 * On g33, we cannot place HWS above 256MiB, so
620 		 * restrict its pinning to the low mappable arena.
621 		 * Though this restriction is not documented for
622 		 * gen4, gen5, or byt, they also behave similarly
623 		 * and hang if the HWS is placed at the top of the
624 		 * GTT. To generalise, it appears that all !llc
625 		 * platforms have issues with us placing the HWS
626 		 * above the mappable region (even though we never
627 		 * actually map it).
628 		 */
629 		flags = PIN_MAPPABLE;
630 	else
631 		flags = PIN_HIGH;
632 
633 	return i915_ggtt_pin(vma, ww, 0, flags);
634 }
635 
636 static int init_status_page(struct intel_engine_cs *engine)
637 {
638 	struct drm_i915_gem_object *obj;
639 	struct i915_gem_ww_ctx ww;
640 	struct i915_vma *vma;
641 	void *vaddr;
642 	int ret;
643 
644 	INIT_LIST_HEAD(&engine->status_page.timelines);
645 
646 	/*
647 	 * Though the HWS register does support 36bit addresses, historically
648 	 * we have had hangs and corruption reported due to wild writes if
649 	 * the HWS is placed above 4G. We only allow objects to be allocated
650 	 * in GFP_DMA32 for i965, and no earlier physical address users had
651 	 * access to more than 4G.
652 	 */
653 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
654 	if (IS_ERR(obj)) {
655 		drm_err(&engine->i915->drm,
656 			"Failed to allocate status page\n");
657 		return PTR_ERR(obj);
658 	}
659 
660 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
661 
662 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
663 	if (IS_ERR(vma)) {
664 		ret = PTR_ERR(vma);
665 		goto err_put;
666 	}
667 
668 	i915_gem_ww_ctx_init(&ww, true);
669 retry:
670 	ret = i915_gem_object_lock(obj, &ww);
671 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
672 		ret = pin_ggtt_status_page(engine, &ww, vma);
673 	if (ret)
674 		goto err;
675 
676 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
677 	if (IS_ERR(vaddr)) {
678 		ret = PTR_ERR(vaddr);
679 		goto err_unpin;
680 	}
681 
682 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
683 	engine->status_page.vma = vma;
684 
685 err_unpin:
686 	if (ret)
687 		i915_vma_unpin(vma);
688 err:
689 	if (ret == -EDEADLK) {
690 		ret = i915_gem_ww_ctx_backoff(&ww);
691 		if (!ret)
692 			goto retry;
693 	}
694 	i915_gem_ww_ctx_fini(&ww);
695 err_put:
696 	if (ret)
697 		i915_gem_object_put(obj);
698 	return ret;
699 }
700 
701 static int engine_setup_common(struct intel_engine_cs *engine)
702 {
703 	int err;
704 
705 	init_llist_head(&engine->barrier_tasks);
706 
707 	err = init_status_page(engine);
708 	if (err)
709 		return err;
710 
711 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
712 	if (!engine->breadcrumbs) {
713 		err = -ENOMEM;
714 		goto err_status;
715 	}
716 
717 	err = intel_engine_init_cmd_parser(engine);
718 	if (err)
719 		goto err_cmd_parser;
720 
721 	intel_engine_init_active(engine, ENGINE_PHYSICAL);
722 	intel_engine_init_execlists(engine);
723 	intel_engine_init__pm(engine);
724 	intel_engine_init_retire(engine);
725 
726 	/* Use the whole device by default */
727 	engine->sseu =
728 		intel_sseu_from_device_info(&engine->gt->info.sseu);
729 
730 	intel_engine_init_workarounds(engine);
731 	intel_engine_init_whitelist(engine);
732 	intel_engine_init_ctx_wa(engine);
733 
734 	if (GRAPHICS_VER(engine->i915) >= 12)
735 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
736 
737 	return 0;
738 
739 err_cmd_parser:
740 	intel_breadcrumbs_free(engine->breadcrumbs);
741 err_status:
742 	cleanup_status_page(engine);
743 	return err;
744 }
745 
746 struct measure_breadcrumb {
747 	struct i915_request rq;
748 	struct intel_ring ring;
749 	u32 cs[2048];
750 };
751 
752 static int measure_breadcrumb_dw(struct intel_context *ce)
753 {
754 	struct intel_engine_cs *engine = ce->engine;
755 	struct measure_breadcrumb *frame;
756 	int dw;
757 
758 	GEM_BUG_ON(!engine->gt->scratch);
759 
760 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
761 	if (!frame)
762 		return -ENOMEM;
763 
764 	frame->rq.engine = engine;
765 	frame->rq.context = ce;
766 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
767 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
768 
769 	frame->ring.vaddr = frame->cs;
770 	frame->ring.size = sizeof(frame->cs);
771 	frame->ring.wrap =
772 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
773 	frame->ring.effective_size = frame->ring.size;
774 	intel_ring_update_space(&frame->ring);
775 	frame->rq.ring = &frame->ring;
776 
777 	mutex_lock(&ce->timeline->mutex);
778 	spin_lock_irq(&engine->active.lock);
779 
780 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
781 
782 	spin_unlock_irq(&engine->active.lock);
783 	mutex_unlock(&ce->timeline->mutex);
784 
785 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
786 
787 	kfree(frame);
788 	return dw;
789 }
790 
791 void
792 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
793 {
794 	INIT_LIST_HEAD(&engine->active.requests);
795 	INIT_LIST_HEAD(&engine->active.hold);
796 
797 	spin_lock_init(&engine->active.lock);
798 	lockdep_set_subclass(&engine->active.lock, subclass);
799 
800 	/*
801 	 * Due to an interesting quirk in lockdep's internal debug tracking,
802 	 * after setting a subclass we must ensure the lock is used. Otherwise,
803 	 * nr_unused_locks is incremented once too often.
804 	 */
805 #ifdef CONFIG_DEBUG_LOCK_ALLOC
806 	local_irq_disable();
807 	lock_map_acquire(&engine->active.lock.dep_map);
808 	lock_map_release(&engine->active.lock.dep_map);
809 	local_irq_enable();
810 #endif
811 }
812 
813 static struct intel_context *
814 create_pinned_context(struct intel_engine_cs *engine,
815 		      unsigned int hwsp,
816 		      struct lock_class_key *key,
817 		      const char *name)
818 {
819 	struct intel_context *ce;
820 	int err;
821 
822 	ce = intel_context_create(engine);
823 	if (IS_ERR(ce))
824 		return ce;
825 
826 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
827 	ce->timeline = page_pack_bits(NULL, hwsp);
828 
829 	err = intel_context_pin(ce); /* perma-pin so it is always available */
830 	if (err) {
831 		intel_context_put(ce);
832 		return ERR_PTR(err);
833 	}
834 
835 	/*
836 	 * Give our perma-pinned kernel timelines a separate lockdep class,
837 	 * so that we can use them from within the normal user timelines
838 	 * should we need to inject GPU operations during their request
839 	 * construction.
840 	 */
841 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
842 
843 	return ce;
844 }
845 
846 static void destroy_pinned_context(struct intel_context *ce)
847 {
848 	struct intel_engine_cs *engine = ce->engine;
849 	struct i915_vma *hwsp = engine->status_page.vma;
850 
851 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
852 
853 	mutex_lock(&hwsp->vm->mutex);
854 	list_del(&ce->timeline->engine_link);
855 	mutex_unlock(&hwsp->vm->mutex);
856 
857 	intel_context_unpin(ce);
858 	intel_context_put(ce);
859 }
860 
861 static struct intel_context *
862 create_kernel_context(struct intel_engine_cs *engine)
863 {
864 	static struct lock_class_key kernel;
865 
866 	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
867 				     &kernel, "kernel_context");
868 }
869 
870 /**
871  * intel_engines_init_common - initialize cengine state which might require hw access
872  * @engine: Engine to initialize.
873  *
874  * Initializes @engine@ structure members shared between legacy and execlists
875  * submission modes which do require hardware access.
876  *
877  * Typcally done at later stages of submission mode specific engine setup.
878  *
879  * Returns zero on success or an error code on failure.
880  */
881 static int engine_init_common(struct intel_engine_cs *engine)
882 {
883 	struct intel_context *ce;
884 	int ret;
885 
886 	engine->set_default_submission(engine);
887 
888 	/*
889 	 * We may need to do things with the shrinker which
890 	 * require us to immediately switch back to the default
891 	 * context. This can cause a problem as pinning the
892 	 * default context also requires GTT space which may not
893 	 * be available. To avoid this we always pin the default
894 	 * context.
895 	 */
896 	ce = create_kernel_context(engine);
897 	if (IS_ERR(ce))
898 		return PTR_ERR(ce);
899 
900 	ret = measure_breadcrumb_dw(ce);
901 	if (ret < 0)
902 		goto err_context;
903 
904 	engine->emit_fini_breadcrumb_dw = ret;
905 	engine->kernel_context = ce;
906 
907 	return 0;
908 
909 err_context:
910 	destroy_pinned_context(ce);
911 	return ret;
912 }
913 
914 int intel_engines_init(struct intel_gt *gt)
915 {
916 	int (*setup)(struct intel_engine_cs *engine);
917 	struct intel_engine_cs *engine;
918 	enum intel_engine_id id;
919 	int err;
920 
921 	if (intel_uc_uses_guc_submission(&gt->uc)) {
922 		gt->submission_method = INTEL_SUBMISSION_GUC;
923 		setup = intel_guc_submission_setup;
924 	} else if (HAS_EXECLISTS(gt->i915)) {
925 		gt->submission_method = INTEL_SUBMISSION_ELSP;
926 		setup = intel_execlists_submission_setup;
927 	} else {
928 		gt->submission_method = INTEL_SUBMISSION_RING;
929 		setup = intel_ring_submission_setup;
930 	}
931 
932 	for_each_engine(engine, gt, id) {
933 		err = engine_setup_common(engine);
934 		if (err)
935 			return err;
936 
937 		err = setup(engine);
938 		if (err)
939 			return err;
940 
941 		err = engine_init_common(engine);
942 		if (err)
943 			return err;
944 
945 		intel_engine_add_user(engine);
946 	}
947 
948 	return 0;
949 }
950 
951 /**
952  * intel_engines_cleanup_common - cleans up the engine state created by
953  *                                the common initiailizers.
954  * @engine: Engine to cleanup.
955  *
956  * This cleans up everything created by the common helpers.
957  */
958 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
959 {
960 	GEM_BUG_ON(!list_empty(&engine->active.requests));
961 	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
962 
963 	intel_breadcrumbs_free(engine->breadcrumbs);
964 
965 	intel_engine_fini_retire(engine);
966 	intel_engine_cleanup_cmd_parser(engine);
967 
968 	if (engine->default_state)
969 		fput(engine->default_state);
970 
971 	if (engine->kernel_context)
972 		destroy_pinned_context(engine->kernel_context);
973 
974 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
975 	cleanup_status_page(engine);
976 
977 	intel_wa_list_free(&engine->ctx_wa_list);
978 	intel_wa_list_free(&engine->wa_list);
979 	intel_wa_list_free(&engine->whitelist);
980 }
981 
982 /**
983  * intel_engine_resume - re-initializes the HW state of the engine
984  * @engine: Engine to resume.
985  *
986  * Returns zero on success or an error code on failure.
987  */
988 int intel_engine_resume(struct intel_engine_cs *engine)
989 {
990 	intel_engine_apply_workarounds(engine);
991 	intel_engine_apply_whitelist(engine);
992 
993 	return engine->resume(engine);
994 }
995 
996 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
997 {
998 	struct drm_i915_private *i915 = engine->i915;
999 
1000 	u64 acthd;
1001 
1002 	if (GRAPHICS_VER(i915) >= 8)
1003 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1004 	else if (GRAPHICS_VER(i915) >= 4)
1005 		acthd = ENGINE_READ(engine, RING_ACTHD);
1006 	else
1007 		acthd = ENGINE_READ(engine, ACTHD);
1008 
1009 	return acthd;
1010 }
1011 
1012 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1013 {
1014 	u64 bbaddr;
1015 
1016 	if (GRAPHICS_VER(engine->i915) >= 8)
1017 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1018 	else
1019 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1020 
1021 	return bbaddr;
1022 }
1023 
1024 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1025 {
1026 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1027 		return 0;
1028 
1029 	/*
1030 	 * If we are doing a normal GPU reset, we can take our time and allow
1031 	 * the engine to quiesce. We've stopped submission to the engine, and
1032 	 * if we wait long enough an innocent context should complete and
1033 	 * leave the engine idle. So they should not be caught unaware by
1034 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1035 	 */
1036 	return READ_ONCE(engine->props.stop_timeout_ms);
1037 }
1038 
1039 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1040 				  int fast_timeout_us,
1041 				  int slow_timeout_ms)
1042 {
1043 	struct intel_uncore *uncore = engine->uncore;
1044 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1045 	int err;
1046 
1047 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1048 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1049 					   MODE_IDLE, MODE_IDLE,
1050 					   fast_timeout_us,
1051 					   slow_timeout_ms,
1052 					   NULL);
1053 
1054 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1055 	intel_uncore_posting_read_fw(uncore, mode);
1056 	return err;
1057 }
1058 
1059 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1060 {
1061 	int err = 0;
1062 
1063 	if (GRAPHICS_VER(engine->i915) < 3)
1064 		return -ENODEV;
1065 
1066 	ENGINE_TRACE(engine, "\n");
1067 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1068 		ENGINE_TRACE(engine,
1069 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1070 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1071 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1072 
1073 		/*
1074 		 * Sometimes we observe that the idle flag is not
1075 		 * set even though the ring is empty. So double
1076 		 * check before giving up.
1077 		 */
1078 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1079 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1080 			err = -ETIMEDOUT;
1081 	}
1082 
1083 	return err;
1084 }
1085 
1086 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1087 {
1088 	ENGINE_TRACE(engine, "\n");
1089 
1090 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1091 }
1092 
1093 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1094 {
1095 	switch (type) {
1096 	case I915_CACHE_NONE: return " uncached";
1097 	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1098 	case I915_CACHE_L3_LLC: return " L3+LLC";
1099 	case I915_CACHE_WT: return " WT";
1100 	default: return "";
1101 	}
1102 }
1103 
1104 static u32
1105 read_subslice_reg(const struct intel_engine_cs *engine,
1106 		  int slice, int subslice, i915_reg_t reg)
1107 {
1108 	struct drm_i915_private *i915 = engine->i915;
1109 	struct intel_uncore *uncore = engine->uncore;
1110 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1111 	enum forcewake_domains fw_domains;
1112 
1113 	if (GRAPHICS_VER(i915) >= 11) {
1114 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1115 		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1116 	} else {
1117 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1118 		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1119 	}
1120 
1121 	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1122 						    FW_REG_READ);
1123 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1124 						     GEN8_MCR_SELECTOR,
1125 						     FW_REG_READ | FW_REG_WRITE);
1126 
1127 	spin_lock_irq(&uncore->lock);
1128 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1129 
1130 	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1131 
1132 	mcr &= ~mcr_mask;
1133 	mcr |= mcr_ss;
1134 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1135 
1136 	val = intel_uncore_read_fw(uncore, reg);
1137 
1138 	mcr &= ~mcr_mask;
1139 	mcr |= old_mcr & mcr_mask;
1140 
1141 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1142 
1143 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
1144 	spin_unlock_irq(&uncore->lock);
1145 
1146 	return val;
1147 }
1148 
1149 /* NB: please notice the memset */
1150 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1151 			       struct intel_instdone *instdone)
1152 {
1153 	struct drm_i915_private *i915 = engine->i915;
1154 	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1155 	struct intel_uncore *uncore = engine->uncore;
1156 	u32 mmio_base = engine->mmio_base;
1157 	int slice;
1158 	int subslice;
1159 
1160 	memset(instdone, 0, sizeof(*instdone));
1161 
1162 	switch (GRAPHICS_VER(i915)) {
1163 	default:
1164 		instdone->instdone =
1165 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1166 
1167 		if (engine->id != RCS0)
1168 			break;
1169 
1170 		instdone->slice_common =
1171 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1172 		if (GRAPHICS_VER(i915) >= 12) {
1173 			instdone->slice_common_extra[0] =
1174 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1175 			instdone->slice_common_extra[1] =
1176 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1177 		}
1178 		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1179 			instdone->sampler[slice][subslice] =
1180 				read_subslice_reg(engine, slice, subslice,
1181 						  GEN7_SAMPLER_INSTDONE);
1182 			instdone->row[slice][subslice] =
1183 				read_subslice_reg(engine, slice, subslice,
1184 						  GEN7_ROW_INSTDONE);
1185 		}
1186 		break;
1187 	case 7:
1188 		instdone->instdone =
1189 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1190 
1191 		if (engine->id != RCS0)
1192 			break;
1193 
1194 		instdone->slice_common =
1195 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1196 		instdone->sampler[0][0] =
1197 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1198 		instdone->row[0][0] =
1199 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1200 
1201 		break;
1202 	case 6:
1203 	case 5:
1204 	case 4:
1205 		instdone->instdone =
1206 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1207 		if (engine->id == RCS0)
1208 			/* HACK: Using the wrong struct member */
1209 			instdone->slice_common =
1210 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1211 		break;
1212 	case 3:
1213 	case 2:
1214 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1215 		break;
1216 	}
1217 }
1218 
1219 static bool ring_is_idle(struct intel_engine_cs *engine)
1220 {
1221 	bool idle = true;
1222 
1223 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1224 		return true;
1225 
1226 	if (!intel_engine_pm_get_if_awake(engine))
1227 		return true;
1228 
1229 	/* First check that no commands are left in the ring */
1230 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1231 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1232 		idle = false;
1233 
1234 	/* No bit for gen2, so assume the CS parser is idle */
1235 	if (GRAPHICS_VER(engine->i915) > 2 &&
1236 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1237 		idle = false;
1238 
1239 	intel_engine_pm_put(engine);
1240 
1241 	return idle;
1242 }
1243 
1244 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1245 {
1246 	struct tasklet_struct *t = &engine->execlists.tasklet;
1247 
1248 	if (!t->callback)
1249 		return;
1250 
1251 	local_bh_disable();
1252 	if (tasklet_trylock(t)) {
1253 		/* Must wait for any GPU reset in progress. */
1254 		if (__tasklet_is_enabled(t))
1255 			t->callback(t);
1256 		tasklet_unlock(t);
1257 	}
1258 	local_bh_enable();
1259 
1260 	/* Synchronise and wait for the tasklet on another CPU */
1261 	if (sync)
1262 		tasklet_unlock_wait(t);
1263 }
1264 
1265 /**
1266  * intel_engine_is_idle() - Report if the engine has finished process all work
1267  * @engine: the intel_engine_cs
1268  *
1269  * Return true if there are no requests pending, nothing left to be submitted
1270  * to hardware, and that the engine is idle.
1271  */
1272 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1273 {
1274 	/* More white lies, if wedged, hw state is inconsistent */
1275 	if (intel_gt_is_wedged(engine->gt))
1276 		return true;
1277 
1278 	if (!intel_engine_pm_is_awake(engine))
1279 		return true;
1280 
1281 	/* Waiting to drain ELSP? */
1282 	intel_synchronize_hardirq(engine->i915);
1283 	intel_engine_flush_submission(engine);
1284 
1285 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1286 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1287 		return false;
1288 
1289 	/* Ring stopped? */
1290 	return ring_is_idle(engine);
1291 }
1292 
1293 bool intel_engines_are_idle(struct intel_gt *gt)
1294 {
1295 	struct intel_engine_cs *engine;
1296 	enum intel_engine_id id;
1297 
1298 	/*
1299 	 * If the driver is wedged, HW state may be very inconsistent and
1300 	 * report that it is still busy, even though we have stopped using it.
1301 	 */
1302 	if (intel_gt_is_wedged(gt))
1303 		return true;
1304 
1305 	/* Already parked (and passed an idleness test); must still be idle */
1306 	if (!READ_ONCE(gt->awake))
1307 		return true;
1308 
1309 	for_each_engine(engine, gt, id) {
1310 		if (!intel_engine_is_idle(engine))
1311 			return false;
1312 	}
1313 
1314 	return true;
1315 }
1316 
1317 void intel_engines_reset_default_submission(struct intel_gt *gt)
1318 {
1319 	struct intel_engine_cs *engine;
1320 	enum intel_engine_id id;
1321 
1322 	for_each_engine(engine, gt, id) {
1323 		if (engine->sanitize)
1324 			engine->sanitize(engine);
1325 
1326 		engine->set_default_submission(engine);
1327 	}
1328 }
1329 
1330 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1331 {
1332 	switch (GRAPHICS_VER(engine->i915)) {
1333 	case 2:
1334 		return false; /* uses physical not virtual addresses */
1335 	case 3:
1336 		/* maybe only uses physical not virtual addresses */
1337 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1338 	case 4:
1339 		return !IS_I965G(engine->i915); /* who knows! */
1340 	case 6:
1341 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1342 	default:
1343 		return true;
1344 	}
1345 }
1346 
1347 static struct intel_timeline *get_timeline(struct i915_request *rq)
1348 {
1349 	struct intel_timeline *tl;
1350 
1351 	/*
1352 	 * Even though we are holding the engine->active.lock here, there
1353 	 * is no control over the submission queue per-se and we are
1354 	 * inspecting the active state at a random point in time, with an
1355 	 * unknown queue. Play safe and make sure the timeline remains valid.
1356 	 * (Only being used for pretty printing, one extra kref shouldn't
1357 	 * cause a camel stampede!)
1358 	 */
1359 	rcu_read_lock();
1360 	tl = rcu_dereference(rq->timeline);
1361 	if (!kref_get_unless_zero(&tl->kref))
1362 		tl = NULL;
1363 	rcu_read_unlock();
1364 
1365 	return tl;
1366 }
1367 
1368 static int print_ring(char *buf, int sz, struct i915_request *rq)
1369 {
1370 	int len = 0;
1371 
1372 	if (!i915_request_signaled(rq)) {
1373 		struct intel_timeline *tl = get_timeline(rq);
1374 
1375 		len = scnprintf(buf, sz,
1376 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1377 				i915_ggtt_offset(rq->ring->vma),
1378 				tl ? tl->hwsp_offset : 0,
1379 				hwsp_seqno(rq),
1380 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1381 						      1000 * 1000));
1382 
1383 		if (tl)
1384 			intel_timeline_put(tl);
1385 	}
1386 
1387 	return len;
1388 }
1389 
1390 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1391 {
1392 	const size_t rowsize = 8 * sizeof(u32);
1393 	const void *prev = NULL;
1394 	bool skip = false;
1395 	size_t pos;
1396 
1397 	for (pos = 0; pos < len; pos += rowsize) {
1398 		char line[128];
1399 
1400 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1401 			if (!skip) {
1402 				drm_printf(m, "*\n");
1403 				skip = true;
1404 			}
1405 			continue;
1406 		}
1407 
1408 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1409 						rowsize, sizeof(u32),
1410 						line, sizeof(line),
1411 						false) >= sizeof(line));
1412 		drm_printf(m, "[%04zx] %s\n", pos, line);
1413 
1414 		prev = buf + pos;
1415 		skip = false;
1416 	}
1417 }
1418 
1419 static const char *repr_timer(const struct timer_list *t)
1420 {
1421 	if (!READ_ONCE(t->expires))
1422 		return "inactive";
1423 
1424 	if (timer_pending(t))
1425 		return "active";
1426 
1427 	return "expired";
1428 }
1429 
1430 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1431 					 struct drm_printer *m)
1432 {
1433 	struct drm_i915_private *dev_priv = engine->i915;
1434 	struct intel_engine_execlists * const execlists = &engine->execlists;
1435 	u64 addr;
1436 
1437 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(dev_priv, 4, 7))
1438 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1439 	if (HAS_EXECLISTS(dev_priv)) {
1440 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1441 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1442 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1443 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1444 	}
1445 	drm_printf(m, "\tRING_START: 0x%08x\n",
1446 		   ENGINE_READ(engine, RING_START));
1447 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1448 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1449 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1450 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1451 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1452 		   ENGINE_READ(engine, RING_CTL),
1453 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1454 	if (GRAPHICS_VER(engine->i915) > 2) {
1455 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1456 			   ENGINE_READ(engine, RING_MI_MODE),
1457 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1458 	}
1459 
1460 	if (GRAPHICS_VER(dev_priv) >= 6) {
1461 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1462 			   ENGINE_READ(engine, RING_IMR));
1463 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1464 			   ENGINE_READ(engine, RING_ESR));
1465 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1466 			   ENGINE_READ(engine, RING_EMR));
1467 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1468 			   ENGINE_READ(engine, RING_EIR));
1469 	}
1470 
1471 	addr = intel_engine_get_active_head(engine);
1472 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1473 		   upper_32_bits(addr), lower_32_bits(addr));
1474 	addr = intel_engine_get_last_batch_head(engine);
1475 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1476 		   upper_32_bits(addr), lower_32_bits(addr));
1477 	if (GRAPHICS_VER(dev_priv) >= 8)
1478 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1479 	else if (GRAPHICS_VER(dev_priv) >= 4)
1480 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1481 	else
1482 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1483 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1484 		   upper_32_bits(addr), lower_32_bits(addr));
1485 	if (GRAPHICS_VER(dev_priv) >= 4) {
1486 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1487 			   ENGINE_READ(engine, RING_IPEIR));
1488 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1489 			   ENGINE_READ(engine, RING_IPEHR));
1490 	} else {
1491 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1492 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1493 	}
1494 
1495 	if (intel_engine_uses_guc(engine)) {
1496 		/* nothing to print yet */
1497 	} else if (HAS_EXECLISTS(dev_priv)) {
1498 		struct i915_request * const *port, *rq;
1499 		const u32 *hws =
1500 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1501 		const u8 num_entries = execlists->csb_size;
1502 		unsigned int idx;
1503 		u8 read, write;
1504 
1505 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1506 			   yesno(test_bit(TASKLET_STATE_SCHED,
1507 					  &engine->execlists.tasklet.state)),
1508 			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1509 			   repr_timer(&engine->execlists.preempt),
1510 			   repr_timer(&engine->execlists.timer));
1511 
1512 		read = execlists->csb_head;
1513 		write = READ_ONCE(*execlists->csb_write);
1514 
1515 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1516 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1517 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1518 			   read, write, num_entries);
1519 
1520 		if (read >= num_entries)
1521 			read = 0;
1522 		if (write >= num_entries)
1523 			write = 0;
1524 		if (read > write)
1525 			write += num_entries;
1526 		while (read < write) {
1527 			idx = ++read % num_entries;
1528 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1529 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1530 		}
1531 
1532 		execlists_active_lock_bh(execlists);
1533 		rcu_read_lock();
1534 		for (port = execlists->active; (rq = *port); port++) {
1535 			char hdr[160];
1536 			int len;
1537 
1538 			len = scnprintf(hdr, sizeof(hdr),
1539 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1540 					(int)(port - execlists->active),
1541 					rq->context->lrc.ccid,
1542 					intel_context_is_closed(rq->context) ? "!" : "",
1543 					intel_context_is_banned(rq->context) ? "*" : "");
1544 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1545 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1546 			i915_request_show(m, rq, hdr, 0);
1547 		}
1548 		for (port = execlists->pending; (rq = *port); port++) {
1549 			char hdr[160];
1550 			int len;
1551 
1552 			len = scnprintf(hdr, sizeof(hdr),
1553 					"\t\tPending[%d]: ccid:%08x%s%s, ",
1554 					(int)(port - execlists->pending),
1555 					rq->context->lrc.ccid,
1556 					intel_context_is_closed(rq->context) ? "!" : "",
1557 					intel_context_is_banned(rq->context) ? "*" : "");
1558 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1559 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1560 			i915_request_show(m, rq, hdr, 0);
1561 		}
1562 		rcu_read_unlock();
1563 		execlists_active_unlock_bh(execlists);
1564 	} else if (GRAPHICS_VER(dev_priv) > 6) {
1565 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1566 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1567 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1568 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1569 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1570 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1571 	}
1572 }
1573 
1574 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1575 {
1576 	void *ring;
1577 	int size;
1578 
1579 	drm_printf(m,
1580 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1581 		   rq->head, rq->postfix, rq->tail,
1582 		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1583 		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1584 
1585 	size = rq->tail - rq->head;
1586 	if (rq->tail < rq->head)
1587 		size += rq->ring->size;
1588 
1589 	ring = kmalloc(size, GFP_ATOMIC);
1590 	if (ring) {
1591 		const void *vaddr = rq->ring->vaddr;
1592 		unsigned int head = rq->head;
1593 		unsigned int len = 0;
1594 
1595 		if (rq->tail < head) {
1596 			len = rq->ring->size - head;
1597 			memcpy(ring, vaddr + head, len);
1598 			head = 0;
1599 		}
1600 		memcpy(ring + len, vaddr + head, size - len);
1601 
1602 		hexdump(m, ring, size);
1603 		kfree(ring);
1604 	}
1605 }
1606 
1607 static unsigned long list_count(struct list_head *list)
1608 {
1609 	struct list_head *pos;
1610 	unsigned long count = 0;
1611 
1612 	list_for_each(pos, list)
1613 		count++;
1614 
1615 	return count;
1616 }
1617 
1618 static unsigned long read_ul(void *p, size_t x)
1619 {
1620 	return *(unsigned long *)(p + x);
1621 }
1622 
1623 static void print_properties(struct intel_engine_cs *engine,
1624 			     struct drm_printer *m)
1625 {
1626 	static const struct pmap {
1627 		size_t offset;
1628 		const char *name;
1629 	} props[] = {
1630 #define P(x) { \
1631 	.offset = offsetof(typeof(engine->props), x), \
1632 	.name = #x \
1633 }
1634 		P(heartbeat_interval_ms),
1635 		P(max_busywait_duration_ns),
1636 		P(preempt_timeout_ms),
1637 		P(stop_timeout_ms),
1638 		P(timeslice_duration_ms),
1639 
1640 		{},
1641 #undef P
1642 	};
1643 	const struct pmap *p;
1644 
1645 	drm_printf(m, "\tProperties:\n");
1646 	for (p = props; p->name; p++)
1647 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
1648 			   p->name,
1649 			   read_ul(&engine->props, p->offset),
1650 			   read_ul(&engine->defaults, p->offset));
1651 }
1652 
1653 void intel_engine_dump(struct intel_engine_cs *engine,
1654 		       struct drm_printer *m,
1655 		       const char *header, ...)
1656 {
1657 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1658 	struct i915_request *rq;
1659 	intel_wakeref_t wakeref;
1660 	unsigned long flags;
1661 	ktime_t dummy;
1662 
1663 	if (header) {
1664 		va_list ap;
1665 
1666 		va_start(ap, header);
1667 		drm_vprintf(m, header, &ap);
1668 		va_end(ap);
1669 	}
1670 
1671 	if (intel_gt_is_wedged(engine->gt))
1672 		drm_printf(m, "*** WEDGED ***\n");
1673 
1674 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1675 	drm_printf(m, "\tBarriers?: %s\n",
1676 		   yesno(!llist_empty(&engine->barrier_tasks)));
1677 	drm_printf(m, "\tLatency: %luus\n",
1678 		   ewma__engine_latency_read(&engine->latency));
1679 	if (intel_engine_supports_stats(engine))
1680 		drm_printf(m, "\tRuntime: %llums\n",
1681 			   ktime_to_ms(intel_engine_get_busy_time(engine,
1682 								  &dummy)));
1683 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1684 		   engine->fw_domain, READ_ONCE(engine->fw_active));
1685 
1686 	rcu_read_lock();
1687 	rq = READ_ONCE(engine->heartbeat.systole);
1688 	if (rq)
1689 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
1690 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1691 	rcu_read_unlock();
1692 	drm_printf(m, "\tReset count: %d (global %d)\n",
1693 		   i915_reset_engine_count(error, engine),
1694 		   i915_reset_count(error));
1695 	print_properties(engine, m);
1696 
1697 	drm_printf(m, "\tRequests:\n");
1698 
1699 	spin_lock_irqsave(&engine->active.lock, flags);
1700 	rq = intel_engine_find_active_request(engine);
1701 	if (rq) {
1702 		struct intel_timeline *tl = get_timeline(rq);
1703 
1704 		i915_request_show(m, rq, "\t\tactive ", 0);
1705 
1706 		drm_printf(m, "\t\tring->start:  0x%08x\n",
1707 			   i915_ggtt_offset(rq->ring->vma));
1708 		drm_printf(m, "\t\tring->head:   0x%08x\n",
1709 			   rq->ring->head);
1710 		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1711 			   rq->ring->tail);
1712 		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1713 			   rq->ring->emit);
1714 		drm_printf(m, "\t\tring->space:  0x%08x\n",
1715 			   rq->ring->space);
1716 
1717 		if (tl) {
1718 			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1719 				   tl->hwsp_offset);
1720 			intel_timeline_put(tl);
1721 		}
1722 
1723 		print_request_ring(m, rq);
1724 
1725 		if (rq->context->lrc_reg_state) {
1726 			drm_printf(m, "Logical Ring Context:\n");
1727 			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1728 		}
1729 	}
1730 	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1731 	spin_unlock_irqrestore(&engine->active.lock, flags);
1732 
1733 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1734 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1735 	if (wakeref) {
1736 		intel_engine_print_registers(engine, m);
1737 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1738 	} else {
1739 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1740 	}
1741 
1742 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1743 
1744 	drm_printf(m, "HWSP:\n");
1745 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1746 
1747 	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1748 
1749 	intel_engine_print_breadcrumbs(engine, m);
1750 }
1751 
1752 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1753 					    ktime_t *now)
1754 {
1755 	ktime_t total = engine->stats.total;
1756 
1757 	/*
1758 	 * If the engine is executing something at the moment
1759 	 * add it to the total.
1760 	 */
1761 	*now = ktime_get();
1762 	if (READ_ONCE(engine->stats.active))
1763 		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1764 
1765 	return total;
1766 }
1767 
1768 /**
1769  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1770  * @engine: engine to report on
1771  * @now: monotonic timestamp of sampling
1772  *
1773  * Returns accumulated time @engine was busy since engine stats were enabled.
1774  */
1775 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1776 {
1777 	unsigned int seq;
1778 	ktime_t total;
1779 
1780 	do {
1781 		seq = read_seqcount_begin(&engine->stats.lock);
1782 		total = __intel_engine_get_busy_time(engine, now);
1783 	} while (read_seqcount_retry(&engine->stats.lock, seq));
1784 
1785 	return total;
1786 }
1787 
1788 static bool match_ring(struct i915_request *rq)
1789 {
1790 	u32 ring = ENGINE_READ(rq->engine, RING_START);
1791 
1792 	return ring == i915_ggtt_offset(rq->ring->vma);
1793 }
1794 
1795 struct i915_request *
1796 intel_engine_find_active_request(struct intel_engine_cs *engine)
1797 {
1798 	struct i915_request *request, *active = NULL;
1799 
1800 	/*
1801 	 * We are called by the error capture, reset and to dump engine
1802 	 * state at random points in time. In particular, note that neither is
1803 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1804 	 * and we assume that no more writes can happen (we waited long enough
1805 	 * for all writes that were in transaction to be flushed) - adding an
1806 	 * extra delay for a recent interrupt is pointless. Hence, we do
1807 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1808 	 * At all other times, we must assume the GPU is still running, but
1809 	 * we only care about the snapshot of this moment.
1810 	 */
1811 	lockdep_assert_held(&engine->active.lock);
1812 
1813 	rcu_read_lock();
1814 	request = execlists_active(&engine->execlists);
1815 	if (request) {
1816 		struct intel_timeline *tl = request->context->timeline;
1817 
1818 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1819 			if (__i915_request_is_complete(request))
1820 				break;
1821 
1822 			active = request;
1823 		}
1824 	}
1825 	rcu_read_unlock();
1826 	if (active)
1827 		return active;
1828 
1829 	list_for_each_entry(request, &engine->active.requests, sched.link) {
1830 		if (__i915_request_is_complete(request))
1831 			continue;
1832 
1833 		if (!__i915_request_has_started(request))
1834 			continue;
1835 
1836 		/* More than one preemptible request may match! */
1837 		if (!match_ring(request))
1838 			continue;
1839 
1840 		active = request;
1841 		break;
1842 	}
1843 
1844 	return active;
1845 }
1846 
1847 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1848 #include "mock_engine.c"
1849 #include "selftest_engine.c"
1850 #include "selftest_engine_cs.c"
1851 #endif
1852