xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_engine_cs.c (revision 2a24da4cf6753ee4c1f5b9e16d526a4a115e8562)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include <drm/drm_print.h>
9 
10 #include "gem/i915_gem_context.h"
11 #include "gem/i915_gem_internal.h"
12 #include "gt/intel_gt_print.h"
13 #include "gt/intel_gt_regs.h"
14 
15 #include "i915_cmd_parser.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 #include "i915_reg.h"
19 #include "intel_breadcrumbs.h"
20 #include "intel_context.h"
21 #include "intel_engine.h"
22 #include "intel_engine_pm.h"
23 #include "intel_engine_regs.h"
24 #include "intel_engine_user.h"
25 #include "intel_execlists_submission.h"
26 #include "intel_gt.h"
27 #include "intel_gt_mcr.h"
28 #include "intel_gt_pm.h"
29 #include "intel_gt_requests.h"
30 #include "intel_lrc.h"
31 #include "intel_lrc_reg.h"
32 #include "intel_reset.h"
33 #include "intel_ring.h"
34 #include "uc/intel_guc_submission.h"
35 
36 /* Haswell does have the CXT_SIZE register however it does not appear to be
37  * valid. Now, docs explain in dwords what is in the context object. The full
38  * size is 70720 bytes, however, the power context and execlist context will
39  * never be saved (power context is stored elsewhere, and execlists don't work
40  * on HSW) - so the final size, including the extra state required for the
41  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
42  */
43 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
44 
45 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
46 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
47 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
48 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
49 
50 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
51 
52 #define MAX_MMIO_BASES 3
53 struct engine_info {
54 	u8 class;
55 	u8 instance;
56 	/* mmio bases table *must* be sorted in reverse graphics_ver order */
57 	struct engine_mmio_base {
58 		u32 graphics_ver : 8;
59 		u32 base : 24;
60 	} mmio_bases[MAX_MMIO_BASES];
61 };
62 
63 static const struct engine_info intel_engines[] = {
64 	[RCS0] = {
65 		.class = RENDER_CLASS,
66 		.instance = 0,
67 		.mmio_bases = {
68 			{ .graphics_ver = 1, .base = RENDER_RING_BASE }
69 		},
70 	},
71 	[BCS0] = {
72 		.class = COPY_ENGINE_CLASS,
73 		.instance = 0,
74 		.mmio_bases = {
75 			{ .graphics_ver = 6, .base = BLT_RING_BASE }
76 		},
77 	},
78 	[BCS1] = {
79 		.class = COPY_ENGINE_CLASS,
80 		.instance = 1,
81 		.mmio_bases = {
82 			{ .graphics_ver = 12, .base = XEHPC_BCS1_RING_BASE }
83 		},
84 	},
85 	[BCS2] = {
86 		.class = COPY_ENGINE_CLASS,
87 		.instance = 2,
88 		.mmio_bases = {
89 			{ .graphics_ver = 12, .base = XEHPC_BCS2_RING_BASE }
90 		},
91 	},
92 	[BCS3] = {
93 		.class = COPY_ENGINE_CLASS,
94 		.instance = 3,
95 		.mmio_bases = {
96 			{ .graphics_ver = 12, .base = XEHPC_BCS3_RING_BASE }
97 		},
98 	},
99 	[BCS4] = {
100 		.class = COPY_ENGINE_CLASS,
101 		.instance = 4,
102 		.mmio_bases = {
103 			{ .graphics_ver = 12, .base = XEHPC_BCS4_RING_BASE }
104 		},
105 	},
106 	[BCS5] = {
107 		.class = COPY_ENGINE_CLASS,
108 		.instance = 5,
109 		.mmio_bases = {
110 			{ .graphics_ver = 12, .base = XEHPC_BCS5_RING_BASE }
111 		},
112 	},
113 	[BCS6] = {
114 		.class = COPY_ENGINE_CLASS,
115 		.instance = 6,
116 		.mmio_bases = {
117 			{ .graphics_ver = 12, .base = XEHPC_BCS6_RING_BASE }
118 		},
119 	},
120 	[BCS7] = {
121 		.class = COPY_ENGINE_CLASS,
122 		.instance = 7,
123 		.mmio_bases = {
124 			{ .graphics_ver = 12, .base = XEHPC_BCS7_RING_BASE }
125 		},
126 	},
127 	[BCS8] = {
128 		.class = COPY_ENGINE_CLASS,
129 		.instance = 8,
130 		.mmio_bases = {
131 			{ .graphics_ver = 12, .base = XEHPC_BCS8_RING_BASE }
132 		},
133 	},
134 	[VCS0] = {
135 		.class = VIDEO_DECODE_CLASS,
136 		.instance = 0,
137 		.mmio_bases = {
138 			{ .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
139 			{ .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
140 			{ .graphics_ver = 4, .base = BSD_RING_BASE }
141 		},
142 	},
143 	[VCS1] = {
144 		.class = VIDEO_DECODE_CLASS,
145 		.instance = 1,
146 		.mmio_bases = {
147 			{ .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
148 			{ .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
149 		},
150 	},
151 	[VCS2] = {
152 		.class = VIDEO_DECODE_CLASS,
153 		.instance = 2,
154 		.mmio_bases = {
155 			{ .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
156 		},
157 	},
158 	[VCS3] = {
159 		.class = VIDEO_DECODE_CLASS,
160 		.instance = 3,
161 		.mmio_bases = {
162 			{ .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
163 		},
164 	},
165 	[VCS4] = {
166 		.class = VIDEO_DECODE_CLASS,
167 		.instance = 4,
168 		.mmio_bases = {
169 			{ .graphics_ver = 12, .base = XEHP_BSD5_RING_BASE }
170 		},
171 	},
172 	[VCS5] = {
173 		.class = VIDEO_DECODE_CLASS,
174 		.instance = 5,
175 		.mmio_bases = {
176 			{ .graphics_ver = 12, .base = XEHP_BSD6_RING_BASE }
177 		},
178 	},
179 	[VCS6] = {
180 		.class = VIDEO_DECODE_CLASS,
181 		.instance = 6,
182 		.mmio_bases = {
183 			{ .graphics_ver = 12, .base = XEHP_BSD7_RING_BASE }
184 		},
185 	},
186 	[VCS7] = {
187 		.class = VIDEO_DECODE_CLASS,
188 		.instance = 7,
189 		.mmio_bases = {
190 			{ .graphics_ver = 12, .base = XEHP_BSD8_RING_BASE }
191 		},
192 	},
193 	[VECS0] = {
194 		.class = VIDEO_ENHANCEMENT_CLASS,
195 		.instance = 0,
196 		.mmio_bases = {
197 			{ .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
198 			{ .graphics_ver = 7, .base = VEBOX_RING_BASE }
199 		},
200 	},
201 	[VECS1] = {
202 		.class = VIDEO_ENHANCEMENT_CLASS,
203 		.instance = 1,
204 		.mmio_bases = {
205 			{ .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
206 		},
207 	},
208 	[VECS2] = {
209 		.class = VIDEO_ENHANCEMENT_CLASS,
210 		.instance = 2,
211 		.mmio_bases = {
212 			{ .graphics_ver = 12, .base = XEHP_VEBOX3_RING_BASE }
213 		},
214 	},
215 	[VECS3] = {
216 		.class = VIDEO_ENHANCEMENT_CLASS,
217 		.instance = 3,
218 		.mmio_bases = {
219 			{ .graphics_ver = 12, .base = XEHP_VEBOX4_RING_BASE }
220 		},
221 	},
222 	[CCS0] = {
223 		.class = COMPUTE_CLASS,
224 		.instance = 0,
225 		.mmio_bases = {
226 			{ .graphics_ver = 12, .base = GEN12_COMPUTE0_RING_BASE }
227 		}
228 	},
229 	[CCS1] = {
230 		.class = COMPUTE_CLASS,
231 		.instance = 1,
232 		.mmio_bases = {
233 			{ .graphics_ver = 12, .base = GEN12_COMPUTE1_RING_BASE }
234 		}
235 	},
236 	[CCS2] = {
237 		.class = COMPUTE_CLASS,
238 		.instance = 2,
239 		.mmio_bases = {
240 			{ .graphics_ver = 12, .base = GEN12_COMPUTE2_RING_BASE }
241 		}
242 	},
243 	[CCS3] = {
244 		.class = COMPUTE_CLASS,
245 		.instance = 3,
246 		.mmio_bases = {
247 			{ .graphics_ver = 12, .base = GEN12_COMPUTE3_RING_BASE }
248 		}
249 	},
250 	[GSC0] = {
251 		.class = OTHER_CLASS,
252 		.instance = OTHER_GSC_INSTANCE,
253 		.mmio_bases = {
254 			{ .graphics_ver = 12, .base = MTL_GSC_RING_BASE }
255 		}
256 	},
257 };
258 
259 /**
260  * intel_engine_context_size() - return the size of the context for an engine
261  * @gt: the gt
262  * @class: engine class
263  *
264  * Each engine class may require a different amount of space for a context
265  * image.
266  *
267  * Return: size (in bytes) of an engine class specific context image
268  *
269  * Note: this size includes the HWSP, which is part of the context image
270  * in LRC mode, but does not include the "shared data page" used with
271  * GuC submission. The caller should account for this if using the GuC.
272  */
273 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
274 {
275 	struct intel_uncore *uncore = gt->uncore;
276 	u32 cxt_size;
277 
278 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
279 
280 	switch (class) {
281 	case COMPUTE_CLASS:
282 		fallthrough;
283 	case RENDER_CLASS:
284 		switch (GRAPHICS_VER(gt->i915)) {
285 		default:
286 			MISSING_CASE(GRAPHICS_VER(gt->i915));
287 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
288 		case 12:
289 		case 11:
290 			return GEN11_LR_CONTEXT_RENDER_SIZE;
291 		case 9:
292 			return GEN9_LR_CONTEXT_RENDER_SIZE;
293 		case 8:
294 			return GEN8_LR_CONTEXT_RENDER_SIZE;
295 		case 7:
296 			if (IS_HASWELL(gt->i915))
297 				return HSW_CXT_TOTAL_SIZE;
298 
299 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
300 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
301 					PAGE_SIZE);
302 		case 6:
303 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
304 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
305 					PAGE_SIZE);
306 		case 5:
307 		case 4:
308 			/*
309 			 * There is a discrepancy here between the size reported
310 			 * by the register and the size of the context layout
311 			 * in the docs. Both are described as authorative!
312 			 *
313 			 * The discrepancy is on the order of a few cachelines,
314 			 * but the total is under one page (4k), which is our
315 			 * minimum allocation anyway so it should all come
316 			 * out in the wash.
317 			 */
318 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
319 			drm_dbg(&gt->i915->drm,
320 				"graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
321 				GRAPHICS_VER(gt->i915), cxt_size * 64,
322 				cxt_size - 1);
323 			return round_up(cxt_size * 64, PAGE_SIZE);
324 		case 3:
325 		case 2:
326 		/* For the special day when i810 gets merged. */
327 		case 1:
328 			return 0;
329 		}
330 		break;
331 	default:
332 		MISSING_CASE(class);
333 		fallthrough;
334 	case VIDEO_DECODE_CLASS:
335 	case VIDEO_ENHANCEMENT_CLASS:
336 	case COPY_ENGINE_CLASS:
337 	case OTHER_CLASS:
338 		if (GRAPHICS_VER(gt->i915) < 8)
339 			return 0;
340 		return GEN8_LR_CONTEXT_OTHER_SIZE;
341 	}
342 }
343 
344 static u32 __engine_mmio_base(struct drm_i915_private *i915,
345 			      const struct engine_mmio_base *bases)
346 {
347 	int i;
348 
349 	for (i = 0; i < MAX_MMIO_BASES; i++)
350 		if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
351 			break;
352 
353 	GEM_BUG_ON(i == MAX_MMIO_BASES);
354 	GEM_BUG_ON(!bases[i].base);
355 
356 	return bases[i].base;
357 }
358 
359 static void __sprint_engine_name(struct intel_engine_cs *engine)
360 {
361 	/*
362 	 * Before we know what the uABI name for this engine will be,
363 	 * we still would like to keep track of this engine in the debug logs.
364 	 * We throw in a ' here as a reminder that this isn't its final name.
365 	 */
366 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
367 			     intel_engine_class_repr(engine->class),
368 			     engine->instance) >= sizeof(engine->name));
369 }
370 
371 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
372 {
373 	/*
374 	 * Though they added more rings on g4x/ilk, they did not add
375 	 * per-engine HWSTAM until gen6.
376 	 */
377 	if (GRAPHICS_VER(engine->i915) < 6 && engine->class != RENDER_CLASS)
378 		return;
379 
380 	if (GRAPHICS_VER(engine->i915) >= 3)
381 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
382 	else
383 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
384 }
385 
386 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
387 {
388 	/* Mask off all writes into the unknown HWSP */
389 	intel_engine_set_hwsp_writemask(engine, ~0u);
390 }
391 
392 static void nop_irq_handler(struct intel_engine_cs *engine, u16 iir)
393 {
394 	GEM_DEBUG_WARN_ON(iir);
395 }
396 
397 static u32 get_reset_domain(u8 ver, enum intel_engine_id id)
398 {
399 	u32 reset_domain;
400 
401 	if (ver >= 11) {
402 		static const u32 engine_reset_domains[] = {
403 			[RCS0]  = GEN11_GRDOM_RENDER,
404 			[BCS0]  = GEN11_GRDOM_BLT,
405 			[BCS1]  = XEHPC_GRDOM_BLT1,
406 			[BCS2]  = XEHPC_GRDOM_BLT2,
407 			[BCS3]  = XEHPC_GRDOM_BLT3,
408 			[BCS4]  = XEHPC_GRDOM_BLT4,
409 			[BCS5]  = XEHPC_GRDOM_BLT5,
410 			[BCS6]  = XEHPC_GRDOM_BLT6,
411 			[BCS7]  = XEHPC_GRDOM_BLT7,
412 			[BCS8]  = XEHPC_GRDOM_BLT8,
413 			[VCS0]  = GEN11_GRDOM_MEDIA,
414 			[VCS1]  = GEN11_GRDOM_MEDIA2,
415 			[VCS2]  = GEN11_GRDOM_MEDIA3,
416 			[VCS3]  = GEN11_GRDOM_MEDIA4,
417 			[VCS4]  = GEN11_GRDOM_MEDIA5,
418 			[VCS5]  = GEN11_GRDOM_MEDIA6,
419 			[VCS6]  = GEN11_GRDOM_MEDIA7,
420 			[VCS7]  = GEN11_GRDOM_MEDIA8,
421 			[VECS0] = GEN11_GRDOM_VECS,
422 			[VECS1] = GEN11_GRDOM_VECS2,
423 			[VECS2] = GEN11_GRDOM_VECS3,
424 			[VECS3] = GEN11_GRDOM_VECS4,
425 			[CCS0]  = GEN11_GRDOM_RENDER,
426 			[CCS1]  = GEN11_GRDOM_RENDER,
427 			[CCS2]  = GEN11_GRDOM_RENDER,
428 			[CCS3]  = GEN11_GRDOM_RENDER,
429 			[GSC0]  = GEN12_GRDOM_GSC,
430 		};
431 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
432 			   !engine_reset_domains[id]);
433 		reset_domain = engine_reset_domains[id];
434 	} else {
435 		static const u32 engine_reset_domains[] = {
436 			[RCS0]  = GEN6_GRDOM_RENDER,
437 			[BCS0]  = GEN6_GRDOM_BLT,
438 			[VCS0]  = GEN6_GRDOM_MEDIA,
439 			[VCS1]  = GEN8_GRDOM_MEDIA2,
440 			[VECS0] = GEN6_GRDOM_VECS,
441 		};
442 		GEM_BUG_ON(id >= ARRAY_SIZE(engine_reset_domains) ||
443 			   !engine_reset_domains[id]);
444 		reset_domain = engine_reset_domains[id];
445 	}
446 
447 	return reset_domain;
448 }
449 
450 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id,
451 			      u8 logical_instance)
452 {
453 	const struct engine_info *info = &intel_engines[id];
454 	struct drm_i915_private *i915 = gt->i915;
455 	struct intel_engine_cs *engine;
456 	u8 guc_class;
457 
458 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
459 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
460 	BUILD_BUG_ON(I915_MAX_VCS > (MAX_ENGINE_INSTANCE + 1));
461 	BUILD_BUG_ON(I915_MAX_VECS > (MAX_ENGINE_INSTANCE + 1));
462 
463 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
464 		return -EINVAL;
465 
466 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
467 		return -EINVAL;
468 
469 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
470 		return -EINVAL;
471 
472 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
473 		return -EINVAL;
474 
475 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
476 	if (!engine)
477 		return -ENOMEM;
478 
479 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
480 
481 	INIT_LIST_HEAD(&engine->pinned_contexts_list);
482 	engine->id = id;
483 	engine->legacy_idx = INVALID_ENGINE;
484 	engine->mask = BIT(id);
485 	engine->reset_domain = get_reset_domain(GRAPHICS_VER(gt->i915),
486 						id);
487 	engine->i915 = i915;
488 	engine->gt = gt;
489 	engine->uncore = gt->uncore;
490 	guc_class = engine_class_to_guc_class(info->class);
491 	engine->guc_id = MAKE_GUC_ID(guc_class, info->instance);
492 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
493 
494 	engine->irq_handler = nop_irq_handler;
495 
496 	engine->class = info->class;
497 	engine->instance = info->instance;
498 	engine->logical_mask = BIT(logical_instance);
499 	__sprint_engine_name(engine);
500 
501 	if ((engine->class == COMPUTE_CLASS && !RCS_MASK(engine->gt) &&
502 	     __ffs(CCS_MASK(engine->gt)) == engine->instance) ||
503 	     engine->class == RENDER_CLASS)
504 		engine->flags |= I915_ENGINE_FIRST_RENDER_COMPUTE;
505 
506 	/* features common between engines sharing EUs */
507 	if (engine->class == RENDER_CLASS || engine->class == COMPUTE_CLASS) {
508 		engine->flags |= I915_ENGINE_HAS_RCS_REG_STATE;
509 		engine->flags |= I915_ENGINE_HAS_EU_PRIORITY;
510 	}
511 
512 	engine->props.heartbeat_interval_ms =
513 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
514 	engine->props.max_busywait_duration_ns =
515 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
516 	engine->props.preempt_timeout_ms =
517 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
518 	engine->props.stop_timeout_ms =
519 		CONFIG_DRM_I915_STOP_TIMEOUT;
520 	engine->props.timeslice_duration_ms =
521 		CONFIG_DRM_I915_TIMESLICE_DURATION;
522 
523 	/*
524 	 * Mid-thread pre-emption is not available in Gen12. Unfortunately,
525 	 * some compute workloads run quite long threads. That means they get
526 	 * reset due to not pre-empting in a timely manner. So, bump the
527 	 * pre-emption timeout value to be much higher for compute engines.
528 	 */
529 	if (GRAPHICS_VER(i915) == 12 && (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE))
530 		engine->props.preempt_timeout_ms = CONFIG_DRM_I915_PREEMPT_TIMEOUT_COMPUTE;
531 
532 	/* Cap properties according to any system limits */
533 #define CLAMP_PROP(field) \
534 	do { \
535 		u64 clamp = intel_clamp_##field(engine, engine->props.field); \
536 		if (clamp != engine->props.field) { \
537 			drm_notice(&engine->i915->drm, \
538 				   "Warning, clamping %s to %lld to prevent overflow\n", \
539 				   #field, clamp); \
540 			engine->props.field = clamp; \
541 		} \
542 	} while (0)
543 
544 	CLAMP_PROP(heartbeat_interval_ms);
545 	CLAMP_PROP(max_busywait_duration_ns);
546 	CLAMP_PROP(preempt_timeout_ms);
547 	CLAMP_PROP(stop_timeout_ms);
548 	CLAMP_PROP(timeslice_duration_ms);
549 
550 #undef CLAMP_PROP
551 
552 	engine->defaults = engine->props; /* never to change again */
553 
554 	engine->context_size = intel_engine_context_size(gt, engine->class);
555 	if (WARN_ON(engine->context_size > BIT(20)))
556 		engine->context_size = 0;
557 	if (engine->context_size)
558 		DRIVER_CAPS(i915)->has_logical_contexts = true;
559 
560 	ewma__engine_latency_init(&engine->latency);
561 
562 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
563 
564 	/* Scrub mmio state on takeover */
565 	intel_engine_sanitize_mmio(engine);
566 
567 	gt->engine_class[info->class][info->instance] = engine;
568 	gt->engine[id] = engine;
569 
570 	return 0;
571 }
572 
573 u64 intel_clamp_heartbeat_interval_ms(struct intel_engine_cs *engine, u64 value)
574 {
575 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
576 
577 	return value;
578 }
579 
580 u64 intel_clamp_max_busywait_duration_ns(struct intel_engine_cs *engine, u64 value)
581 {
582 	value = min(value, jiffies_to_nsecs(2));
583 
584 	return value;
585 }
586 
587 u64 intel_clamp_preempt_timeout_ms(struct intel_engine_cs *engine, u64 value)
588 {
589 	/*
590 	 * NB: The GuC API only supports 32bit values. However, the limit is further
591 	 * reduced due to internal calculations which would otherwise overflow.
592 	 */
593 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
594 		value = min_t(u64, value, guc_policy_max_preempt_timeout_ms());
595 
596 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
597 
598 	return value;
599 }
600 
601 u64 intel_clamp_stop_timeout_ms(struct intel_engine_cs *engine, u64 value)
602 {
603 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
604 
605 	return value;
606 }
607 
608 u64 intel_clamp_timeslice_duration_ms(struct intel_engine_cs *engine, u64 value)
609 {
610 	/*
611 	 * NB: The GuC API only supports 32bit values. However, the limit is further
612 	 * reduced due to internal calculations which would otherwise overflow.
613 	 */
614 	if (intel_guc_submission_is_wanted(&engine->gt->uc.guc))
615 		value = min_t(u64, value, guc_policy_max_exec_quantum_ms());
616 
617 	value = min_t(u64, value, jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT));
618 
619 	return value;
620 }
621 
622 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
623 {
624 	struct drm_i915_private *i915 = engine->i915;
625 
626 	if (engine->class == VIDEO_DECODE_CLASS) {
627 		/*
628 		 * HEVC support is present on first engine instance
629 		 * before Gen11 and on all instances afterwards.
630 		 */
631 		if (GRAPHICS_VER(i915) >= 11 ||
632 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
633 			engine->uabi_capabilities |=
634 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
635 
636 		/*
637 		 * SFC block is present only on even logical engine
638 		 * instances.
639 		 */
640 		if ((GRAPHICS_VER(i915) >= 11 &&
641 		     (engine->gt->info.vdbox_sfc_access &
642 		      BIT(engine->instance))) ||
643 		    (GRAPHICS_VER(i915) >= 9 && engine->instance == 0))
644 			engine->uabi_capabilities |=
645 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
646 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
647 		if (GRAPHICS_VER(i915) >= 9 &&
648 		    engine->gt->info.sfc_mask & BIT(engine->instance))
649 			engine->uabi_capabilities |=
650 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
651 	}
652 }
653 
654 static void intel_setup_engine_capabilities(struct intel_gt *gt)
655 {
656 	struct intel_engine_cs *engine;
657 	enum intel_engine_id id;
658 
659 	for_each_engine(engine, gt, id)
660 		__setup_engine_capabilities(engine);
661 }
662 
663 /**
664  * intel_engines_release() - free the resources allocated for Command Streamers
665  * @gt: pointer to struct intel_gt
666  */
667 void intel_engines_release(struct intel_gt *gt)
668 {
669 	struct intel_engine_cs *engine;
670 	enum intel_engine_id id;
671 
672 	/*
673 	 * Before we release the resources held by engine, we must be certain
674 	 * that the HW is no longer accessing them -- having the GPU scribble
675 	 * to or read from a page being used for something else causes no end
676 	 * of fun.
677 	 *
678 	 * The GPU should be reset by this point, but assume the worst just
679 	 * in case we aborted before completely initialising the engines.
680 	 */
681 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
682 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
683 		__intel_gt_reset(gt, ALL_ENGINES);
684 
685 	/* Decouple the backend; but keep the layout for late GPU resets */
686 	for_each_engine(engine, gt, id) {
687 		if (!engine->release)
688 			continue;
689 
690 		intel_wakeref_wait_for_idle(&engine->wakeref);
691 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
692 
693 		engine->release(engine);
694 		engine->release = NULL;
695 
696 		memset(&engine->reset, 0, sizeof(engine->reset));
697 	}
698 }
699 
700 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
701 {
702 	if (!engine->request_pool)
703 		return;
704 
705 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
706 }
707 
708 void intel_engines_free(struct intel_gt *gt)
709 {
710 	struct intel_engine_cs *engine;
711 	enum intel_engine_id id;
712 
713 	/* Free the requests! dma-resv keeps fences around for an eternity */
714 	rcu_barrier();
715 
716 	for_each_engine(engine, gt, id) {
717 		intel_engine_free_request_pool(engine);
718 		kfree(engine);
719 		gt->engine[id] = NULL;
720 	}
721 }
722 
723 static
724 bool gen11_vdbox_has_sfc(struct intel_gt *gt,
725 			 unsigned int physical_vdbox,
726 			 unsigned int logical_vdbox, u16 vdbox_mask)
727 {
728 	struct drm_i915_private *i915 = gt->i915;
729 
730 	/*
731 	 * In Gen11, only even numbered logical VDBOXes are hooked
732 	 * up to an SFC (Scaler & Format Converter) unit.
733 	 * In Gen12, Even numbered physical instance always are connected
734 	 * to an SFC. Odd numbered physical instances have SFC only if
735 	 * previous even instance is fused off.
736 	 *
737 	 * Starting with Xe_HP, there's also a dedicated SFC_ENABLE field
738 	 * in the fuse register that tells us whether a specific SFC is present.
739 	 */
740 	if ((gt->info.sfc_mask & BIT(physical_vdbox / 2)) == 0)
741 		return false;
742 	else if (MEDIA_VER(i915) >= 12)
743 		return (physical_vdbox % 2 == 0) ||
744 			!(BIT(physical_vdbox - 1) & vdbox_mask);
745 	else if (MEDIA_VER(i915) == 11)
746 		return logical_vdbox % 2 == 0;
747 
748 	return false;
749 }
750 
751 static void engine_mask_apply_media_fuses(struct intel_gt *gt)
752 {
753 	struct drm_i915_private *i915 = gt->i915;
754 	unsigned int logical_vdbox = 0;
755 	unsigned int i;
756 	u32 media_fuse, fuse1;
757 	u16 vdbox_mask;
758 	u16 vebox_mask;
759 
760 	if (MEDIA_VER(gt->i915) < 11)
761 		return;
762 
763 	/*
764 	 * On newer platforms the fusing register is called 'enable' and has
765 	 * enable semantics, while on older platforms it is called 'disable'
766 	 * and bits have disable semantices.
767 	 */
768 	media_fuse = intel_uncore_read(gt->uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
769 	if (MEDIA_VER_FULL(i915) < IP_VER(12, 50))
770 		media_fuse = ~media_fuse;
771 
772 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
773 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
774 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
775 
776 	if (MEDIA_VER_FULL(i915) >= IP_VER(12, 50)) {
777 		fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
778 		gt->info.sfc_mask = REG_FIELD_GET(XEHP_SFC_ENABLE_MASK, fuse1);
779 	} else {
780 		gt->info.sfc_mask = ~0;
781 	}
782 
783 	for (i = 0; i < I915_MAX_VCS; i++) {
784 		if (!HAS_ENGINE(gt, _VCS(i))) {
785 			vdbox_mask &= ~BIT(i);
786 			continue;
787 		}
788 
789 		if (!(BIT(i) & vdbox_mask)) {
790 			gt->info.engine_mask &= ~BIT(_VCS(i));
791 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
792 			continue;
793 		}
794 
795 		if (gen11_vdbox_has_sfc(gt, i, logical_vdbox, vdbox_mask))
796 			gt->info.vdbox_sfc_access |= BIT(i);
797 		logical_vdbox++;
798 	}
799 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
800 		vdbox_mask, VDBOX_MASK(gt));
801 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
802 
803 	for (i = 0; i < I915_MAX_VECS; i++) {
804 		if (!HAS_ENGINE(gt, _VECS(i))) {
805 			vebox_mask &= ~BIT(i);
806 			continue;
807 		}
808 
809 		if (!(BIT(i) & vebox_mask)) {
810 			gt->info.engine_mask &= ~BIT(_VECS(i));
811 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
812 		}
813 	}
814 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
815 		vebox_mask, VEBOX_MASK(gt));
816 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
817 }
818 
819 static void engine_mask_apply_compute_fuses(struct intel_gt *gt)
820 {
821 	struct drm_i915_private *i915 = gt->i915;
822 	struct intel_gt_info *info = &gt->info;
823 	int ss_per_ccs = info->sseu.max_subslices / I915_MAX_CCS;
824 	unsigned long ccs_mask;
825 	unsigned int i;
826 
827 	if (GRAPHICS_VER(i915) < 11)
828 		return;
829 
830 	if (hweight32(CCS_MASK(gt)) <= 1)
831 		return;
832 
833 	ccs_mask = intel_slicemask_from_xehp_dssmask(info->sseu.compute_subslice_mask,
834 						     ss_per_ccs);
835 	/*
836 	 * If all DSS in a quadrant are fused off, the corresponding CCS
837 	 * engine is not available for use.
838 	 */
839 	for_each_clear_bit(i, &ccs_mask, I915_MAX_CCS) {
840 		info->engine_mask &= ~BIT(_CCS(i));
841 		drm_dbg(&i915->drm, "ccs%u fused off\n", i);
842 	}
843 }
844 
845 static void engine_mask_apply_copy_fuses(struct intel_gt *gt)
846 {
847 	struct drm_i915_private *i915 = gt->i915;
848 	struct intel_gt_info *info = &gt->info;
849 	unsigned long meml3_mask;
850 	unsigned long quad;
851 
852 	if (!(GRAPHICS_VER_FULL(i915) >= IP_VER(12, 60) &&
853 	      GRAPHICS_VER_FULL(i915) < IP_VER(12, 70)))
854 		return;
855 
856 	meml3_mask = intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3);
857 	meml3_mask = REG_FIELD_GET(GEN12_MEML3_EN_MASK, meml3_mask);
858 
859 	/*
860 	 * Link Copy engines may be fused off according to meml3_mask. Each
861 	 * bit is a quad that houses 2 Link Copy and two Sub Copy engines.
862 	 */
863 	for_each_clear_bit(quad, &meml3_mask, GEN12_MAX_MSLICES) {
864 		unsigned int instance = quad * 2 + 1;
865 		intel_engine_mask_t mask = GENMASK(_BCS(instance + 1),
866 						   _BCS(instance));
867 
868 		if (mask & info->engine_mask) {
869 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance);
870 			drm_dbg(&i915->drm, "bcs%u fused off\n", instance + 1);
871 
872 			info->engine_mask &= ~mask;
873 		}
874 	}
875 }
876 
877 /*
878  * Determine which engines are fused off in our particular hardware.
879  * Note that we have a catch-22 situation where we need to be able to access
880  * the blitter forcewake domain to read the engine fuses, but at the same time
881  * we need to know which engines are available on the system to know which
882  * forcewake domains are present. We solve this by intializing the forcewake
883  * domains based on the full engine mask in the platform capabilities before
884  * calling this function and pruning the domains for fused-off engines
885  * afterwards.
886  */
887 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
888 {
889 	struct intel_gt_info *info = &gt->info;
890 
891 	GEM_BUG_ON(!info->engine_mask);
892 
893 	engine_mask_apply_media_fuses(gt);
894 	engine_mask_apply_compute_fuses(gt);
895 	engine_mask_apply_copy_fuses(gt);
896 
897 	/*
898 	 * The only use of the GSC CS is to load and communicate with the GSC
899 	 * FW, so we have no use for it if we don't have the FW.
900 	 *
901 	 * IMPORTANT: in cases where we don't have the GSC FW, we have a
902 	 * catch-22 situation that breaks media C6 due to 2 requirements:
903 	 * 1) once turned on, the GSC power well will not go to sleep unless the
904 	 *    GSC FW is loaded.
905 	 * 2) to enable idling (which is required for media C6) we need to
906 	 *    initialize the IDLE_MSG register for the GSC CS and do at least 1
907 	 *    submission, which will wake up the GSC power well.
908 	 */
909 	if (__HAS_ENGINE(info->engine_mask, GSC0) && !intel_uc_wants_gsc_uc(&gt->uc)) {
910 		drm_notice(&gt->i915->drm,
911 			   "No GSC FW selected, disabling GSC CS and media C6\n");
912 		info->engine_mask &= ~BIT(GSC0);
913 	}
914 
915 	/*
916 	 * Do not create the command streamer for CCS slices beyond the first.
917 	 * All the workload submitted to the first engine will be shared among
918 	 * all the slices.
919 	 *
920 	 * Once the user will be allowed to customize the CCS mode, then this
921 	 * check needs to be removed.
922 	 */
923 	if (IS_DG2(gt->i915)) {
924 		u8 first_ccs = __ffs(CCS_MASK(gt));
925 
926 		/*
927 		 * Store the number of active cslices before
928 		 * changing the CCS engine configuration
929 		 */
930 		gt->ccs.cslices = CCS_MASK(gt);
931 
932 		/* Mask off all the CCS engine */
933 		info->engine_mask &= ~GENMASK(CCS3, CCS0);
934 		/* Put back in the first CCS engine */
935 		info->engine_mask |= BIT(_CCS(first_ccs));
936 	}
937 
938 	return info->engine_mask;
939 }
940 
941 static void populate_logical_ids(struct intel_gt *gt, u8 *logical_ids,
942 				 u8 class, const u8 *map, u8 num_instances)
943 {
944 	int i, j;
945 	u8 current_logical_id = 0;
946 
947 	for (j = 0; j < num_instances; ++j) {
948 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
949 			if (!HAS_ENGINE(gt, i) ||
950 			    intel_engines[i].class != class)
951 				continue;
952 
953 			if (intel_engines[i].instance == map[j]) {
954 				logical_ids[intel_engines[i].instance] =
955 					current_logical_id++;
956 				break;
957 			}
958 		}
959 	}
960 }
961 
962 static void setup_logical_ids(struct intel_gt *gt, u8 *logical_ids, u8 class)
963 {
964 	/*
965 	 * Logical to physical mapping is needed for proper support
966 	 * to split-frame feature.
967 	 */
968 	if (MEDIA_VER(gt->i915) >= 11 && class == VIDEO_DECODE_CLASS) {
969 		const u8 map[] = { 0, 2, 4, 6, 1, 3, 5, 7 };
970 
971 		populate_logical_ids(gt, logical_ids, class,
972 				     map, ARRAY_SIZE(map));
973 	} else {
974 		int i;
975 		u8 map[MAX_ENGINE_INSTANCE + 1];
976 
977 		for (i = 0; i < MAX_ENGINE_INSTANCE + 1; ++i)
978 			map[i] = i;
979 		populate_logical_ids(gt, logical_ids, class,
980 				     map, ARRAY_SIZE(map));
981 	}
982 }
983 
984 /**
985  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
986  * @gt: pointer to struct intel_gt
987  *
988  * Return: non-zero if the initialization failed.
989  */
990 int intel_engines_init_mmio(struct intel_gt *gt)
991 {
992 	struct drm_i915_private *i915 = gt->i915;
993 	const unsigned int engine_mask = init_engine_mask(gt);
994 	unsigned int mask = 0;
995 	unsigned int i, class;
996 	u8 logical_ids[MAX_ENGINE_INSTANCE + 1];
997 	int err;
998 
999 	drm_WARN_ON(&i915->drm, engine_mask == 0);
1000 	drm_WARN_ON(&i915->drm, engine_mask &
1001 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
1002 
1003 	if (i915_inject_probe_failure(i915))
1004 		return -ENODEV;
1005 
1006 	for (class = 0; class < MAX_ENGINE_CLASS + 1; ++class) {
1007 		setup_logical_ids(gt, logical_ids, class);
1008 
1009 		for (i = 0; i < ARRAY_SIZE(intel_engines); ++i) {
1010 			u8 instance = intel_engines[i].instance;
1011 
1012 			if (intel_engines[i].class != class ||
1013 			    !HAS_ENGINE(gt, i))
1014 				continue;
1015 
1016 			err = intel_engine_setup(gt, i,
1017 						 logical_ids[instance]);
1018 			if (err)
1019 				goto cleanup;
1020 
1021 			mask |= BIT(i);
1022 		}
1023 	}
1024 
1025 	/*
1026 	 * Catch failures to update intel_engines table when the new engines
1027 	 * are added to the driver by a warning and disabling the forgotten
1028 	 * engines.
1029 	 */
1030 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
1031 		gt->info.engine_mask = mask;
1032 
1033 	gt->info.num_engines = hweight32(mask);
1034 
1035 	intel_gt_check_and_clear_faults(gt);
1036 
1037 	intel_setup_engine_capabilities(gt);
1038 
1039 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
1040 
1041 	return 0;
1042 
1043 cleanup:
1044 	intel_engines_free(gt);
1045 	return err;
1046 }
1047 
1048 void intel_engine_init_execlists(struct intel_engine_cs *engine)
1049 {
1050 	struct intel_engine_execlists * const execlists = &engine->execlists;
1051 
1052 	execlists->port_mask = 1;
1053 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
1054 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
1055 
1056 	memset(execlists->pending, 0, sizeof(execlists->pending));
1057 	execlists->active =
1058 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
1059 }
1060 
1061 static void cleanup_status_page(struct intel_engine_cs *engine)
1062 {
1063 	struct i915_vma *vma;
1064 
1065 	/* Prevent writes into HWSP after returning the page to the system */
1066 	intel_engine_set_hwsp_writemask(engine, ~0u);
1067 
1068 	vma = fetch_and_zero(&engine->status_page.vma);
1069 	if (!vma)
1070 		return;
1071 
1072 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
1073 		i915_vma_unpin(vma);
1074 
1075 	i915_gem_object_unpin_map(vma->obj);
1076 	i915_gem_object_put(vma->obj);
1077 }
1078 
1079 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
1080 				struct i915_gem_ww_ctx *ww,
1081 				struct i915_vma *vma)
1082 {
1083 	unsigned int flags;
1084 
1085 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
1086 		/*
1087 		 * On g33, we cannot place HWS above 256MiB, so
1088 		 * restrict its pinning to the low mappable arena.
1089 		 * Though this restriction is not documented for
1090 		 * gen4, gen5, or byt, they also behave similarly
1091 		 * and hang if the HWS is placed at the top of the
1092 		 * GTT. To generalise, it appears that all !llc
1093 		 * platforms have issues with us placing the HWS
1094 		 * above the mappable region (even though we never
1095 		 * actually map it).
1096 		 */
1097 		flags = PIN_MAPPABLE;
1098 	else
1099 		flags = PIN_HIGH;
1100 
1101 	return i915_ggtt_pin(vma, ww, 0, flags);
1102 }
1103 
1104 static int init_status_page(struct intel_engine_cs *engine)
1105 {
1106 	struct drm_i915_gem_object *obj;
1107 	struct i915_gem_ww_ctx ww;
1108 	struct i915_vma *vma;
1109 	void *vaddr;
1110 	int ret;
1111 
1112 	INIT_LIST_HEAD(&engine->status_page.timelines);
1113 
1114 	/*
1115 	 * Though the HWS register does support 36bit addresses, historically
1116 	 * we have had hangs and corruption reported due to wild writes if
1117 	 * the HWS is placed above 4G. We only allow objects to be allocated
1118 	 * in GFP_DMA32 for i965, and no earlier physical address users had
1119 	 * access to more than 4G.
1120 	 */
1121 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
1122 	if (IS_ERR(obj)) {
1123 		drm_err(&engine->i915->drm,
1124 			"Failed to allocate status page\n");
1125 		return PTR_ERR(obj);
1126 	}
1127 
1128 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
1129 
1130 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1131 	if (IS_ERR(vma)) {
1132 		ret = PTR_ERR(vma);
1133 		goto err_put;
1134 	}
1135 
1136 	i915_gem_ww_ctx_init(&ww, true);
1137 retry:
1138 	ret = i915_gem_object_lock(obj, &ww);
1139 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
1140 		ret = pin_ggtt_status_page(engine, &ww, vma);
1141 	if (ret)
1142 		goto err;
1143 
1144 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1145 	if (IS_ERR(vaddr)) {
1146 		ret = PTR_ERR(vaddr);
1147 		goto err_unpin;
1148 	}
1149 
1150 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
1151 	engine->status_page.vma = vma;
1152 
1153 err_unpin:
1154 	if (ret)
1155 		i915_vma_unpin(vma);
1156 err:
1157 	if (ret == -EDEADLK) {
1158 		ret = i915_gem_ww_ctx_backoff(&ww);
1159 		if (!ret)
1160 			goto retry;
1161 	}
1162 	i915_gem_ww_ctx_fini(&ww);
1163 err_put:
1164 	if (ret)
1165 		i915_gem_object_put(obj);
1166 	return ret;
1167 }
1168 
1169 static int intel_engine_init_tlb_invalidation(struct intel_engine_cs *engine)
1170 {
1171 	static const union intel_engine_tlb_inv_reg gen8_regs[] = {
1172 		[RENDER_CLASS].reg		= GEN8_RTCR,
1173 		[VIDEO_DECODE_CLASS].reg	= GEN8_M1TCR, /* , GEN8_M2TCR */
1174 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN8_VTCR,
1175 		[COPY_ENGINE_CLASS].reg		= GEN8_BTCR,
1176 	};
1177 	static const union intel_engine_tlb_inv_reg gen12_regs[] = {
1178 		[RENDER_CLASS].reg		= GEN12_GFX_TLB_INV_CR,
1179 		[VIDEO_DECODE_CLASS].reg	= GEN12_VD_TLB_INV_CR,
1180 		[VIDEO_ENHANCEMENT_CLASS].reg	= GEN12_VE_TLB_INV_CR,
1181 		[COPY_ENGINE_CLASS].reg		= GEN12_BLT_TLB_INV_CR,
1182 		[COMPUTE_CLASS].reg		= GEN12_COMPCTX_TLB_INV_CR,
1183 	};
1184 	static const union intel_engine_tlb_inv_reg xehp_regs[] = {
1185 		[RENDER_CLASS].mcr_reg		  = XEHP_GFX_TLB_INV_CR,
1186 		[VIDEO_DECODE_CLASS].mcr_reg	  = XEHP_VD_TLB_INV_CR,
1187 		[VIDEO_ENHANCEMENT_CLASS].mcr_reg = XEHP_VE_TLB_INV_CR,
1188 		[COPY_ENGINE_CLASS].mcr_reg	  = XEHP_BLT_TLB_INV_CR,
1189 		[COMPUTE_CLASS].mcr_reg		  = XEHP_COMPCTX_TLB_INV_CR,
1190 	};
1191 	static const union intel_engine_tlb_inv_reg xelpmp_regs[] = {
1192 		[VIDEO_DECODE_CLASS].reg	  = GEN12_VD_TLB_INV_CR,
1193 		[VIDEO_ENHANCEMENT_CLASS].reg     = GEN12_VE_TLB_INV_CR,
1194 		[OTHER_CLASS].reg		  = XELPMP_GSC_TLB_INV_CR,
1195 	};
1196 	struct drm_i915_private *i915 = engine->i915;
1197 	const unsigned int instance = engine->instance;
1198 	const unsigned int class = engine->class;
1199 	const union intel_engine_tlb_inv_reg *regs;
1200 	union intel_engine_tlb_inv_reg reg;
1201 	unsigned int num = 0;
1202 	u32 val;
1203 
1204 	/*
1205 	 * New platforms should not be added with catch-all-newer (>=)
1206 	 * condition so that any later platform added triggers the below warning
1207 	 * and in turn mandates a human cross-check of whether the invalidation
1208 	 * flows have compatible semantics.
1209 	 *
1210 	 * For instance with the 11.00 -> 12.00 transition three out of five
1211 	 * respective engine registers were moved to masked type. Then after the
1212 	 * 12.00 -> 12.50 transition multi cast handling is required too.
1213 	 */
1214 
1215 	if (engine->gt->type == GT_MEDIA) {
1216 		if (MEDIA_VER_FULL(i915) == IP_VER(13, 0)) {
1217 			regs = xelpmp_regs;
1218 			num = ARRAY_SIZE(xelpmp_regs);
1219 		}
1220 	} else {
1221 		if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 71) ||
1222 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 70) ||
1223 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 50) ||
1224 		    GRAPHICS_VER_FULL(i915) == IP_VER(12, 55)) {
1225 			regs = xehp_regs;
1226 			num = ARRAY_SIZE(xehp_regs);
1227 		} else if (GRAPHICS_VER_FULL(i915) == IP_VER(12, 0) ||
1228 			   GRAPHICS_VER_FULL(i915) == IP_VER(12, 10)) {
1229 			regs = gen12_regs;
1230 			num = ARRAY_SIZE(gen12_regs);
1231 		} else if (GRAPHICS_VER(i915) >= 8 && GRAPHICS_VER(i915) <= 11) {
1232 			regs = gen8_regs;
1233 			num = ARRAY_SIZE(gen8_regs);
1234 		} else if (GRAPHICS_VER(i915) < 8) {
1235 			return 0;
1236 		}
1237 	}
1238 
1239 	if (gt_WARN_ONCE(engine->gt, !num,
1240 			 "Platform does not implement TLB invalidation!"))
1241 		return -ENODEV;
1242 
1243 	if (gt_WARN_ON_ONCE(engine->gt,
1244 			    class >= num ||
1245 			    (!regs[class].reg.reg &&
1246 			     !regs[class].mcr_reg.reg)))
1247 		return -ERANGE;
1248 
1249 	reg = regs[class];
1250 
1251 	if (regs == xelpmp_regs && class == OTHER_CLASS) {
1252 		/*
1253 		 * There's only a single GSC instance, but it uses register bit
1254 		 * 1 instead of either 0 or OTHER_GSC_INSTANCE.
1255 		 */
1256 		GEM_WARN_ON(instance != OTHER_GSC_INSTANCE);
1257 		val = 1;
1258 	} else if (regs == gen8_regs && class == VIDEO_DECODE_CLASS && instance == 1) {
1259 		reg.reg = GEN8_M2TCR;
1260 		val = 0;
1261 	} else {
1262 		val = instance;
1263 	}
1264 
1265 	val = BIT(val);
1266 
1267 	engine->tlb_inv.mcr = regs == xehp_regs;
1268 	engine->tlb_inv.reg = reg;
1269 	engine->tlb_inv.done = val;
1270 
1271 	if (GRAPHICS_VER(i915) >= 12 &&
1272 	    (engine->class == VIDEO_DECODE_CLASS ||
1273 	     engine->class == VIDEO_ENHANCEMENT_CLASS ||
1274 	     engine->class == COMPUTE_CLASS ||
1275 	     engine->class == OTHER_CLASS))
1276 		engine->tlb_inv.request = _MASKED_BIT_ENABLE(val);
1277 	else
1278 		engine->tlb_inv.request = val;
1279 
1280 	return 0;
1281 }
1282 
1283 static int engine_setup_common(struct intel_engine_cs *engine)
1284 {
1285 	int err;
1286 
1287 	init_llist_head(&engine->barrier_tasks);
1288 
1289 	err = intel_engine_init_tlb_invalidation(engine);
1290 	if (err)
1291 		return err;
1292 
1293 	err = init_status_page(engine);
1294 	if (err)
1295 		return err;
1296 
1297 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
1298 	if (!engine->breadcrumbs) {
1299 		err = -ENOMEM;
1300 		goto err_status;
1301 	}
1302 
1303 	engine->sched_engine = i915_sched_engine_create(ENGINE_PHYSICAL);
1304 	if (!engine->sched_engine) {
1305 		err = -ENOMEM;
1306 		goto err_sched_engine;
1307 	}
1308 	engine->sched_engine->private_data = engine;
1309 
1310 	err = intel_engine_init_cmd_parser(engine);
1311 	if (err)
1312 		goto err_cmd_parser;
1313 
1314 	intel_engine_init_execlists(engine);
1315 	intel_engine_init__pm(engine);
1316 	intel_engine_init_retire(engine);
1317 
1318 	/* Use the whole device by default */
1319 	engine->sseu =
1320 		intel_sseu_from_device_info(&engine->gt->info.sseu);
1321 
1322 	intel_engine_init_workarounds(engine);
1323 	intel_engine_init_whitelist(engine);
1324 	intel_engine_init_ctx_wa(engine);
1325 
1326 	if (GRAPHICS_VER(engine->i915) >= 12)
1327 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
1328 
1329 	return 0;
1330 
1331 err_cmd_parser:
1332 	i915_sched_engine_put(engine->sched_engine);
1333 err_sched_engine:
1334 	intel_breadcrumbs_put(engine->breadcrumbs);
1335 err_status:
1336 	cleanup_status_page(engine);
1337 	return err;
1338 }
1339 
1340 struct measure_breadcrumb {
1341 	struct i915_request rq;
1342 	struct intel_ring ring;
1343 	u32 cs[2048];
1344 };
1345 
1346 static int measure_breadcrumb_dw(struct intel_context *ce)
1347 {
1348 	struct intel_engine_cs *engine = ce->engine;
1349 	struct measure_breadcrumb *frame;
1350 	int dw;
1351 
1352 	GEM_BUG_ON(!engine->gt->scratch);
1353 
1354 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
1355 	if (!frame)
1356 		return -ENOMEM;
1357 
1358 	frame->rq.i915 = engine->i915;
1359 	frame->rq.engine = engine;
1360 	frame->rq.context = ce;
1361 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
1362 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
1363 
1364 	frame->ring.vaddr = frame->cs;
1365 	frame->ring.size = sizeof(frame->cs);
1366 	frame->ring.wrap =
1367 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
1368 	frame->ring.effective_size = frame->ring.size;
1369 	intel_ring_update_space(&frame->ring);
1370 	frame->rq.ring = &frame->ring;
1371 
1372 	mutex_lock(&ce->timeline->mutex);
1373 	spin_lock_irq(&engine->sched_engine->lock);
1374 
1375 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
1376 
1377 	spin_unlock_irq(&engine->sched_engine->lock);
1378 	mutex_unlock(&ce->timeline->mutex);
1379 
1380 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
1381 
1382 	kfree(frame);
1383 	return dw;
1384 }
1385 
1386 struct intel_context *
1387 intel_engine_create_pinned_context(struct intel_engine_cs *engine,
1388 				   struct i915_address_space *vm,
1389 				   unsigned int ring_size,
1390 				   unsigned int hwsp,
1391 				   struct lock_class_key *key,
1392 				   const char *name)
1393 {
1394 	struct intel_context *ce;
1395 	int err;
1396 
1397 	ce = intel_context_create(engine);
1398 	if (IS_ERR(ce))
1399 		return ce;
1400 
1401 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
1402 	ce->timeline = page_pack_bits(NULL, hwsp);
1403 	ce->ring = NULL;
1404 	ce->ring_size = ring_size;
1405 
1406 	i915_vm_put(ce->vm);
1407 	ce->vm = i915_vm_get(vm);
1408 
1409 	err = intel_context_pin(ce); /* perma-pin so it is always available */
1410 	if (err) {
1411 		intel_context_put(ce);
1412 		return ERR_PTR(err);
1413 	}
1414 
1415 	list_add_tail(&ce->pinned_contexts_link, &engine->pinned_contexts_list);
1416 
1417 	/*
1418 	 * Give our perma-pinned kernel timelines a separate lockdep class,
1419 	 * so that we can use them from within the normal user timelines
1420 	 * should we need to inject GPU operations during their request
1421 	 * construction.
1422 	 */
1423 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
1424 
1425 	return ce;
1426 }
1427 
1428 void intel_engine_destroy_pinned_context(struct intel_context *ce)
1429 {
1430 	struct intel_engine_cs *engine = ce->engine;
1431 	struct i915_vma *hwsp = engine->status_page.vma;
1432 
1433 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
1434 
1435 	mutex_lock(&hwsp->vm->mutex);
1436 	list_del(&ce->timeline->engine_link);
1437 	mutex_unlock(&hwsp->vm->mutex);
1438 
1439 	list_del(&ce->pinned_contexts_link);
1440 	intel_context_unpin(ce);
1441 	intel_context_put(ce);
1442 }
1443 
1444 static struct intel_context *
1445 create_kernel_context(struct intel_engine_cs *engine)
1446 {
1447 	static struct lock_class_key kernel;
1448 
1449 	return intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
1450 						  I915_GEM_HWS_SEQNO_ADDR,
1451 						  &kernel, "kernel_context");
1452 }
1453 
1454 /*
1455  * engine_init_common - initialize engine state which might require hw access
1456  * @engine: Engine to initialize.
1457  *
1458  * Initializes @engine@ structure members shared between legacy and execlists
1459  * submission modes which do require hardware access.
1460  *
1461  * Typcally done at later stages of submission mode specific engine setup.
1462  *
1463  * Returns zero on success or an error code on failure.
1464  */
1465 static int engine_init_common(struct intel_engine_cs *engine)
1466 {
1467 	struct intel_context *ce;
1468 	int ret;
1469 
1470 	engine->set_default_submission(engine);
1471 
1472 	/*
1473 	 * We may need to do things with the shrinker which
1474 	 * require us to immediately switch back to the default
1475 	 * context. This can cause a problem as pinning the
1476 	 * default context also requires GTT space which may not
1477 	 * be available. To avoid this we always pin the default
1478 	 * context.
1479 	 */
1480 	ce = create_kernel_context(engine);
1481 	if (IS_ERR(ce))
1482 		return PTR_ERR(ce);
1483 
1484 	ret = measure_breadcrumb_dw(ce);
1485 	if (ret < 0)
1486 		goto err_context;
1487 
1488 	engine->emit_fini_breadcrumb_dw = ret;
1489 	engine->kernel_context = ce;
1490 
1491 	return 0;
1492 
1493 err_context:
1494 	intel_engine_destroy_pinned_context(ce);
1495 	return ret;
1496 }
1497 
1498 int intel_engines_init(struct intel_gt *gt)
1499 {
1500 	int (*setup)(struct intel_engine_cs *engine);
1501 	struct intel_engine_cs *engine;
1502 	enum intel_engine_id id;
1503 	int err;
1504 
1505 	if (intel_uc_uses_guc_submission(&gt->uc)) {
1506 		gt->submission_method = INTEL_SUBMISSION_GUC;
1507 		setup = intel_guc_submission_setup;
1508 	} else if (HAS_EXECLISTS(gt->i915)) {
1509 		gt->submission_method = INTEL_SUBMISSION_ELSP;
1510 		setup = intel_execlists_submission_setup;
1511 	} else {
1512 		gt->submission_method = INTEL_SUBMISSION_RING;
1513 		setup = intel_ring_submission_setup;
1514 	}
1515 
1516 	for_each_engine(engine, gt, id) {
1517 		err = engine_setup_common(engine);
1518 		if (err)
1519 			return err;
1520 
1521 		err = setup(engine);
1522 		if (err) {
1523 			intel_engine_cleanup_common(engine);
1524 			return err;
1525 		}
1526 
1527 		/* The backend should now be responsible for cleanup */
1528 		GEM_BUG_ON(engine->release == NULL);
1529 
1530 		err = engine_init_common(engine);
1531 		if (err)
1532 			return err;
1533 
1534 		intel_engine_add_user(engine);
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  * intel_engine_cleanup_common - cleans up the engine state created by
1542  *                                the common initiailizers.
1543  * @engine: Engine to cleanup.
1544  *
1545  * This cleans up everything created by the common helpers.
1546  */
1547 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
1548 {
1549 	GEM_BUG_ON(!list_empty(&engine->sched_engine->requests));
1550 
1551 	i915_sched_engine_put(engine->sched_engine);
1552 	intel_breadcrumbs_put(engine->breadcrumbs);
1553 
1554 	intel_engine_fini_retire(engine);
1555 	intel_engine_cleanup_cmd_parser(engine);
1556 
1557 	if (engine->default_state)
1558 		fput(engine->default_state);
1559 
1560 	if (engine->kernel_context)
1561 		intel_engine_destroy_pinned_context(engine->kernel_context);
1562 
1563 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
1564 	cleanup_status_page(engine);
1565 
1566 	intel_wa_list_free(&engine->ctx_wa_list);
1567 	intel_wa_list_free(&engine->wa_list);
1568 	intel_wa_list_free(&engine->whitelist);
1569 }
1570 
1571 /**
1572  * intel_engine_resume - re-initializes the HW state of the engine
1573  * @engine: Engine to resume.
1574  *
1575  * Returns zero on success or an error code on failure.
1576  */
1577 int intel_engine_resume(struct intel_engine_cs *engine)
1578 {
1579 	intel_engine_apply_workarounds(engine);
1580 	intel_engine_apply_whitelist(engine);
1581 
1582 	return engine->resume(engine);
1583 }
1584 
1585 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
1586 {
1587 	struct drm_i915_private *i915 = engine->i915;
1588 
1589 	u64 acthd;
1590 
1591 	if (GRAPHICS_VER(i915) >= 8)
1592 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
1593 	else if (GRAPHICS_VER(i915) >= 4)
1594 		acthd = ENGINE_READ(engine, RING_ACTHD);
1595 	else
1596 		acthd = ENGINE_READ(engine, ACTHD);
1597 
1598 	return acthd;
1599 }
1600 
1601 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1602 {
1603 	u64 bbaddr;
1604 
1605 	if (GRAPHICS_VER(engine->i915) >= 8)
1606 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1607 	else
1608 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1609 
1610 	return bbaddr;
1611 }
1612 
1613 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1614 {
1615 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1616 		return 0;
1617 
1618 	/*
1619 	 * If we are doing a normal GPU reset, we can take our time and allow
1620 	 * the engine to quiesce. We've stopped submission to the engine, and
1621 	 * if we wait long enough an innocent context should complete and
1622 	 * leave the engine idle. So they should not be caught unaware by
1623 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1624 	 */
1625 	return READ_ONCE(engine->props.stop_timeout_ms);
1626 }
1627 
1628 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1629 				  int fast_timeout_us,
1630 				  int slow_timeout_ms)
1631 {
1632 	struct intel_uncore *uncore = engine->uncore;
1633 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1634 	int err;
1635 
1636 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1637 
1638 	/*
1639 	 * Wa_22011802037: Prior to doing a reset, ensure CS is
1640 	 * stopped, set ring stop bit and prefetch disable bit to halt CS
1641 	 */
1642 	if (intel_engine_reset_needs_wa_22011802037(engine->gt))
1643 		intel_uncore_write_fw(uncore, RING_MODE_GEN7(engine->mmio_base),
1644 				      _MASKED_BIT_ENABLE(GEN12_GFX_PREFETCH_DISABLE));
1645 
1646 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1647 					   MODE_IDLE, MODE_IDLE,
1648 					   fast_timeout_us,
1649 					   slow_timeout_ms,
1650 					   NULL);
1651 
1652 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1653 	intel_uncore_posting_read_fw(uncore, mode);
1654 	return err;
1655 }
1656 
1657 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1658 {
1659 	int err = 0;
1660 
1661 	if (GRAPHICS_VER(engine->i915) < 3)
1662 		return -ENODEV;
1663 
1664 	ENGINE_TRACE(engine, "\n");
1665 	/*
1666 	 * TODO: Find out why occasionally stopping the CS times out. Seen
1667 	 * especially with gem_eio tests.
1668 	 *
1669 	 * Occasionally trying to stop the cs times out, but does not adversely
1670 	 * affect functionality. The timeout is set as a config parameter that
1671 	 * defaults to 100ms. In most cases the follow up operation is to wait
1672 	 * for pending MI_FORCE_WAKES. The assumption is that this timeout is
1673 	 * sufficient for any pending MI_FORCEWAKEs to complete. Once root
1674 	 * caused, the caller must check and handle the return from this
1675 	 * function.
1676 	 */
1677 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1678 		ENGINE_TRACE(engine,
1679 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1680 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1681 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1682 
1683 		/*
1684 		 * Sometimes we observe that the idle flag is not
1685 		 * set even though the ring is empty. So double
1686 		 * check before giving up.
1687 		 */
1688 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1689 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1690 			err = -ETIMEDOUT;
1691 	}
1692 
1693 	return err;
1694 }
1695 
1696 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1697 {
1698 	ENGINE_TRACE(engine, "\n");
1699 
1700 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1701 }
1702 
1703 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1704 {
1705 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1706 		[RCS0] = MSG_IDLE_CS,
1707 		[BCS0] = MSG_IDLE_BCS,
1708 		[VCS0] = MSG_IDLE_VCS0,
1709 		[VCS1] = MSG_IDLE_VCS1,
1710 		[VCS2] = MSG_IDLE_VCS2,
1711 		[VCS3] = MSG_IDLE_VCS3,
1712 		[VCS4] = MSG_IDLE_VCS4,
1713 		[VCS5] = MSG_IDLE_VCS5,
1714 		[VCS6] = MSG_IDLE_VCS6,
1715 		[VCS7] = MSG_IDLE_VCS7,
1716 		[VECS0] = MSG_IDLE_VECS0,
1717 		[VECS1] = MSG_IDLE_VECS1,
1718 		[VECS2] = MSG_IDLE_VECS2,
1719 		[VECS3] = MSG_IDLE_VECS3,
1720 		[CCS0] = MSG_IDLE_CS,
1721 		[CCS1] = MSG_IDLE_CS,
1722 		[CCS2] = MSG_IDLE_CS,
1723 		[CCS3] = MSG_IDLE_CS,
1724 	};
1725 	u32 val;
1726 
1727 	if (!_reg[engine->id].reg)
1728 		return 0;
1729 
1730 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1731 
1732 	/* bits[29:25] & bits[13:9] >> shift */
1733 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1734 }
1735 
1736 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1737 {
1738 	int ret;
1739 
1740 	/* Ensure GPM receives fw up/down after CS is stopped */
1741 	udelay(1);
1742 
1743 	/* Wait for forcewake request to complete in GPM */
1744 	ret =  __intel_wait_for_register_fw(gt->uncore,
1745 					    GEN9_PWRGT_DOMAIN_STATUS,
1746 					    fw_mask, fw_mask, 5000, 0, NULL);
1747 
1748 	/* Ensure CS receives fw ack from GPM */
1749 	udelay(1);
1750 
1751 	if (ret)
1752 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1753 }
1754 
1755 /*
1756  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1757  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1758  * pending status is indicated by bits[13:9] (masked by bits[29:25]) in the
1759  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1760  * are concerned only with the gt reset here, we use a logical OR of pending
1761  * forcewakeups from all reset domains and then wait for them to complete by
1762  * querying PWRGT_DOMAIN_STATUS.
1763  */
1764 void intel_engine_wait_for_pending_mi_fw(struct intel_engine_cs *engine)
1765 {
1766 	u32 fw_pending = __cs_pending_mi_force_wakes(engine);
1767 
1768 	if (fw_pending)
1769 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1770 }
1771 
1772 /* NB: please notice the memset */
1773 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1774 			       struct intel_instdone *instdone)
1775 {
1776 	struct drm_i915_private *i915 = engine->i915;
1777 	struct intel_uncore *uncore = engine->uncore;
1778 	u32 mmio_base = engine->mmio_base;
1779 	int slice;
1780 	int subslice;
1781 	int iter;
1782 
1783 	memset(instdone, 0, sizeof(*instdone));
1784 
1785 	if (GRAPHICS_VER(i915) >= 8) {
1786 		instdone->instdone =
1787 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1788 
1789 		if (engine->id != RCS0)
1790 			return;
1791 
1792 		instdone->slice_common =
1793 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1794 		if (GRAPHICS_VER(i915) >= 12) {
1795 			instdone->slice_common_extra[0] =
1796 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1797 			instdone->slice_common_extra[1] =
1798 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1799 		}
1800 
1801 		for_each_ss_steering(iter, engine->gt, slice, subslice) {
1802 			instdone->sampler[slice][subslice] =
1803 				intel_gt_mcr_read(engine->gt,
1804 						  GEN8_SAMPLER_INSTDONE,
1805 						  slice, subslice);
1806 			instdone->row[slice][subslice] =
1807 				intel_gt_mcr_read(engine->gt,
1808 						  GEN8_ROW_INSTDONE,
1809 						  slice, subslice);
1810 		}
1811 
1812 		if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 55)) {
1813 			for_each_ss_steering(iter, engine->gt, slice, subslice)
1814 				instdone->geom_svg[slice][subslice] =
1815 					intel_gt_mcr_read(engine->gt,
1816 							  XEHPG_INSTDONE_GEOM_SVG,
1817 							  slice, subslice);
1818 		}
1819 	} else if (GRAPHICS_VER(i915) >= 7) {
1820 		instdone->instdone =
1821 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1822 
1823 		if (engine->id != RCS0)
1824 			return;
1825 
1826 		instdone->slice_common =
1827 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1828 		instdone->sampler[0][0] =
1829 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1830 		instdone->row[0][0] =
1831 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1832 	} else if (GRAPHICS_VER(i915) >= 4) {
1833 		instdone->instdone =
1834 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1835 		if (engine->id == RCS0)
1836 			/* HACK: Using the wrong struct member */
1837 			instdone->slice_common =
1838 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1839 	} else {
1840 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1841 	}
1842 }
1843 
1844 static bool ring_is_idle(struct intel_engine_cs *engine)
1845 {
1846 	bool idle = true;
1847 
1848 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1849 		return true;
1850 
1851 	if (!intel_engine_pm_get_if_awake(engine))
1852 		return true;
1853 
1854 	/* First check that no commands are left in the ring */
1855 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1856 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1857 		idle = false;
1858 
1859 	/* No bit for gen2, so assume the CS parser is idle */
1860 	if (GRAPHICS_VER(engine->i915) > 2 &&
1861 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1862 		idle = false;
1863 
1864 	intel_engine_pm_put(engine);
1865 
1866 	return idle;
1867 }
1868 
1869 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1870 {
1871 	struct tasklet_struct *t = &engine->sched_engine->tasklet;
1872 
1873 	if (!t->callback)
1874 		return;
1875 
1876 	local_bh_disable();
1877 	if (tasklet_trylock(t)) {
1878 		/* Must wait for any GPU reset in progress. */
1879 		if (__tasklet_is_enabled(t))
1880 			t->callback(t);
1881 		tasklet_unlock(t);
1882 	}
1883 	local_bh_enable();
1884 
1885 	/* Synchronise and wait for the tasklet on another CPU */
1886 	if (sync)
1887 		tasklet_unlock_wait(t);
1888 }
1889 
1890 /**
1891  * intel_engine_is_idle() - Report if the engine has finished process all work
1892  * @engine: the intel_engine_cs
1893  *
1894  * Return true if there are no requests pending, nothing left to be submitted
1895  * to hardware, and that the engine is idle.
1896  */
1897 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1898 {
1899 	/* More white lies, if wedged, hw state is inconsistent */
1900 	if (intel_gt_is_wedged(engine->gt))
1901 		return true;
1902 
1903 	if (!intel_engine_pm_is_awake(engine))
1904 		return true;
1905 
1906 	/* Waiting to drain ELSP? */
1907 	intel_synchronize_hardirq(engine->i915);
1908 	intel_engine_flush_submission(engine);
1909 
1910 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1911 	if (!i915_sched_engine_is_empty(engine->sched_engine))
1912 		return false;
1913 
1914 	/* Ring stopped? */
1915 	return ring_is_idle(engine);
1916 }
1917 
1918 bool intel_engines_are_idle(struct intel_gt *gt)
1919 {
1920 	struct intel_engine_cs *engine;
1921 	enum intel_engine_id id;
1922 
1923 	/*
1924 	 * If the driver is wedged, HW state may be very inconsistent and
1925 	 * report that it is still busy, even though we have stopped using it.
1926 	 */
1927 	if (intel_gt_is_wedged(gt))
1928 		return true;
1929 
1930 	/* Already parked (and passed an idleness test); must still be idle */
1931 	if (!READ_ONCE(gt->awake))
1932 		return true;
1933 
1934 	for_each_engine(engine, gt, id) {
1935 		if (!intel_engine_is_idle(engine))
1936 			return false;
1937 	}
1938 
1939 	return true;
1940 }
1941 
1942 bool intel_engine_irq_enable(struct intel_engine_cs *engine)
1943 {
1944 	if (!engine->irq_enable)
1945 		return false;
1946 
1947 	/* Caller disables interrupts */
1948 	spin_lock(engine->gt->irq_lock);
1949 	engine->irq_enable(engine);
1950 	spin_unlock(engine->gt->irq_lock);
1951 
1952 	return true;
1953 }
1954 
1955 void intel_engine_irq_disable(struct intel_engine_cs *engine)
1956 {
1957 	if (!engine->irq_disable)
1958 		return;
1959 
1960 	/* Caller disables interrupts */
1961 	spin_lock(engine->gt->irq_lock);
1962 	engine->irq_disable(engine);
1963 	spin_unlock(engine->gt->irq_lock);
1964 }
1965 
1966 void intel_engines_reset_default_submission(struct intel_gt *gt)
1967 {
1968 	struct intel_engine_cs *engine;
1969 	enum intel_engine_id id;
1970 
1971 	for_each_engine(engine, gt, id) {
1972 		if (engine->sanitize)
1973 			engine->sanitize(engine);
1974 
1975 		engine->set_default_submission(engine);
1976 	}
1977 }
1978 
1979 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1980 {
1981 	switch (GRAPHICS_VER(engine->i915)) {
1982 	case 2:
1983 		return false; /* uses physical not virtual addresses */
1984 	case 3:
1985 		/* maybe only uses physical not virtual addresses */
1986 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1987 	case 4:
1988 		return !IS_I965G(engine->i915); /* who knows! */
1989 	case 6:
1990 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1991 	default:
1992 		return true;
1993 	}
1994 }
1995 
1996 static struct intel_timeline *get_timeline(struct i915_request *rq)
1997 {
1998 	struct intel_timeline *tl;
1999 
2000 	/*
2001 	 * Even though we are holding the engine->sched_engine->lock here, there
2002 	 * is no control over the submission queue per-se and we are
2003 	 * inspecting the active state at a random point in time, with an
2004 	 * unknown queue. Play safe and make sure the timeline remains valid.
2005 	 * (Only being used for pretty printing, one extra kref shouldn't
2006 	 * cause a camel stampede!)
2007 	 */
2008 	rcu_read_lock();
2009 	tl = rcu_dereference(rq->timeline);
2010 	if (!kref_get_unless_zero(&tl->kref))
2011 		tl = NULL;
2012 	rcu_read_unlock();
2013 
2014 	return tl;
2015 }
2016 
2017 static int print_ring(char *buf, int sz, struct i915_request *rq)
2018 {
2019 	int len = 0;
2020 
2021 	if (!i915_request_signaled(rq)) {
2022 		struct intel_timeline *tl = get_timeline(rq);
2023 
2024 		len = scnprintf(buf, sz,
2025 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
2026 				i915_ggtt_offset(rq->ring->vma),
2027 				tl ? tl->hwsp_offset : 0,
2028 				hwsp_seqno(rq),
2029 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
2030 						      1000 * 1000));
2031 
2032 		if (tl)
2033 			intel_timeline_put(tl);
2034 	}
2035 
2036 	return len;
2037 }
2038 
2039 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
2040 {
2041 	const size_t rowsize = 8 * sizeof(u32);
2042 	const void *prev = NULL;
2043 	bool skip = false;
2044 	size_t pos;
2045 
2046 	for (pos = 0; pos < len; pos += rowsize) {
2047 		char line[128];
2048 
2049 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
2050 			if (!skip) {
2051 				drm_printf(m, "*\n");
2052 				skip = true;
2053 			}
2054 			continue;
2055 		}
2056 
2057 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
2058 						rowsize, sizeof(u32),
2059 						line, sizeof(line),
2060 						false) >= sizeof(line));
2061 		drm_printf(m, "[%04zx] %s\n", pos, line);
2062 
2063 		prev = buf + pos;
2064 		skip = false;
2065 	}
2066 }
2067 
2068 static const char *repr_timer(const struct timer_list *t)
2069 {
2070 	if (!READ_ONCE(t->expires))
2071 		return "inactive";
2072 
2073 	if (timer_pending(t))
2074 		return "active";
2075 
2076 	return "expired";
2077 }
2078 
2079 static void intel_engine_print_registers(struct intel_engine_cs *engine,
2080 					 struct drm_printer *m)
2081 {
2082 	struct drm_i915_private *i915 = engine->i915;
2083 	struct intel_engine_execlists * const execlists = &engine->execlists;
2084 	u64 addr;
2085 
2086 	if (engine->id == RENDER_CLASS && IS_GRAPHICS_VER(i915, 4, 7))
2087 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
2088 	if (HAS_EXECLISTS(i915)) {
2089 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
2090 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
2091 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
2092 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
2093 	}
2094 	drm_printf(m, "\tRING_START: 0x%08x\n",
2095 		   ENGINE_READ(engine, RING_START));
2096 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
2097 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
2098 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
2099 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
2100 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
2101 		   ENGINE_READ(engine, RING_CTL),
2102 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
2103 	if (GRAPHICS_VER(engine->i915) > 2) {
2104 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
2105 			   ENGINE_READ(engine, RING_MI_MODE),
2106 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
2107 	}
2108 
2109 	if (GRAPHICS_VER(i915) >= 6) {
2110 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
2111 			   ENGINE_READ(engine, RING_IMR));
2112 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
2113 			   ENGINE_READ(engine, RING_ESR));
2114 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
2115 			   ENGINE_READ(engine, RING_EMR));
2116 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
2117 			   ENGINE_READ(engine, RING_EIR));
2118 	}
2119 
2120 	addr = intel_engine_get_active_head(engine);
2121 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
2122 		   upper_32_bits(addr), lower_32_bits(addr));
2123 	addr = intel_engine_get_last_batch_head(engine);
2124 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
2125 		   upper_32_bits(addr), lower_32_bits(addr));
2126 	if (GRAPHICS_VER(i915) >= 8)
2127 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
2128 	else if (GRAPHICS_VER(i915) >= 4)
2129 		addr = ENGINE_READ(engine, RING_DMA_FADD);
2130 	else
2131 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
2132 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
2133 		   upper_32_bits(addr), lower_32_bits(addr));
2134 	if (GRAPHICS_VER(i915) >= 4) {
2135 		drm_printf(m, "\tIPEIR: 0x%08x\n",
2136 			   ENGINE_READ(engine, RING_IPEIR));
2137 		drm_printf(m, "\tIPEHR: 0x%08x\n",
2138 			   ENGINE_READ(engine, RING_IPEHR));
2139 	} else {
2140 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
2141 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
2142 	}
2143 
2144 	if (HAS_EXECLISTS(i915) && !intel_engine_uses_guc(engine)) {
2145 		struct i915_request * const *port, *rq;
2146 		const u32 *hws =
2147 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2148 		const u8 num_entries = execlists->csb_size;
2149 		unsigned int idx;
2150 		u8 read, write;
2151 
2152 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
2153 			   str_yes_no(test_bit(TASKLET_STATE_SCHED, &engine->sched_engine->tasklet.state)),
2154 			   str_enabled_disabled(!atomic_read(&engine->sched_engine->tasklet.count)),
2155 			   repr_timer(&engine->execlists.preempt),
2156 			   repr_timer(&engine->execlists.timer));
2157 
2158 		read = execlists->csb_head;
2159 		write = READ_ONCE(*execlists->csb_write);
2160 
2161 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
2162 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
2163 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
2164 			   read, write, num_entries);
2165 
2166 		if (read >= num_entries)
2167 			read = 0;
2168 		if (write >= num_entries)
2169 			write = 0;
2170 		if (read > write)
2171 			write += num_entries;
2172 		while (read < write) {
2173 			idx = ++read % num_entries;
2174 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
2175 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
2176 		}
2177 
2178 		i915_sched_engine_active_lock_bh(engine->sched_engine);
2179 		rcu_read_lock();
2180 		for (port = execlists->active; (rq = *port); port++) {
2181 			char hdr[160];
2182 			int len;
2183 
2184 			len = scnprintf(hdr, sizeof(hdr),
2185 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
2186 					(int)(port - execlists->active),
2187 					rq->context->lrc.ccid,
2188 					intel_context_is_closed(rq->context) ? "!" : "",
2189 					intel_context_is_banned(rq->context) ? "*" : "");
2190 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2191 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2192 			i915_request_show(m, rq, hdr, 0);
2193 		}
2194 		for (port = execlists->pending; (rq = *port); port++) {
2195 			char hdr[160];
2196 			int len;
2197 
2198 			len = scnprintf(hdr, sizeof(hdr),
2199 					"\t\tPending[%d]: ccid:%08x%s%s, ",
2200 					(int)(port - execlists->pending),
2201 					rq->context->lrc.ccid,
2202 					intel_context_is_closed(rq->context) ? "!" : "",
2203 					intel_context_is_banned(rq->context) ? "*" : "");
2204 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
2205 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
2206 			i915_request_show(m, rq, hdr, 0);
2207 		}
2208 		rcu_read_unlock();
2209 		i915_sched_engine_active_unlock_bh(engine->sched_engine);
2210 	} else if (GRAPHICS_VER(i915) > 6) {
2211 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
2212 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
2213 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
2214 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
2215 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
2216 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
2217 	}
2218 }
2219 
2220 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
2221 {
2222 	struct i915_vma_resource *vma_res = rq->batch_res;
2223 	void *ring;
2224 	int size;
2225 
2226 	drm_printf(m,
2227 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
2228 		   rq->head, rq->postfix, rq->tail,
2229 		   vma_res ? upper_32_bits(vma_res->start) : ~0u,
2230 		   vma_res ? lower_32_bits(vma_res->start) : ~0u);
2231 
2232 	size = rq->tail - rq->head;
2233 	if (rq->tail < rq->head)
2234 		size += rq->ring->size;
2235 
2236 	ring = kmalloc(size, GFP_ATOMIC);
2237 	if (ring) {
2238 		const void *vaddr = rq->ring->vaddr;
2239 		unsigned int head = rq->head;
2240 		unsigned int len = 0;
2241 
2242 		if (rq->tail < head) {
2243 			len = rq->ring->size - head;
2244 			memcpy(ring, vaddr + head, len);
2245 			head = 0;
2246 		}
2247 		memcpy(ring + len, vaddr + head, size - len);
2248 
2249 		hexdump(m, ring, size);
2250 		kfree(ring);
2251 	}
2252 }
2253 
2254 static unsigned long read_ul(void *p, size_t x)
2255 {
2256 	return *(unsigned long *)(p + x);
2257 }
2258 
2259 static void print_properties(struct intel_engine_cs *engine,
2260 			     struct drm_printer *m)
2261 {
2262 	static const struct pmap {
2263 		size_t offset;
2264 		const char *name;
2265 	} props[] = {
2266 #define P(x) { \
2267 	.offset = offsetof(typeof(engine->props), x), \
2268 	.name = #x \
2269 }
2270 		P(heartbeat_interval_ms),
2271 		P(max_busywait_duration_ns),
2272 		P(preempt_timeout_ms),
2273 		P(stop_timeout_ms),
2274 		P(timeslice_duration_ms),
2275 
2276 		{},
2277 #undef P
2278 	};
2279 	const struct pmap *p;
2280 
2281 	drm_printf(m, "\tProperties:\n");
2282 	for (p = props; p->name; p++)
2283 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
2284 			   p->name,
2285 			   read_ul(&engine->props, p->offset),
2286 			   read_ul(&engine->defaults, p->offset));
2287 }
2288 
2289 static void engine_dump_request(struct i915_request *rq, struct drm_printer *m, const char *msg)
2290 {
2291 	struct intel_timeline *tl = get_timeline(rq);
2292 
2293 	i915_request_show(m, rq, msg, 0);
2294 
2295 	drm_printf(m, "\t\tring->start:  0x%08x\n",
2296 		   i915_ggtt_offset(rq->ring->vma));
2297 	drm_printf(m, "\t\tring->head:   0x%08x\n",
2298 		   rq->ring->head);
2299 	drm_printf(m, "\t\tring->tail:   0x%08x\n",
2300 		   rq->ring->tail);
2301 	drm_printf(m, "\t\tring->emit:   0x%08x\n",
2302 		   rq->ring->emit);
2303 	drm_printf(m, "\t\tring->space:  0x%08x\n",
2304 		   rq->ring->space);
2305 
2306 	if (tl) {
2307 		drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
2308 			   tl->hwsp_offset);
2309 		intel_timeline_put(tl);
2310 	}
2311 
2312 	print_request_ring(m, rq);
2313 
2314 	if (rq->context->lrc_reg_state) {
2315 		drm_printf(m, "Logical Ring Context:\n");
2316 		hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
2317 	}
2318 }
2319 
2320 void intel_engine_dump_active_requests(struct list_head *requests,
2321 				       struct i915_request *hung_rq,
2322 				       struct drm_printer *m)
2323 {
2324 	struct i915_request *rq;
2325 	const char *msg;
2326 	enum i915_request_state state;
2327 
2328 	list_for_each_entry(rq, requests, sched.link) {
2329 		if (rq == hung_rq)
2330 			continue;
2331 
2332 		state = i915_test_request_state(rq);
2333 		if (state < I915_REQUEST_QUEUED)
2334 			continue;
2335 
2336 		if (state == I915_REQUEST_ACTIVE)
2337 			msg = "\t\tactive on engine";
2338 		else
2339 			msg = "\t\tactive in queue";
2340 
2341 		engine_dump_request(rq, m, msg);
2342 	}
2343 }
2344 
2345 static void engine_dump_active_requests(struct intel_engine_cs *engine,
2346 					struct drm_printer *m)
2347 {
2348 	struct intel_context *hung_ce = NULL;
2349 	struct i915_request *hung_rq = NULL;
2350 
2351 	/*
2352 	 * No need for an engine->irq_seqno_barrier() before the seqno reads.
2353 	 * The GPU is still running so requests are still executing and any
2354 	 * hardware reads will be out of date by the time they are reported.
2355 	 * But the intention here is just to report an instantaneous snapshot
2356 	 * so that's fine.
2357 	 */
2358 	intel_engine_get_hung_entity(engine, &hung_ce, &hung_rq);
2359 
2360 	drm_printf(m, "\tRequests:\n");
2361 
2362 	if (hung_rq)
2363 		engine_dump_request(hung_rq, m, "\t\thung");
2364 	else if (hung_ce)
2365 		drm_printf(m, "\t\tGot hung ce but no hung rq!\n");
2366 
2367 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2368 		intel_guc_dump_active_requests(engine, hung_rq, m);
2369 	else
2370 		intel_execlists_dump_active_requests(engine, hung_rq, m);
2371 
2372 	if (hung_rq)
2373 		i915_request_put(hung_rq);
2374 }
2375 
2376 void intel_engine_dump(struct intel_engine_cs *engine,
2377 		       struct drm_printer *m,
2378 		       const char *header, ...)
2379 {
2380 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
2381 	struct i915_request *rq;
2382 	intel_wakeref_t wakeref;
2383 	ktime_t dummy;
2384 
2385 	if (header) {
2386 		va_list ap;
2387 
2388 		va_start(ap, header);
2389 		drm_vprintf(m, header, &ap);
2390 		va_end(ap);
2391 	}
2392 
2393 	if (intel_gt_is_wedged(engine->gt))
2394 		drm_printf(m, "*** WEDGED ***\n");
2395 
2396 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
2397 	drm_printf(m, "\tBarriers?: %s\n",
2398 		   str_yes_no(!llist_empty(&engine->barrier_tasks)));
2399 	drm_printf(m, "\tLatency: %luus\n",
2400 		   ewma__engine_latency_read(&engine->latency));
2401 	if (intel_engine_supports_stats(engine))
2402 		drm_printf(m, "\tRuntime: %llums\n",
2403 			   ktime_to_ms(intel_engine_get_busy_time(engine,
2404 								  &dummy)));
2405 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
2406 		   engine->fw_domain, READ_ONCE(engine->fw_active));
2407 
2408 	rcu_read_lock();
2409 	rq = READ_ONCE(engine->heartbeat.systole);
2410 	if (rq)
2411 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
2412 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
2413 	rcu_read_unlock();
2414 	drm_printf(m, "\tReset count: %d (global %d)\n",
2415 		   i915_reset_engine_count(error, engine),
2416 		   i915_reset_count(error));
2417 	print_properties(engine, m);
2418 
2419 	engine_dump_active_requests(engine, m);
2420 
2421 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
2422 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
2423 	if (wakeref) {
2424 		intel_engine_print_registers(engine, m);
2425 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
2426 	} else {
2427 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
2428 	}
2429 
2430 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
2431 
2432 	drm_printf(m, "HWSP:\n");
2433 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
2434 
2435 	drm_printf(m, "Idle? %s\n", str_yes_no(intel_engine_is_idle(engine)));
2436 
2437 	intel_engine_print_breadcrumbs(engine, m);
2438 }
2439 
2440 /**
2441  * intel_engine_get_busy_time() - Return current accumulated engine busyness
2442  * @engine: engine to report on
2443  * @now: monotonic timestamp of sampling
2444  *
2445  * Returns accumulated time @engine was busy since engine stats were enabled.
2446  */
2447 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
2448 {
2449 	return engine->busyness(engine, now);
2450 }
2451 
2452 struct intel_context *
2453 intel_engine_create_virtual(struct intel_engine_cs **siblings,
2454 			    unsigned int count, unsigned long flags)
2455 {
2456 	if (count == 0)
2457 		return ERR_PTR(-EINVAL);
2458 
2459 	if (count == 1 && !(flags & FORCE_VIRTUAL))
2460 		return intel_context_create(siblings[0]);
2461 
2462 	GEM_BUG_ON(!siblings[0]->cops->create_virtual);
2463 	return siblings[0]->cops->create_virtual(siblings, count, flags);
2464 }
2465 
2466 static struct i915_request *engine_execlist_find_hung_request(struct intel_engine_cs *engine)
2467 {
2468 	struct i915_request *request, *active = NULL;
2469 
2470 	/*
2471 	 * This search does not work in GuC submission mode. However, the GuC
2472 	 * will report the hanging context directly to the driver itself. So
2473 	 * the driver should never get here when in GuC mode.
2474 	 */
2475 	GEM_BUG_ON(intel_uc_uses_guc_submission(&engine->gt->uc));
2476 
2477 	/*
2478 	 * We are called by the error capture, reset and to dump engine
2479 	 * state at random points in time. In particular, note that neither is
2480 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
2481 	 * and we assume that no more writes can happen (we waited long enough
2482 	 * for all writes that were in transaction to be flushed) - adding an
2483 	 * extra delay for a recent interrupt is pointless. Hence, we do
2484 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
2485 	 * At all other times, we must assume the GPU is still running, but
2486 	 * we only care about the snapshot of this moment.
2487 	 */
2488 	lockdep_assert_held(&engine->sched_engine->lock);
2489 
2490 	rcu_read_lock();
2491 	request = execlists_active(&engine->execlists);
2492 	if (request) {
2493 		struct intel_timeline *tl = request->context->timeline;
2494 
2495 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
2496 			if (__i915_request_is_complete(request))
2497 				break;
2498 
2499 			active = request;
2500 		}
2501 	}
2502 	rcu_read_unlock();
2503 	if (active)
2504 		return active;
2505 
2506 	list_for_each_entry(request, &engine->sched_engine->requests,
2507 			    sched.link) {
2508 		if (i915_test_request_state(request) != I915_REQUEST_ACTIVE)
2509 			continue;
2510 
2511 		active = request;
2512 		break;
2513 	}
2514 
2515 	return active;
2516 }
2517 
2518 void intel_engine_get_hung_entity(struct intel_engine_cs *engine,
2519 				  struct intel_context **ce, struct i915_request **rq)
2520 {
2521 	unsigned long flags;
2522 
2523 	*ce = intel_engine_get_hung_context(engine);
2524 	if (*ce) {
2525 		intel_engine_clear_hung_context(engine);
2526 
2527 		*rq = intel_context_get_active_request(*ce);
2528 		return;
2529 	}
2530 
2531 	/*
2532 	 * Getting here with GuC enabled means it is a forced error capture
2533 	 * with no actual hang. So, no need to attempt the execlist search.
2534 	 */
2535 	if (intel_uc_uses_guc_submission(&engine->gt->uc))
2536 		return;
2537 
2538 	spin_lock_irqsave(&engine->sched_engine->lock, flags);
2539 	*rq = engine_execlist_find_hung_request(engine);
2540 	if (*rq)
2541 		*rq = i915_request_get_rcu(*rq);
2542 	spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2543 }
2544 
2545 void xehp_enable_ccs_engines(struct intel_engine_cs *engine)
2546 {
2547 	/*
2548 	 * If there are any non-fused-off CCS engines, we need to enable CCS
2549 	 * support in the RCU_MODE register.  This only needs to be done once,
2550 	 * so for simplicity we'll take care of this in the RCS engine's
2551 	 * resume handler; since the RCS and all CCS engines belong to the
2552 	 * same reset domain and are reset together, this will also take care
2553 	 * of re-applying the setting after i915-triggered resets.
2554 	 */
2555 	if (!CCS_MASK(engine->gt))
2556 		return;
2557 
2558 	intel_uncore_write(engine->uncore, GEN12_RCU_MODE,
2559 			   _MASKED_BIT_ENABLE(GEN12_RCU_MODE_CCS_ENABLE));
2560 }
2561 
2562 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
2563 #include "mock_engine.c"
2564 #include "selftest_engine.c"
2565 #include "selftest_engine_cs.c"
2566 #endif
2567