1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include <drm/drm_print.h>
26 
27 #include "gem/i915_gem_context.h"
28 
29 #include "i915_drv.h"
30 
31 #include "intel_breadcrumbs.h"
32 #include "intel_context.h"
33 #include "intel_engine.h"
34 #include "intel_engine_pm.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_gt_pm.h"
39 #include "intel_lrc.h"
40 #include "intel_reset.h"
41 #include "intel_ring.h"
42 
43 /* Haswell does have the CXT_SIZE register however it does not appear to be
44  * valid. Now, docs explain in dwords what is in the context object. The full
45  * size is 70720 bytes, however, the power context and execlist context will
46  * never be saved (power context is stored elsewhere, and execlists don't work
47  * on HSW) - so the final size, including the extra state required for the
48  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
49  */
50 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
51 
52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
53 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
54 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
55 #define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
56 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
57 
58 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
59 
60 #define MAX_MMIO_BASES 3
61 struct engine_info {
62 	unsigned int hw_id;
63 	u8 class;
64 	u8 instance;
65 	/* mmio bases table *must* be sorted in reverse gen order */
66 	struct engine_mmio_base {
67 		u32 gen : 8;
68 		u32 base : 24;
69 	} mmio_bases[MAX_MMIO_BASES];
70 };
71 
72 static const struct engine_info intel_engines[] = {
73 	[RCS0] = {
74 		.hw_id = RCS0_HW,
75 		.class = RENDER_CLASS,
76 		.instance = 0,
77 		.mmio_bases = {
78 			{ .gen = 1, .base = RENDER_RING_BASE }
79 		},
80 	},
81 	[BCS0] = {
82 		.hw_id = BCS0_HW,
83 		.class = COPY_ENGINE_CLASS,
84 		.instance = 0,
85 		.mmio_bases = {
86 			{ .gen = 6, .base = BLT_RING_BASE }
87 		},
88 	},
89 	[VCS0] = {
90 		.hw_id = VCS0_HW,
91 		.class = VIDEO_DECODE_CLASS,
92 		.instance = 0,
93 		.mmio_bases = {
94 			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
95 			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
96 			{ .gen = 4, .base = BSD_RING_BASE }
97 		},
98 	},
99 	[VCS1] = {
100 		.hw_id = VCS1_HW,
101 		.class = VIDEO_DECODE_CLASS,
102 		.instance = 1,
103 		.mmio_bases = {
104 			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
105 			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
106 		},
107 	},
108 	[VCS2] = {
109 		.hw_id = VCS2_HW,
110 		.class = VIDEO_DECODE_CLASS,
111 		.instance = 2,
112 		.mmio_bases = {
113 			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
114 		},
115 	},
116 	[VCS3] = {
117 		.hw_id = VCS3_HW,
118 		.class = VIDEO_DECODE_CLASS,
119 		.instance = 3,
120 		.mmio_bases = {
121 			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
122 		},
123 	},
124 	[VECS0] = {
125 		.hw_id = VECS0_HW,
126 		.class = VIDEO_ENHANCEMENT_CLASS,
127 		.instance = 0,
128 		.mmio_bases = {
129 			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
130 			{ .gen = 7, .base = VEBOX_RING_BASE }
131 		},
132 	},
133 	[VECS1] = {
134 		.hw_id = VECS1_HW,
135 		.class = VIDEO_ENHANCEMENT_CLASS,
136 		.instance = 1,
137 		.mmio_bases = {
138 			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
139 		},
140 	},
141 };
142 
143 /**
144  * intel_engine_context_size() - return the size of the context for an engine
145  * @gt: the gt
146  * @class: engine class
147  *
148  * Each engine class may require a different amount of space for a context
149  * image.
150  *
151  * Return: size (in bytes) of an engine class specific context image
152  *
153  * Note: this size includes the HWSP, which is part of the context image
154  * in LRC mode, but does not include the "shared data page" used with
155  * GuC submission. The caller should account for this if using the GuC.
156  */
157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
158 {
159 	struct intel_uncore *uncore = gt->uncore;
160 	u32 cxt_size;
161 
162 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
163 
164 	switch (class) {
165 	case RENDER_CLASS:
166 		switch (INTEL_GEN(gt->i915)) {
167 		default:
168 			MISSING_CASE(INTEL_GEN(gt->i915));
169 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
170 		case 12:
171 		case 11:
172 			return GEN11_LR_CONTEXT_RENDER_SIZE;
173 		case 10:
174 			return GEN10_LR_CONTEXT_RENDER_SIZE;
175 		case 9:
176 			return GEN9_LR_CONTEXT_RENDER_SIZE;
177 		case 8:
178 			return GEN8_LR_CONTEXT_RENDER_SIZE;
179 		case 7:
180 			if (IS_HASWELL(gt->i915))
181 				return HSW_CXT_TOTAL_SIZE;
182 
183 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
184 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
185 					PAGE_SIZE);
186 		case 6:
187 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
188 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
189 					PAGE_SIZE);
190 		case 5:
191 		case 4:
192 			/*
193 			 * There is a discrepancy here between the size reported
194 			 * by the register and the size of the context layout
195 			 * in the docs. Both are described as authorative!
196 			 *
197 			 * The discrepancy is on the order of a few cachelines,
198 			 * but the total is under one page (4k), which is our
199 			 * minimum allocation anyway so it should all come
200 			 * out in the wash.
201 			 */
202 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
203 			drm_dbg(&gt->i915->drm,
204 				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
205 				INTEL_GEN(gt->i915), cxt_size * 64,
206 				cxt_size - 1);
207 			return round_up(cxt_size * 64, PAGE_SIZE);
208 		case 3:
209 		case 2:
210 		/* For the special day when i810 gets merged. */
211 		case 1:
212 			return 0;
213 		}
214 		break;
215 	default:
216 		MISSING_CASE(class);
217 		fallthrough;
218 	case VIDEO_DECODE_CLASS:
219 	case VIDEO_ENHANCEMENT_CLASS:
220 	case COPY_ENGINE_CLASS:
221 		if (INTEL_GEN(gt->i915) < 8)
222 			return 0;
223 		return GEN8_LR_CONTEXT_OTHER_SIZE;
224 	}
225 }
226 
227 static u32 __engine_mmio_base(struct drm_i915_private *i915,
228 			      const struct engine_mmio_base *bases)
229 {
230 	int i;
231 
232 	for (i = 0; i < MAX_MMIO_BASES; i++)
233 		if (INTEL_GEN(i915) >= bases[i].gen)
234 			break;
235 
236 	GEM_BUG_ON(i == MAX_MMIO_BASES);
237 	GEM_BUG_ON(!bases[i].base);
238 
239 	return bases[i].base;
240 }
241 
242 static void __sprint_engine_name(struct intel_engine_cs *engine)
243 {
244 	/*
245 	 * Before we know what the uABI name for this engine will be,
246 	 * we still would like to keep track of this engine in the debug logs.
247 	 * We throw in a ' here as a reminder that this isn't its final name.
248 	 */
249 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
250 			     intel_engine_class_repr(engine->class),
251 			     engine->instance) >= sizeof(engine->name));
252 }
253 
254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
255 {
256 	/*
257 	 * Though they added more rings on g4x/ilk, they did not add
258 	 * per-engine HWSTAM until gen6.
259 	 */
260 	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
261 		return;
262 
263 	if (INTEL_GEN(engine->i915) >= 3)
264 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
265 	else
266 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
267 }
268 
269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
270 {
271 	/* Mask off all writes into the unknown HWSP */
272 	intel_engine_set_hwsp_writemask(engine, ~0u);
273 }
274 
275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
276 {
277 	const struct engine_info *info = &intel_engines[id];
278 	struct drm_i915_private *i915 = gt->i915;
279 	struct intel_engine_cs *engine;
280 
281 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
282 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
283 
284 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
285 		return -EINVAL;
286 
287 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
288 		return -EINVAL;
289 
290 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
291 		return -EINVAL;
292 
293 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
294 		return -EINVAL;
295 
296 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
297 	if (!engine)
298 		return -ENOMEM;
299 
300 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
301 
302 	engine->id = id;
303 	engine->legacy_idx = INVALID_ENGINE;
304 	engine->mask = BIT(id);
305 	engine->i915 = i915;
306 	engine->gt = gt;
307 	engine->uncore = gt->uncore;
308 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
309 	engine->hw_id = info->hw_id;
310 	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
311 
312 	engine->class = info->class;
313 	engine->instance = info->instance;
314 	__sprint_engine_name(engine);
315 
316 	engine->props.heartbeat_interval_ms =
317 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
318 	engine->props.max_busywait_duration_ns =
319 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
320 	engine->props.preempt_timeout_ms =
321 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
322 	engine->props.stop_timeout_ms =
323 		CONFIG_DRM_I915_STOP_TIMEOUT;
324 	engine->props.timeslice_duration_ms =
325 		CONFIG_DRM_I915_TIMESLICE_DURATION;
326 
327 	/* Override to uninterruptible for OpenCL workloads. */
328 	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
329 		engine->props.preempt_timeout_ms = 0;
330 
331 	engine->defaults = engine->props; /* never to change again */
332 
333 	engine->context_size = intel_engine_context_size(gt, engine->class);
334 	if (WARN_ON(engine->context_size > BIT(20)))
335 		engine->context_size = 0;
336 	if (engine->context_size)
337 		DRIVER_CAPS(i915)->has_logical_contexts = true;
338 
339 	/* Nothing to do here, execute in order of dependencies */
340 	engine->schedule = NULL;
341 
342 	ewma__engine_latency_init(&engine->latency);
343 	seqlock_init(&engine->stats.lock);
344 
345 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
346 
347 	/* Scrub mmio state on takeover */
348 	intel_engine_sanitize_mmio(engine);
349 
350 	gt->engine_class[info->class][info->instance] = engine;
351 	gt->engine[id] = engine;
352 
353 	return 0;
354 }
355 
356 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
357 {
358 	struct drm_i915_private *i915 = engine->i915;
359 
360 	if (engine->class == VIDEO_DECODE_CLASS) {
361 		/*
362 		 * HEVC support is present on first engine instance
363 		 * before Gen11 and on all instances afterwards.
364 		 */
365 		if (INTEL_GEN(i915) >= 11 ||
366 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
367 			engine->uabi_capabilities |=
368 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
369 
370 		/*
371 		 * SFC block is present only on even logical engine
372 		 * instances.
373 		 */
374 		if ((INTEL_GEN(i915) >= 11 &&
375 		     (engine->gt->info.vdbox_sfc_access &
376 		      BIT(engine->instance))) ||
377 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
378 			engine->uabi_capabilities |=
379 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
380 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
381 		if (INTEL_GEN(i915) >= 9)
382 			engine->uabi_capabilities |=
383 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
384 	}
385 }
386 
387 static void intel_setup_engine_capabilities(struct intel_gt *gt)
388 {
389 	struct intel_engine_cs *engine;
390 	enum intel_engine_id id;
391 
392 	for_each_engine(engine, gt, id)
393 		__setup_engine_capabilities(engine);
394 }
395 
396 /**
397  * intel_engines_release() - free the resources allocated for Command Streamers
398  * @gt: pointer to struct intel_gt
399  */
400 void intel_engines_release(struct intel_gt *gt)
401 {
402 	struct intel_engine_cs *engine;
403 	enum intel_engine_id id;
404 
405 	/*
406 	 * Before we release the resources held by engine, we must be certain
407 	 * that the HW is no longer accessing them -- having the GPU scribble
408 	 * to or read from a page being used for something else causes no end
409 	 * of fun.
410 	 *
411 	 * The GPU should be reset by this point, but assume the worst just
412 	 * in case we aborted before completely initialising the engines.
413 	 */
414 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
415 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
416 		__intel_gt_reset(gt, ALL_ENGINES);
417 
418 	/* Decouple the backend; but keep the layout for late GPU resets */
419 	for_each_engine(engine, gt, id) {
420 		if (!engine->release)
421 			continue;
422 
423 		intel_wakeref_wait_for_idle(&engine->wakeref);
424 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
425 
426 		engine->release(engine);
427 		engine->release = NULL;
428 
429 		memset(&engine->reset, 0, sizeof(engine->reset));
430 	}
431 }
432 
433 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
434 {
435 	if (!engine->request_pool)
436 		return;
437 
438 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
439 }
440 
441 void intel_engines_free(struct intel_gt *gt)
442 {
443 	struct intel_engine_cs *engine;
444 	enum intel_engine_id id;
445 
446 	/* Free the requests! dma-resv keeps fences around for an eternity */
447 	rcu_barrier();
448 
449 	for_each_engine(engine, gt, id) {
450 		intel_engine_free_request_pool(engine);
451 		kfree(engine);
452 		gt->engine[id] = NULL;
453 	}
454 }
455 
456 /*
457  * Determine which engines are fused off in our particular hardware.
458  * Note that we have a catch-22 situation where we need to be able to access
459  * the blitter forcewake domain to read the engine fuses, but at the same time
460  * we need to know which engines are available on the system to know which
461  * forcewake domains are present. We solve this by intializing the forcewake
462  * domains based on the full engine mask in the platform capabilities before
463  * calling this function and pruning the domains for fused-off engines
464  * afterwards.
465  */
466 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
467 {
468 	struct drm_i915_private *i915 = gt->i915;
469 	struct intel_gt_info *info = &gt->info;
470 	struct intel_uncore *uncore = gt->uncore;
471 	unsigned int logical_vdbox = 0;
472 	unsigned int i;
473 	u32 media_fuse;
474 	u16 vdbox_mask;
475 	u16 vebox_mask;
476 
477 	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
478 
479 	if (INTEL_GEN(i915) < 11)
480 		return info->engine_mask;
481 
482 	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
483 
484 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
485 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
486 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
487 
488 	for (i = 0; i < I915_MAX_VCS; i++) {
489 		if (!HAS_ENGINE(gt, _VCS(i))) {
490 			vdbox_mask &= ~BIT(i);
491 			continue;
492 		}
493 
494 		if (!(BIT(i) & vdbox_mask)) {
495 			info->engine_mask &= ~BIT(_VCS(i));
496 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
497 			continue;
498 		}
499 
500 		/*
501 		 * In Gen11, only even numbered logical VDBOXes are
502 		 * hooked up to an SFC (Scaler & Format Converter) unit.
503 		 * In TGL each VDBOX has access to an SFC.
504 		 */
505 		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
506 			gt->info.vdbox_sfc_access |= BIT(i);
507 	}
508 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
509 		vdbox_mask, VDBOX_MASK(gt));
510 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
511 
512 	for (i = 0; i < I915_MAX_VECS; i++) {
513 		if (!HAS_ENGINE(gt, _VECS(i))) {
514 			vebox_mask &= ~BIT(i);
515 			continue;
516 		}
517 
518 		if (!(BIT(i) & vebox_mask)) {
519 			info->engine_mask &= ~BIT(_VECS(i));
520 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
521 		}
522 	}
523 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
524 		vebox_mask, VEBOX_MASK(gt));
525 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
526 
527 	return info->engine_mask;
528 }
529 
530 /**
531  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
532  * @gt: pointer to struct intel_gt
533  *
534  * Return: non-zero if the initialization failed.
535  */
536 int intel_engines_init_mmio(struct intel_gt *gt)
537 {
538 	struct drm_i915_private *i915 = gt->i915;
539 	const unsigned int engine_mask = init_engine_mask(gt);
540 	unsigned int mask = 0;
541 	unsigned int i;
542 	int err;
543 
544 	drm_WARN_ON(&i915->drm, engine_mask == 0);
545 	drm_WARN_ON(&i915->drm, engine_mask &
546 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
547 
548 	if (i915_inject_probe_failure(i915))
549 		return -ENODEV;
550 
551 	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
552 		if (!HAS_ENGINE(gt, i))
553 			continue;
554 
555 		err = intel_engine_setup(gt, i);
556 		if (err)
557 			goto cleanup;
558 
559 		mask |= BIT(i);
560 	}
561 
562 	/*
563 	 * Catch failures to update intel_engines table when the new engines
564 	 * are added to the driver by a warning and disabling the forgotten
565 	 * engines.
566 	 */
567 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
568 		gt->info.engine_mask = mask;
569 
570 	gt->info.num_engines = hweight32(mask);
571 
572 	intel_gt_check_and_clear_faults(gt);
573 
574 	intel_setup_engine_capabilities(gt);
575 
576 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
577 
578 	return 0;
579 
580 cleanup:
581 	intel_engines_free(gt);
582 	return err;
583 }
584 
585 void intel_engine_init_execlists(struct intel_engine_cs *engine)
586 {
587 	struct intel_engine_execlists * const execlists = &engine->execlists;
588 
589 	execlists->port_mask = 1;
590 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
591 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
592 
593 	memset(execlists->pending, 0, sizeof(execlists->pending));
594 	execlists->active =
595 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
596 
597 	execlists->queue_priority_hint = INT_MIN;
598 	execlists->queue = RB_ROOT_CACHED;
599 }
600 
601 static void cleanup_status_page(struct intel_engine_cs *engine)
602 {
603 	struct i915_vma *vma;
604 
605 	/* Prevent writes into HWSP after returning the page to the system */
606 	intel_engine_set_hwsp_writemask(engine, ~0u);
607 
608 	vma = fetch_and_zero(&engine->status_page.vma);
609 	if (!vma)
610 		return;
611 
612 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
613 		i915_vma_unpin(vma);
614 
615 	i915_gem_object_unpin_map(vma->obj);
616 	i915_gem_object_put(vma->obj);
617 }
618 
619 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
620 				struct i915_vma *vma)
621 {
622 	unsigned int flags;
623 
624 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
625 		/*
626 		 * On g33, we cannot place HWS above 256MiB, so
627 		 * restrict its pinning to the low mappable arena.
628 		 * Though this restriction is not documented for
629 		 * gen4, gen5, or byt, they also behave similarly
630 		 * and hang if the HWS is placed at the top of the
631 		 * GTT. To generalise, it appears that all !llc
632 		 * platforms have issues with us placing the HWS
633 		 * above the mappable region (even though we never
634 		 * actually map it).
635 		 */
636 		flags = PIN_MAPPABLE;
637 	else
638 		flags = PIN_HIGH;
639 
640 	return i915_ggtt_pin(vma, NULL, 0, flags);
641 }
642 
643 static int init_status_page(struct intel_engine_cs *engine)
644 {
645 	struct drm_i915_gem_object *obj;
646 	struct i915_vma *vma;
647 	void *vaddr;
648 	int ret;
649 
650 	/*
651 	 * Though the HWS register does support 36bit addresses, historically
652 	 * we have had hangs and corruption reported due to wild writes if
653 	 * the HWS is placed above 4G. We only allow objects to be allocated
654 	 * in GFP_DMA32 for i965, and no earlier physical address users had
655 	 * access to more than 4G.
656 	 */
657 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
658 	if (IS_ERR(obj)) {
659 		drm_err(&engine->i915->drm,
660 			"Failed to allocate status page\n");
661 		return PTR_ERR(obj);
662 	}
663 
664 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
665 
666 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
667 	if (IS_ERR(vma)) {
668 		ret = PTR_ERR(vma);
669 		goto err;
670 	}
671 
672 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
673 	if (IS_ERR(vaddr)) {
674 		ret = PTR_ERR(vaddr);
675 		goto err;
676 	}
677 
678 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
679 	engine->status_page.vma = vma;
680 
681 	if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
682 		ret = pin_ggtt_status_page(engine, vma);
683 		if (ret)
684 			goto err_unpin;
685 	}
686 
687 	return 0;
688 
689 err_unpin:
690 	i915_gem_object_unpin_map(obj);
691 err:
692 	i915_gem_object_put(obj);
693 	return ret;
694 }
695 
696 static int engine_setup_common(struct intel_engine_cs *engine)
697 {
698 	int err;
699 
700 	init_llist_head(&engine->barrier_tasks);
701 
702 	err = init_status_page(engine);
703 	if (err)
704 		return err;
705 
706 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
707 	if (!engine->breadcrumbs) {
708 		err = -ENOMEM;
709 		goto err_status;
710 	}
711 
712 	intel_engine_init_active(engine, ENGINE_PHYSICAL);
713 	intel_engine_init_execlists(engine);
714 	intel_engine_init_cmd_parser(engine);
715 	intel_engine_init__pm(engine);
716 	intel_engine_init_retire(engine);
717 
718 	/* Use the whole device by default */
719 	engine->sseu =
720 		intel_sseu_from_device_info(&engine->gt->info.sseu);
721 
722 	intel_engine_init_workarounds(engine);
723 	intel_engine_init_whitelist(engine);
724 	intel_engine_init_ctx_wa(engine);
725 
726 	return 0;
727 
728 err_status:
729 	cleanup_status_page(engine);
730 	return err;
731 }
732 
733 struct measure_breadcrumb {
734 	struct i915_request rq;
735 	struct intel_ring ring;
736 	u32 cs[2048];
737 };
738 
739 static int measure_breadcrumb_dw(struct intel_context *ce)
740 {
741 	struct intel_engine_cs *engine = ce->engine;
742 	struct measure_breadcrumb *frame;
743 	int dw;
744 
745 	GEM_BUG_ON(!engine->gt->scratch);
746 
747 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
748 	if (!frame)
749 		return -ENOMEM;
750 
751 	frame->rq.engine = engine;
752 	frame->rq.context = ce;
753 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
754 
755 	frame->ring.vaddr = frame->cs;
756 	frame->ring.size = sizeof(frame->cs);
757 	frame->ring.wrap =
758 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
759 	frame->ring.effective_size = frame->ring.size;
760 	intel_ring_update_space(&frame->ring);
761 	frame->rq.ring = &frame->ring;
762 
763 	mutex_lock(&ce->timeline->mutex);
764 	spin_lock_irq(&engine->active.lock);
765 
766 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
767 
768 	spin_unlock_irq(&engine->active.lock);
769 	mutex_unlock(&ce->timeline->mutex);
770 
771 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
772 
773 	kfree(frame);
774 	return dw;
775 }
776 
777 void
778 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
779 {
780 	INIT_LIST_HEAD(&engine->active.requests);
781 	INIT_LIST_HEAD(&engine->active.hold);
782 
783 	spin_lock_init(&engine->active.lock);
784 	lockdep_set_subclass(&engine->active.lock, subclass);
785 
786 	/*
787 	 * Due to an interesting quirk in lockdep's internal debug tracking,
788 	 * after setting a subclass we must ensure the lock is used. Otherwise,
789 	 * nr_unused_locks is incremented once too often.
790 	 */
791 #ifdef CONFIG_DEBUG_LOCK_ALLOC
792 	local_irq_disable();
793 	lock_map_acquire(&engine->active.lock.dep_map);
794 	lock_map_release(&engine->active.lock.dep_map);
795 	local_irq_enable();
796 #endif
797 }
798 
799 static struct intel_context *
800 create_pinned_context(struct intel_engine_cs *engine,
801 		      unsigned int hwsp,
802 		      struct lock_class_key *key,
803 		      const char *name)
804 {
805 	struct intel_context *ce;
806 	int err;
807 
808 	ce = intel_context_create(engine);
809 	if (IS_ERR(ce))
810 		return ce;
811 
812 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
813 	ce->timeline = page_pack_bits(NULL, hwsp);
814 
815 	err = intel_context_pin(ce); /* perma-pin so it is always available */
816 	if (err) {
817 		intel_context_put(ce);
818 		return ERR_PTR(err);
819 	}
820 
821 	/*
822 	 * Give our perma-pinned kernel timelines a separate lockdep class,
823 	 * so that we can use them from within the normal user timelines
824 	 * should we need to inject GPU operations during their request
825 	 * construction.
826 	 */
827 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
828 
829 	return ce;
830 }
831 
832 static struct intel_context *
833 create_kernel_context(struct intel_engine_cs *engine)
834 {
835 	static struct lock_class_key kernel;
836 
837 	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
838 				     &kernel, "kernel_context");
839 }
840 
841 /**
842  * intel_engines_init_common - initialize cengine state which might require hw access
843  * @engine: Engine to initialize.
844  *
845  * Initializes @engine@ structure members shared between legacy and execlists
846  * submission modes which do require hardware access.
847  *
848  * Typcally done at later stages of submission mode specific engine setup.
849  *
850  * Returns zero on success or an error code on failure.
851  */
852 static int engine_init_common(struct intel_engine_cs *engine)
853 {
854 	struct intel_context *ce;
855 	int ret;
856 
857 	engine->set_default_submission(engine);
858 
859 	/*
860 	 * We may need to do things with the shrinker which
861 	 * require us to immediately switch back to the default
862 	 * context. This can cause a problem as pinning the
863 	 * default context also requires GTT space which may not
864 	 * be available. To avoid this we always pin the default
865 	 * context.
866 	 */
867 	ce = create_kernel_context(engine);
868 	if (IS_ERR(ce))
869 		return PTR_ERR(ce);
870 
871 	ret = measure_breadcrumb_dw(ce);
872 	if (ret < 0)
873 		goto err_context;
874 
875 	engine->emit_fini_breadcrumb_dw = ret;
876 	engine->kernel_context = ce;
877 
878 	return 0;
879 
880 err_context:
881 	intel_context_put(ce);
882 	return ret;
883 }
884 
885 int intel_engines_init(struct intel_gt *gt)
886 {
887 	int (*setup)(struct intel_engine_cs *engine);
888 	struct intel_engine_cs *engine;
889 	enum intel_engine_id id;
890 	int err;
891 
892 	if (HAS_EXECLISTS(gt->i915))
893 		setup = intel_execlists_submission_setup;
894 	else
895 		setup = intel_ring_submission_setup;
896 
897 	for_each_engine(engine, gt, id) {
898 		err = engine_setup_common(engine);
899 		if (err)
900 			return err;
901 
902 		err = setup(engine);
903 		if (err)
904 			return err;
905 
906 		err = engine_init_common(engine);
907 		if (err)
908 			return err;
909 
910 		intel_engine_add_user(engine);
911 	}
912 
913 	return 0;
914 }
915 
916 /**
917  * intel_engines_cleanup_common - cleans up the engine state created by
918  *                                the common initiailizers.
919  * @engine: Engine to cleanup.
920  *
921  * This cleans up everything created by the common helpers.
922  */
923 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
924 {
925 	GEM_BUG_ON(!list_empty(&engine->active.requests));
926 	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
927 
928 	cleanup_status_page(engine);
929 	intel_breadcrumbs_free(engine->breadcrumbs);
930 
931 	intel_engine_fini_retire(engine);
932 	intel_engine_cleanup_cmd_parser(engine);
933 
934 	if (engine->default_state)
935 		fput(engine->default_state);
936 
937 	if (engine->kernel_context) {
938 		intel_context_unpin(engine->kernel_context);
939 		intel_context_put(engine->kernel_context);
940 	}
941 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
942 
943 	intel_wa_list_free(&engine->ctx_wa_list);
944 	intel_wa_list_free(&engine->wa_list);
945 	intel_wa_list_free(&engine->whitelist);
946 }
947 
948 /**
949  * intel_engine_resume - re-initializes the HW state of the engine
950  * @engine: Engine to resume.
951  *
952  * Returns zero on success or an error code on failure.
953  */
954 int intel_engine_resume(struct intel_engine_cs *engine)
955 {
956 	intel_engine_apply_workarounds(engine);
957 	intel_engine_apply_whitelist(engine);
958 
959 	return engine->resume(engine);
960 }
961 
962 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
963 {
964 	struct drm_i915_private *i915 = engine->i915;
965 
966 	u64 acthd;
967 
968 	if (INTEL_GEN(i915) >= 8)
969 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
970 	else if (INTEL_GEN(i915) >= 4)
971 		acthd = ENGINE_READ(engine, RING_ACTHD);
972 	else
973 		acthd = ENGINE_READ(engine, ACTHD);
974 
975 	return acthd;
976 }
977 
978 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
979 {
980 	u64 bbaddr;
981 
982 	if (INTEL_GEN(engine->i915) >= 8)
983 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
984 	else
985 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
986 
987 	return bbaddr;
988 }
989 
990 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
991 {
992 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
993 		return 0;
994 
995 	/*
996 	 * If we are doing a normal GPU reset, we can take our time and allow
997 	 * the engine to quiesce. We've stopped submission to the engine, and
998 	 * if we wait long enough an innocent context should complete and
999 	 * leave the engine idle. So they should not be caught unaware by
1000 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1001 	 */
1002 	return READ_ONCE(engine->props.stop_timeout_ms);
1003 }
1004 
1005 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1006 {
1007 	struct intel_uncore *uncore = engine->uncore;
1008 	const u32 base = engine->mmio_base;
1009 	const i915_reg_t mode = RING_MI_MODE(base);
1010 	int err;
1011 
1012 	if (INTEL_GEN(engine->i915) < 3)
1013 		return -ENODEV;
1014 
1015 	ENGINE_TRACE(engine, "\n");
1016 
1017 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1018 
1019 	err = 0;
1020 	if (__intel_wait_for_register_fw(uncore,
1021 					 mode, MODE_IDLE, MODE_IDLE,
1022 					 1000, stop_timeout(engine),
1023 					 NULL)) {
1024 		ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1025 		err = -ETIMEDOUT;
1026 	}
1027 
1028 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1029 	intel_uncore_posting_read_fw(uncore, mode);
1030 
1031 	return err;
1032 }
1033 
1034 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1035 {
1036 	ENGINE_TRACE(engine, "\n");
1037 
1038 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1039 }
1040 
1041 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1042 {
1043 	switch (type) {
1044 	case I915_CACHE_NONE: return " uncached";
1045 	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1046 	case I915_CACHE_L3_LLC: return " L3+LLC";
1047 	case I915_CACHE_WT: return " WT";
1048 	default: return "";
1049 	}
1050 }
1051 
1052 static u32
1053 read_subslice_reg(const struct intel_engine_cs *engine,
1054 		  int slice, int subslice, i915_reg_t reg)
1055 {
1056 	struct drm_i915_private *i915 = engine->i915;
1057 	struct intel_uncore *uncore = engine->uncore;
1058 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1059 	enum forcewake_domains fw_domains;
1060 
1061 	if (INTEL_GEN(i915) >= 11) {
1062 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1063 		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1064 	} else {
1065 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1066 		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1067 	}
1068 
1069 	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1070 						    FW_REG_READ);
1071 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1072 						     GEN8_MCR_SELECTOR,
1073 						     FW_REG_READ | FW_REG_WRITE);
1074 
1075 	spin_lock_irq(&uncore->lock);
1076 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1077 
1078 	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1079 
1080 	mcr &= ~mcr_mask;
1081 	mcr |= mcr_ss;
1082 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1083 
1084 	val = intel_uncore_read_fw(uncore, reg);
1085 
1086 	mcr &= ~mcr_mask;
1087 	mcr |= old_mcr & mcr_mask;
1088 
1089 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1090 
1091 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
1092 	spin_unlock_irq(&uncore->lock);
1093 
1094 	return val;
1095 }
1096 
1097 /* NB: please notice the memset */
1098 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1099 			       struct intel_instdone *instdone)
1100 {
1101 	struct drm_i915_private *i915 = engine->i915;
1102 	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1103 	struct intel_uncore *uncore = engine->uncore;
1104 	u32 mmio_base = engine->mmio_base;
1105 	int slice;
1106 	int subslice;
1107 
1108 	memset(instdone, 0, sizeof(*instdone));
1109 
1110 	switch (INTEL_GEN(i915)) {
1111 	default:
1112 		instdone->instdone =
1113 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1114 
1115 		if (engine->id != RCS0)
1116 			break;
1117 
1118 		instdone->slice_common =
1119 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1120 		if (INTEL_GEN(i915) >= 12) {
1121 			instdone->slice_common_extra[0] =
1122 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1123 			instdone->slice_common_extra[1] =
1124 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1125 		}
1126 		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1127 			instdone->sampler[slice][subslice] =
1128 				read_subslice_reg(engine, slice, subslice,
1129 						  GEN7_SAMPLER_INSTDONE);
1130 			instdone->row[slice][subslice] =
1131 				read_subslice_reg(engine, slice, subslice,
1132 						  GEN7_ROW_INSTDONE);
1133 		}
1134 		break;
1135 	case 7:
1136 		instdone->instdone =
1137 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1138 
1139 		if (engine->id != RCS0)
1140 			break;
1141 
1142 		instdone->slice_common =
1143 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1144 		instdone->sampler[0][0] =
1145 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1146 		instdone->row[0][0] =
1147 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1148 
1149 		break;
1150 	case 6:
1151 	case 5:
1152 	case 4:
1153 		instdone->instdone =
1154 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1155 		if (engine->id == RCS0)
1156 			/* HACK: Using the wrong struct member */
1157 			instdone->slice_common =
1158 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1159 		break;
1160 	case 3:
1161 	case 2:
1162 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1163 		break;
1164 	}
1165 }
1166 
1167 static bool ring_is_idle(struct intel_engine_cs *engine)
1168 {
1169 	bool idle = true;
1170 
1171 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1172 		return true;
1173 
1174 	if (!intel_engine_pm_get_if_awake(engine))
1175 		return true;
1176 
1177 	/* First check that no commands are left in the ring */
1178 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1179 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1180 		idle = false;
1181 
1182 	/* No bit for gen2, so assume the CS parser is idle */
1183 	if (INTEL_GEN(engine->i915) > 2 &&
1184 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1185 		idle = false;
1186 
1187 	intel_engine_pm_put(engine);
1188 
1189 	return idle;
1190 }
1191 
1192 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1193 {
1194 	struct tasklet_struct *t = &engine->execlists.tasklet;
1195 
1196 	if (!t->func)
1197 		return;
1198 
1199 	/* Synchronise and wait for the tasklet on another CPU */
1200 	tasklet_kill(t);
1201 
1202 	/* Having cancelled the tasklet, ensure that is run */
1203 	local_bh_disable();
1204 	if (tasklet_trylock(t)) {
1205 		/* Must wait for any GPU reset in progress. */
1206 		if (__tasklet_is_enabled(t))
1207 			t->func(t->data);
1208 		tasklet_unlock(t);
1209 	}
1210 	local_bh_enable();
1211 }
1212 
1213 /**
1214  * intel_engine_is_idle() - Report if the engine has finished process all work
1215  * @engine: the intel_engine_cs
1216  *
1217  * Return true if there are no requests pending, nothing left to be submitted
1218  * to hardware, and that the engine is idle.
1219  */
1220 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1221 {
1222 	/* More white lies, if wedged, hw state is inconsistent */
1223 	if (intel_gt_is_wedged(engine->gt))
1224 		return true;
1225 
1226 	if (!intel_engine_pm_is_awake(engine))
1227 		return true;
1228 
1229 	/* Waiting to drain ELSP? */
1230 	if (execlists_active(&engine->execlists)) {
1231 		synchronize_hardirq(engine->i915->drm.pdev->irq);
1232 
1233 		intel_engine_flush_submission(engine);
1234 
1235 		if (execlists_active(&engine->execlists))
1236 			return false;
1237 	}
1238 
1239 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1240 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1241 		return false;
1242 
1243 	/* Ring stopped? */
1244 	return ring_is_idle(engine);
1245 }
1246 
1247 bool intel_engines_are_idle(struct intel_gt *gt)
1248 {
1249 	struct intel_engine_cs *engine;
1250 	enum intel_engine_id id;
1251 
1252 	/*
1253 	 * If the driver is wedged, HW state may be very inconsistent and
1254 	 * report that it is still busy, even though we have stopped using it.
1255 	 */
1256 	if (intel_gt_is_wedged(gt))
1257 		return true;
1258 
1259 	/* Already parked (and passed an idleness test); must still be idle */
1260 	if (!READ_ONCE(gt->awake))
1261 		return true;
1262 
1263 	for_each_engine(engine, gt, id) {
1264 		if (!intel_engine_is_idle(engine))
1265 			return false;
1266 	}
1267 
1268 	return true;
1269 }
1270 
1271 void intel_engines_reset_default_submission(struct intel_gt *gt)
1272 {
1273 	struct intel_engine_cs *engine;
1274 	enum intel_engine_id id;
1275 
1276 	for_each_engine(engine, gt, id)
1277 		engine->set_default_submission(engine);
1278 }
1279 
1280 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1281 {
1282 	switch (INTEL_GEN(engine->i915)) {
1283 	case 2:
1284 		return false; /* uses physical not virtual addresses */
1285 	case 3:
1286 		/* maybe only uses physical not virtual addresses */
1287 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1288 	case 4:
1289 		return !IS_I965G(engine->i915); /* who knows! */
1290 	case 6:
1291 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1292 	default:
1293 		return true;
1294 	}
1295 }
1296 
1297 static int print_sched_attr(const struct i915_sched_attr *attr,
1298 			    char *buf, int x, int len)
1299 {
1300 	if (attr->priority == I915_PRIORITY_INVALID)
1301 		return x;
1302 
1303 	x += snprintf(buf + x, len - x,
1304 		      " prio=%d", attr->priority);
1305 
1306 	return x;
1307 }
1308 
1309 static void print_request(struct drm_printer *m,
1310 			  struct i915_request *rq,
1311 			  const char *prefix)
1312 {
1313 	const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1314 	char buf[80] = "";
1315 	int x = 0;
1316 
1317 	x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1318 
1319 	drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1320 		   prefix,
1321 		   rq->fence.context, rq->fence.seqno,
1322 		   i915_request_completed(rq) ? "!" :
1323 		   i915_request_started(rq) ? "*" :
1324 		   "",
1325 		   test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1326 			    &rq->fence.flags) ? "+" :
1327 		   test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1328 			    &rq->fence.flags) ? "-" :
1329 		   "",
1330 		   buf,
1331 		   jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1332 		   name);
1333 }
1334 
1335 static struct intel_timeline *get_timeline(struct i915_request *rq)
1336 {
1337 	struct intel_timeline *tl;
1338 
1339 	/*
1340 	 * Even though we are holding the engine->active.lock here, there
1341 	 * is no control over the submission queue per-se and we are
1342 	 * inspecting the active state at a random point in time, with an
1343 	 * unknown queue. Play safe and make sure the timeline remains valid.
1344 	 * (Only being used for pretty printing, one extra kref shouldn't
1345 	 * cause a camel stampede!)
1346 	 */
1347 	rcu_read_lock();
1348 	tl = rcu_dereference(rq->timeline);
1349 	if (!kref_get_unless_zero(&tl->kref))
1350 		tl = NULL;
1351 	rcu_read_unlock();
1352 
1353 	return tl;
1354 }
1355 
1356 static int print_ring(char *buf, int sz, struct i915_request *rq)
1357 {
1358 	int len = 0;
1359 
1360 	if (!i915_request_signaled(rq)) {
1361 		struct intel_timeline *tl = get_timeline(rq);
1362 
1363 		len = scnprintf(buf, sz,
1364 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1365 				i915_ggtt_offset(rq->ring->vma),
1366 				tl ? tl->hwsp_offset : 0,
1367 				hwsp_seqno(rq),
1368 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1369 						      1000 * 1000));
1370 
1371 		if (tl)
1372 			intel_timeline_put(tl);
1373 	}
1374 
1375 	return len;
1376 }
1377 
1378 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1379 {
1380 	const size_t rowsize = 8 * sizeof(u32);
1381 	const void *prev = NULL;
1382 	bool skip = false;
1383 	size_t pos;
1384 
1385 	for (pos = 0; pos < len; pos += rowsize) {
1386 		char line[128];
1387 
1388 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1389 			if (!skip) {
1390 				drm_printf(m, "*\n");
1391 				skip = true;
1392 			}
1393 			continue;
1394 		}
1395 
1396 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1397 						rowsize, sizeof(u32),
1398 						line, sizeof(line),
1399 						false) >= sizeof(line));
1400 		drm_printf(m, "[%04zx] %s\n", pos, line);
1401 
1402 		prev = buf + pos;
1403 		skip = false;
1404 	}
1405 }
1406 
1407 static const char *repr_timer(const struct timer_list *t)
1408 {
1409 	if (!READ_ONCE(t->expires))
1410 		return "inactive";
1411 
1412 	if (timer_pending(t))
1413 		return "active";
1414 
1415 	return "expired";
1416 }
1417 
1418 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1419 					 struct drm_printer *m)
1420 {
1421 	struct drm_i915_private *dev_priv = engine->i915;
1422 	struct intel_engine_execlists * const execlists = &engine->execlists;
1423 	u64 addr;
1424 
1425 	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1426 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1427 	if (HAS_EXECLISTS(dev_priv)) {
1428 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1429 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1430 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1431 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1432 	}
1433 	drm_printf(m, "\tRING_START: 0x%08x\n",
1434 		   ENGINE_READ(engine, RING_START));
1435 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1436 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1437 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1438 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1439 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1440 		   ENGINE_READ(engine, RING_CTL),
1441 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1442 	if (INTEL_GEN(engine->i915) > 2) {
1443 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1444 			   ENGINE_READ(engine, RING_MI_MODE),
1445 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1446 	}
1447 
1448 	if (INTEL_GEN(dev_priv) >= 6) {
1449 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1450 			   ENGINE_READ(engine, RING_IMR));
1451 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1452 			   ENGINE_READ(engine, RING_ESR));
1453 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1454 			   ENGINE_READ(engine, RING_EMR));
1455 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1456 			   ENGINE_READ(engine, RING_EIR));
1457 	}
1458 
1459 	addr = intel_engine_get_active_head(engine);
1460 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1461 		   upper_32_bits(addr), lower_32_bits(addr));
1462 	addr = intel_engine_get_last_batch_head(engine);
1463 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1464 		   upper_32_bits(addr), lower_32_bits(addr));
1465 	if (INTEL_GEN(dev_priv) >= 8)
1466 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1467 	else if (INTEL_GEN(dev_priv) >= 4)
1468 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1469 	else
1470 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1471 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1472 		   upper_32_bits(addr), lower_32_bits(addr));
1473 	if (INTEL_GEN(dev_priv) >= 4) {
1474 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1475 			   ENGINE_READ(engine, RING_IPEIR));
1476 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1477 			   ENGINE_READ(engine, RING_IPEHR));
1478 	} else {
1479 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1480 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1481 	}
1482 
1483 	if (HAS_EXECLISTS(dev_priv)) {
1484 		struct i915_request * const *port, *rq;
1485 		const u32 *hws =
1486 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1487 		const u8 num_entries = execlists->csb_size;
1488 		unsigned int idx;
1489 		u8 read, write;
1490 
1491 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1492 			   yesno(test_bit(TASKLET_STATE_SCHED,
1493 					  &engine->execlists.tasklet.state)),
1494 			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1495 			   repr_timer(&engine->execlists.preempt),
1496 			   repr_timer(&engine->execlists.timer));
1497 
1498 		read = execlists->csb_head;
1499 		write = READ_ONCE(*execlists->csb_write);
1500 
1501 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1502 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1503 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1504 			   read, write, num_entries);
1505 
1506 		if (read >= num_entries)
1507 			read = 0;
1508 		if (write >= num_entries)
1509 			write = 0;
1510 		if (read > write)
1511 			write += num_entries;
1512 		while (read < write) {
1513 			idx = ++read % num_entries;
1514 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1515 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1516 		}
1517 
1518 		execlists_active_lock_bh(execlists);
1519 		rcu_read_lock();
1520 		for (port = execlists->active; (rq = *port); port++) {
1521 			char hdr[160];
1522 			int len;
1523 
1524 			len = scnprintf(hdr, sizeof(hdr),
1525 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1526 					(int)(port - execlists->active),
1527 					rq->context->lrc.ccid,
1528 					intel_context_is_closed(rq->context) ? "!" : "",
1529 					intel_context_is_banned(rq->context) ? "*" : "");
1530 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1531 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1532 			print_request(m, rq, hdr);
1533 		}
1534 		for (port = execlists->pending; (rq = *port); port++) {
1535 			char hdr[160];
1536 			int len;
1537 
1538 			len = scnprintf(hdr, sizeof(hdr),
1539 					"\t\tPending[%d]: ccid:%08x%s%s, ",
1540 					(int)(port - execlists->pending),
1541 					rq->context->lrc.ccid,
1542 					intel_context_is_closed(rq->context) ? "!" : "",
1543 					intel_context_is_banned(rq->context) ? "*" : "");
1544 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1545 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1546 			print_request(m, rq, hdr);
1547 		}
1548 		rcu_read_unlock();
1549 		execlists_active_unlock_bh(execlists);
1550 	} else if (INTEL_GEN(dev_priv) > 6) {
1551 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1552 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1553 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1554 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1555 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1556 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1557 	}
1558 }
1559 
1560 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1561 {
1562 	void *ring;
1563 	int size;
1564 
1565 	drm_printf(m,
1566 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1567 		   rq->head, rq->postfix, rq->tail,
1568 		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1569 		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1570 
1571 	size = rq->tail - rq->head;
1572 	if (rq->tail < rq->head)
1573 		size += rq->ring->size;
1574 
1575 	ring = kmalloc(size, GFP_ATOMIC);
1576 	if (ring) {
1577 		const void *vaddr = rq->ring->vaddr;
1578 		unsigned int head = rq->head;
1579 		unsigned int len = 0;
1580 
1581 		if (rq->tail < head) {
1582 			len = rq->ring->size - head;
1583 			memcpy(ring, vaddr + head, len);
1584 			head = 0;
1585 		}
1586 		memcpy(ring + len, vaddr + head, size - len);
1587 
1588 		hexdump(m, ring, size);
1589 		kfree(ring);
1590 	}
1591 }
1592 
1593 static unsigned long list_count(struct list_head *list)
1594 {
1595 	struct list_head *pos;
1596 	unsigned long count = 0;
1597 
1598 	list_for_each(pos, list)
1599 		count++;
1600 
1601 	return count;
1602 }
1603 
1604 static unsigned long read_ul(void *p, size_t x)
1605 {
1606 	return *(unsigned long *)(p + x);
1607 }
1608 
1609 static void print_properties(struct intel_engine_cs *engine,
1610 			     struct drm_printer *m)
1611 {
1612 	static const struct pmap {
1613 		size_t offset;
1614 		const char *name;
1615 	} props[] = {
1616 #define P(x) { \
1617 	.offset = offsetof(typeof(engine->props), x), \
1618 	.name = #x \
1619 }
1620 		P(heartbeat_interval_ms),
1621 		P(max_busywait_duration_ns),
1622 		P(preempt_timeout_ms),
1623 		P(stop_timeout_ms),
1624 		P(timeslice_duration_ms),
1625 
1626 		{},
1627 #undef P
1628 	};
1629 	const struct pmap *p;
1630 
1631 	drm_printf(m, "\tProperties:\n");
1632 	for (p = props; p->name; p++)
1633 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
1634 			   p->name,
1635 			   read_ul(&engine->props, p->offset),
1636 			   read_ul(&engine->defaults, p->offset));
1637 }
1638 
1639 void intel_engine_dump(struct intel_engine_cs *engine,
1640 		       struct drm_printer *m,
1641 		       const char *header, ...)
1642 {
1643 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1644 	struct i915_request *rq;
1645 	intel_wakeref_t wakeref;
1646 	unsigned long flags;
1647 	ktime_t dummy;
1648 
1649 	if (header) {
1650 		va_list ap;
1651 
1652 		va_start(ap, header);
1653 		drm_vprintf(m, header, &ap);
1654 		va_end(ap);
1655 	}
1656 
1657 	if (intel_gt_is_wedged(engine->gt))
1658 		drm_printf(m, "*** WEDGED ***\n");
1659 
1660 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1661 	drm_printf(m, "\tBarriers?: %s\n",
1662 		   yesno(!llist_empty(&engine->barrier_tasks)));
1663 	drm_printf(m, "\tLatency: %luus\n",
1664 		   ewma__engine_latency_read(&engine->latency));
1665 	if (intel_engine_supports_stats(engine))
1666 		drm_printf(m, "\tRuntime: %llums\n",
1667 			   ktime_to_ms(intel_engine_get_busy_time(engine,
1668 								  &dummy)));
1669 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1670 		   engine->fw_domain, atomic_read(&engine->fw_active));
1671 
1672 	rcu_read_lock();
1673 	rq = READ_ONCE(engine->heartbeat.systole);
1674 	if (rq)
1675 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
1676 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1677 	rcu_read_unlock();
1678 	drm_printf(m, "\tReset count: %d (global %d)\n",
1679 		   i915_reset_engine_count(error, engine),
1680 		   i915_reset_count(error));
1681 	print_properties(engine, m);
1682 
1683 	drm_printf(m, "\tRequests:\n");
1684 
1685 	spin_lock_irqsave(&engine->active.lock, flags);
1686 	rq = intel_engine_find_active_request(engine);
1687 	if (rq) {
1688 		struct intel_timeline *tl = get_timeline(rq);
1689 
1690 		print_request(m, rq, "\t\tactive ");
1691 
1692 		drm_printf(m, "\t\tring->start:  0x%08x\n",
1693 			   i915_ggtt_offset(rq->ring->vma));
1694 		drm_printf(m, "\t\tring->head:   0x%08x\n",
1695 			   rq->ring->head);
1696 		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1697 			   rq->ring->tail);
1698 		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1699 			   rq->ring->emit);
1700 		drm_printf(m, "\t\tring->space:  0x%08x\n",
1701 			   rq->ring->space);
1702 
1703 		if (tl) {
1704 			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1705 				   tl->hwsp_offset);
1706 			intel_timeline_put(tl);
1707 		}
1708 
1709 		print_request_ring(m, rq);
1710 
1711 		if (rq->context->lrc_reg_state) {
1712 			drm_printf(m, "Logical Ring Context:\n");
1713 			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1714 		}
1715 	}
1716 	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1717 	spin_unlock_irqrestore(&engine->active.lock, flags);
1718 
1719 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1720 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1721 	if (wakeref) {
1722 		intel_engine_print_registers(engine, m);
1723 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1724 	} else {
1725 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1726 	}
1727 
1728 	intel_execlists_show_requests(engine, m, print_request, 8);
1729 
1730 	drm_printf(m, "HWSP:\n");
1731 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1732 
1733 	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1734 
1735 	intel_engine_print_breadcrumbs(engine, m);
1736 }
1737 
1738 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1739 					    ktime_t *now)
1740 {
1741 	ktime_t total = engine->stats.total;
1742 
1743 	/*
1744 	 * If the engine is executing something at the moment
1745 	 * add it to the total.
1746 	 */
1747 	*now = ktime_get();
1748 	if (atomic_read(&engine->stats.active))
1749 		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1750 
1751 	return total;
1752 }
1753 
1754 /**
1755  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1756  * @engine: engine to report on
1757  * @now: monotonic timestamp of sampling
1758  *
1759  * Returns accumulated time @engine was busy since engine stats were enabled.
1760  */
1761 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1762 {
1763 	unsigned int seq;
1764 	ktime_t total;
1765 
1766 	do {
1767 		seq = read_seqbegin(&engine->stats.lock);
1768 		total = __intel_engine_get_busy_time(engine, now);
1769 	} while (read_seqretry(&engine->stats.lock, seq));
1770 
1771 	return total;
1772 }
1773 
1774 static bool match_ring(struct i915_request *rq)
1775 {
1776 	u32 ring = ENGINE_READ(rq->engine, RING_START);
1777 
1778 	return ring == i915_ggtt_offset(rq->ring->vma);
1779 }
1780 
1781 struct i915_request *
1782 intel_engine_find_active_request(struct intel_engine_cs *engine)
1783 {
1784 	struct i915_request *request, *active = NULL;
1785 
1786 	/*
1787 	 * We are called by the error capture, reset and to dump engine
1788 	 * state at random points in time. In particular, note that neither is
1789 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1790 	 * and we assume that no more writes can happen (we waited long enough
1791 	 * for all writes that were in transaction to be flushed) - adding an
1792 	 * extra delay for a recent interrupt is pointless. Hence, we do
1793 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1794 	 * At all other times, we must assume the GPU is still running, but
1795 	 * we only care about the snapshot of this moment.
1796 	 */
1797 	lockdep_assert_held(&engine->active.lock);
1798 
1799 	rcu_read_lock();
1800 	request = execlists_active(&engine->execlists);
1801 	if (request) {
1802 		struct intel_timeline *tl = request->context->timeline;
1803 
1804 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1805 			if (i915_request_completed(request))
1806 				break;
1807 
1808 			active = request;
1809 		}
1810 	}
1811 	rcu_read_unlock();
1812 	if (active)
1813 		return active;
1814 
1815 	list_for_each_entry(request, &engine->active.requests, sched.link) {
1816 		if (i915_request_completed(request))
1817 			continue;
1818 
1819 		if (!i915_request_started(request))
1820 			continue;
1821 
1822 		/* More than one preemptible request may match! */
1823 		if (!match_ring(request))
1824 			continue;
1825 
1826 		active = request;
1827 		break;
1828 	}
1829 
1830 	return active;
1831 }
1832 
1833 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1834 #include "mock_engine.c"
1835 #include "selftest_engine.c"
1836 #include "selftest_engine_cs.c"
1837 #endif
1838