1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5 
6 #include <drm/drm_print.h>
7 
8 #include "gem/i915_gem_context.h"
9 
10 #include "i915_drv.h"
11 
12 #include "intel_breadcrumbs.h"
13 #include "intel_context.h"
14 #include "intel_engine.h"
15 #include "intel_engine_pm.h"
16 #include "intel_engine_user.h"
17 #include "intel_execlists_submission.h"
18 #include "intel_gt.h"
19 #include "intel_gt_requests.h"
20 #include "intel_gt_pm.h"
21 #include "intel_lrc_reg.h"
22 #include "intel_reset.h"
23 #include "intel_ring.h"
24 #include "uc/intel_guc_submission.h"
25 
26 /* Haswell does have the CXT_SIZE register however it does not appear to be
27  * valid. Now, docs explain in dwords what is in the context object. The full
28  * size is 70720 bytes, however, the power context and execlist context will
29  * never be saved (power context is stored elsewhere, and execlists don't work
30  * on HSW) - so the final size, including the extra state required for the
31  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
32  */
33 #define HSW_CXT_TOTAL_SIZE		(17 * PAGE_SIZE)
34 
35 #define DEFAULT_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
36 #define GEN8_LR_CONTEXT_RENDER_SIZE	(20 * PAGE_SIZE)
37 #define GEN9_LR_CONTEXT_RENDER_SIZE	(22 * PAGE_SIZE)
38 #define GEN10_LR_CONTEXT_RENDER_SIZE	(18 * PAGE_SIZE)
39 #define GEN11_LR_CONTEXT_RENDER_SIZE	(14 * PAGE_SIZE)
40 
41 #define GEN8_LR_CONTEXT_OTHER_SIZE	( 2 * PAGE_SIZE)
42 
43 #define MAX_MMIO_BASES 3
44 struct engine_info {
45 	unsigned int hw_id;
46 	u8 class;
47 	u8 instance;
48 	/* mmio bases table *must* be sorted in reverse gen order */
49 	struct engine_mmio_base {
50 		u32 gen : 8;
51 		u32 base : 24;
52 	} mmio_bases[MAX_MMIO_BASES];
53 };
54 
55 static const struct engine_info intel_engines[] = {
56 	[RCS0] = {
57 		.hw_id = RCS0_HW,
58 		.class = RENDER_CLASS,
59 		.instance = 0,
60 		.mmio_bases = {
61 			{ .gen = 1, .base = RENDER_RING_BASE }
62 		},
63 	},
64 	[BCS0] = {
65 		.hw_id = BCS0_HW,
66 		.class = COPY_ENGINE_CLASS,
67 		.instance = 0,
68 		.mmio_bases = {
69 			{ .gen = 6, .base = BLT_RING_BASE }
70 		},
71 	},
72 	[VCS0] = {
73 		.hw_id = VCS0_HW,
74 		.class = VIDEO_DECODE_CLASS,
75 		.instance = 0,
76 		.mmio_bases = {
77 			{ .gen = 11, .base = GEN11_BSD_RING_BASE },
78 			{ .gen = 6, .base = GEN6_BSD_RING_BASE },
79 			{ .gen = 4, .base = BSD_RING_BASE }
80 		},
81 	},
82 	[VCS1] = {
83 		.hw_id = VCS1_HW,
84 		.class = VIDEO_DECODE_CLASS,
85 		.instance = 1,
86 		.mmio_bases = {
87 			{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
88 			{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
89 		},
90 	},
91 	[VCS2] = {
92 		.hw_id = VCS2_HW,
93 		.class = VIDEO_DECODE_CLASS,
94 		.instance = 2,
95 		.mmio_bases = {
96 			{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
97 		},
98 	},
99 	[VCS3] = {
100 		.hw_id = VCS3_HW,
101 		.class = VIDEO_DECODE_CLASS,
102 		.instance = 3,
103 		.mmio_bases = {
104 			{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
105 		},
106 	},
107 	[VECS0] = {
108 		.hw_id = VECS0_HW,
109 		.class = VIDEO_ENHANCEMENT_CLASS,
110 		.instance = 0,
111 		.mmio_bases = {
112 			{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
113 			{ .gen = 7, .base = VEBOX_RING_BASE }
114 		},
115 	},
116 	[VECS1] = {
117 		.hw_id = VECS1_HW,
118 		.class = VIDEO_ENHANCEMENT_CLASS,
119 		.instance = 1,
120 		.mmio_bases = {
121 			{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
122 		},
123 	},
124 };
125 
126 /**
127  * intel_engine_context_size() - return the size of the context for an engine
128  * @gt: the gt
129  * @class: engine class
130  *
131  * Each engine class may require a different amount of space for a context
132  * image.
133  *
134  * Return: size (in bytes) of an engine class specific context image
135  *
136  * Note: this size includes the HWSP, which is part of the context image
137  * in LRC mode, but does not include the "shared data page" used with
138  * GuC submission. The caller should account for this if using the GuC.
139  */
140 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141 {
142 	struct intel_uncore *uncore = gt->uncore;
143 	u32 cxt_size;
144 
145 	BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
146 
147 	switch (class) {
148 	case RENDER_CLASS:
149 		switch (INTEL_GEN(gt->i915)) {
150 		default:
151 			MISSING_CASE(INTEL_GEN(gt->i915));
152 			return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153 		case 12:
154 		case 11:
155 			return GEN11_LR_CONTEXT_RENDER_SIZE;
156 		case 10:
157 			return GEN10_LR_CONTEXT_RENDER_SIZE;
158 		case 9:
159 			return GEN9_LR_CONTEXT_RENDER_SIZE;
160 		case 8:
161 			return GEN8_LR_CONTEXT_RENDER_SIZE;
162 		case 7:
163 			if (IS_HASWELL(gt->i915))
164 				return HSW_CXT_TOTAL_SIZE;
165 
166 			cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167 			return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
168 					PAGE_SIZE);
169 		case 6:
170 			cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171 			return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
172 					PAGE_SIZE);
173 		case 5:
174 		case 4:
175 			/*
176 			 * There is a discrepancy here between the size reported
177 			 * by the register and the size of the context layout
178 			 * in the docs. Both are described as authorative!
179 			 *
180 			 * The discrepancy is on the order of a few cachelines,
181 			 * but the total is under one page (4k), which is our
182 			 * minimum allocation anyway so it should all come
183 			 * out in the wash.
184 			 */
185 			cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186 			drm_dbg(&gt->i915->drm,
187 				"gen%d CXT_SIZE = %d bytes [0x%08x]\n",
188 				INTEL_GEN(gt->i915), cxt_size * 64,
189 				cxt_size - 1);
190 			return round_up(cxt_size * 64, PAGE_SIZE);
191 		case 3:
192 		case 2:
193 		/* For the special day when i810 gets merged. */
194 		case 1:
195 			return 0;
196 		}
197 		break;
198 	default:
199 		MISSING_CASE(class);
200 		fallthrough;
201 	case VIDEO_DECODE_CLASS:
202 	case VIDEO_ENHANCEMENT_CLASS:
203 	case COPY_ENGINE_CLASS:
204 		if (INTEL_GEN(gt->i915) < 8)
205 			return 0;
206 		return GEN8_LR_CONTEXT_OTHER_SIZE;
207 	}
208 }
209 
210 static u32 __engine_mmio_base(struct drm_i915_private *i915,
211 			      const struct engine_mmio_base *bases)
212 {
213 	int i;
214 
215 	for (i = 0; i < MAX_MMIO_BASES; i++)
216 		if (INTEL_GEN(i915) >= bases[i].gen)
217 			break;
218 
219 	GEM_BUG_ON(i == MAX_MMIO_BASES);
220 	GEM_BUG_ON(!bases[i].base);
221 
222 	return bases[i].base;
223 }
224 
225 static void __sprint_engine_name(struct intel_engine_cs *engine)
226 {
227 	/*
228 	 * Before we know what the uABI name for this engine will be,
229 	 * we still would like to keep track of this engine in the debug logs.
230 	 * We throw in a ' here as a reminder that this isn't its final name.
231 	 */
232 	GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
233 			     intel_engine_class_repr(engine->class),
234 			     engine->instance) >= sizeof(engine->name));
235 }
236 
237 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
238 {
239 	/*
240 	 * Though they added more rings on g4x/ilk, they did not add
241 	 * per-engine HWSTAM until gen6.
242 	 */
243 	if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
244 		return;
245 
246 	if (INTEL_GEN(engine->i915) >= 3)
247 		ENGINE_WRITE(engine, RING_HWSTAM, mask);
248 	else
249 		ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 }
251 
252 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
253 {
254 	/* Mask off all writes into the unknown HWSP */
255 	intel_engine_set_hwsp_writemask(engine, ~0u);
256 }
257 
258 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
259 {
260 	const struct engine_info *info = &intel_engines[id];
261 	struct drm_i915_private *i915 = gt->i915;
262 	struct intel_engine_cs *engine;
263 
264 	BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
265 	BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
266 
267 	if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
268 		return -EINVAL;
269 
270 	if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
271 		return -EINVAL;
272 
273 	if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
274 		return -EINVAL;
275 
276 	if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
277 		return -EINVAL;
278 
279 	engine = kzalloc(sizeof(*engine), GFP_KERNEL);
280 	if (!engine)
281 		return -ENOMEM;
282 
283 	BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
284 
285 	engine->id = id;
286 	engine->legacy_idx = INVALID_ENGINE;
287 	engine->mask = BIT(id);
288 	engine->i915 = i915;
289 	engine->gt = gt;
290 	engine->uncore = gt->uncore;
291 	engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
292 	engine->hw_id = info->hw_id;
293 	engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
294 
295 	engine->class = info->class;
296 	engine->instance = info->instance;
297 	__sprint_engine_name(engine);
298 
299 	engine->props.heartbeat_interval_ms =
300 		CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
301 	engine->props.max_busywait_duration_ns =
302 		CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
303 	engine->props.preempt_timeout_ms =
304 		CONFIG_DRM_I915_PREEMPT_TIMEOUT;
305 	engine->props.stop_timeout_ms =
306 		CONFIG_DRM_I915_STOP_TIMEOUT;
307 	engine->props.timeslice_duration_ms =
308 		CONFIG_DRM_I915_TIMESLICE_DURATION;
309 
310 	/* Override to uninterruptible for OpenCL workloads. */
311 	if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
312 		engine->props.preempt_timeout_ms = 0;
313 
314 	engine->defaults = engine->props; /* never to change again */
315 
316 	engine->context_size = intel_engine_context_size(gt, engine->class);
317 	if (WARN_ON(engine->context_size > BIT(20)))
318 		engine->context_size = 0;
319 	if (engine->context_size)
320 		DRIVER_CAPS(i915)->has_logical_contexts = true;
321 
322 	/* Nothing to do here, execute in order of dependencies */
323 	engine->schedule = NULL;
324 
325 	ewma__engine_latency_init(&engine->latency);
326 	seqcount_init(&engine->stats.lock);
327 
328 	ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
329 
330 	/* Scrub mmio state on takeover */
331 	intel_engine_sanitize_mmio(engine);
332 
333 	gt->engine_class[info->class][info->instance] = engine;
334 	gt->engine[id] = engine;
335 
336 	return 0;
337 }
338 
339 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
340 {
341 	struct drm_i915_private *i915 = engine->i915;
342 
343 	if (engine->class == VIDEO_DECODE_CLASS) {
344 		/*
345 		 * HEVC support is present on first engine instance
346 		 * before Gen11 and on all instances afterwards.
347 		 */
348 		if (INTEL_GEN(i915) >= 11 ||
349 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
350 			engine->uabi_capabilities |=
351 				I915_VIDEO_CLASS_CAPABILITY_HEVC;
352 
353 		/*
354 		 * SFC block is present only on even logical engine
355 		 * instances.
356 		 */
357 		if ((INTEL_GEN(i915) >= 11 &&
358 		     (engine->gt->info.vdbox_sfc_access &
359 		      BIT(engine->instance))) ||
360 		    (INTEL_GEN(i915) >= 9 && engine->instance == 0))
361 			engine->uabi_capabilities |=
362 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
363 	} else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
364 		if (INTEL_GEN(i915) >= 9)
365 			engine->uabi_capabilities |=
366 				I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
367 	}
368 }
369 
370 static void intel_setup_engine_capabilities(struct intel_gt *gt)
371 {
372 	struct intel_engine_cs *engine;
373 	enum intel_engine_id id;
374 
375 	for_each_engine(engine, gt, id)
376 		__setup_engine_capabilities(engine);
377 }
378 
379 /**
380  * intel_engines_release() - free the resources allocated for Command Streamers
381  * @gt: pointer to struct intel_gt
382  */
383 void intel_engines_release(struct intel_gt *gt)
384 {
385 	struct intel_engine_cs *engine;
386 	enum intel_engine_id id;
387 
388 	/*
389 	 * Before we release the resources held by engine, we must be certain
390 	 * that the HW is no longer accessing them -- having the GPU scribble
391 	 * to or read from a page being used for something else causes no end
392 	 * of fun.
393 	 *
394 	 * The GPU should be reset by this point, but assume the worst just
395 	 * in case we aborted before completely initialising the engines.
396 	 */
397 	GEM_BUG_ON(intel_gt_pm_is_awake(gt));
398 	if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
399 		__intel_gt_reset(gt, ALL_ENGINES);
400 
401 	/* Decouple the backend; but keep the layout for late GPU resets */
402 	for_each_engine(engine, gt, id) {
403 		if (!engine->release)
404 			continue;
405 
406 		intel_wakeref_wait_for_idle(&engine->wakeref);
407 		GEM_BUG_ON(intel_engine_pm_is_awake(engine));
408 
409 		engine->release(engine);
410 		engine->release = NULL;
411 
412 		memset(&engine->reset, 0, sizeof(engine->reset));
413 	}
414 }
415 
416 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
417 {
418 	if (!engine->request_pool)
419 		return;
420 
421 	kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
422 }
423 
424 void intel_engines_free(struct intel_gt *gt)
425 {
426 	struct intel_engine_cs *engine;
427 	enum intel_engine_id id;
428 
429 	/* Free the requests! dma-resv keeps fences around for an eternity */
430 	rcu_barrier();
431 
432 	for_each_engine(engine, gt, id) {
433 		intel_engine_free_request_pool(engine);
434 		kfree(engine);
435 		gt->engine[id] = NULL;
436 	}
437 }
438 
439 /*
440  * Determine which engines are fused off in our particular hardware.
441  * Note that we have a catch-22 situation where we need to be able to access
442  * the blitter forcewake domain to read the engine fuses, but at the same time
443  * we need to know which engines are available on the system to know which
444  * forcewake domains are present. We solve this by intializing the forcewake
445  * domains based on the full engine mask in the platform capabilities before
446  * calling this function and pruning the domains for fused-off engines
447  * afterwards.
448  */
449 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
450 {
451 	struct drm_i915_private *i915 = gt->i915;
452 	struct intel_gt_info *info = &gt->info;
453 	struct intel_uncore *uncore = gt->uncore;
454 	unsigned int logical_vdbox = 0;
455 	unsigned int i;
456 	u32 media_fuse;
457 	u16 vdbox_mask;
458 	u16 vebox_mask;
459 
460 	info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
461 
462 	if (INTEL_GEN(i915) < 11)
463 		return info->engine_mask;
464 
465 	media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
466 
467 	vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
468 	vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
469 		      GEN11_GT_VEBOX_DISABLE_SHIFT;
470 
471 	for (i = 0; i < I915_MAX_VCS; i++) {
472 		if (!HAS_ENGINE(gt, _VCS(i))) {
473 			vdbox_mask &= ~BIT(i);
474 			continue;
475 		}
476 
477 		if (!(BIT(i) & vdbox_mask)) {
478 			info->engine_mask &= ~BIT(_VCS(i));
479 			drm_dbg(&i915->drm, "vcs%u fused off\n", i);
480 			continue;
481 		}
482 
483 		/*
484 		 * In Gen11, only even numbered logical VDBOXes are
485 		 * hooked up to an SFC (Scaler & Format Converter) unit.
486 		 * In TGL each VDBOX has access to an SFC.
487 		 */
488 		if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
489 			gt->info.vdbox_sfc_access |= BIT(i);
490 	}
491 	drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
492 		vdbox_mask, VDBOX_MASK(gt));
493 	GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
494 
495 	for (i = 0; i < I915_MAX_VECS; i++) {
496 		if (!HAS_ENGINE(gt, _VECS(i))) {
497 			vebox_mask &= ~BIT(i);
498 			continue;
499 		}
500 
501 		if (!(BIT(i) & vebox_mask)) {
502 			info->engine_mask &= ~BIT(_VECS(i));
503 			drm_dbg(&i915->drm, "vecs%u fused off\n", i);
504 		}
505 	}
506 	drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
507 		vebox_mask, VEBOX_MASK(gt));
508 	GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
509 
510 	return info->engine_mask;
511 }
512 
513 /**
514  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
515  * @gt: pointer to struct intel_gt
516  *
517  * Return: non-zero if the initialization failed.
518  */
519 int intel_engines_init_mmio(struct intel_gt *gt)
520 {
521 	struct drm_i915_private *i915 = gt->i915;
522 	const unsigned int engine_mask = init_engine_mask(gt);
523 	unsigned int mask = 0;
524 	unsigned int i;
525 	int err;
526 
527 	drm_WARN_ON(&i915->drm, engine_mask == 0);
528 	drm_WARN_ON(&i915->drm, engine_mask &
529 		    GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
530 
531 	if (i915_inject_probe_failure(i915))
532 		return -ENODEV;
533 
534 	for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
535 		if (!HAS_ENGINE(gt, i))
536 			continue;
537 
538 		err = intel_engine_setup(gt, i);
539 		if (err)
540 			goto cleanup;
541 
542 		mask |= BIT(i);
543 	}
544 
545 	/*
546 	 * Catch failures to update intel_engines table when the new engines
547 	 * are added to the driver by a warning and disabling the forgotten
548 	 * engines.
549 	 */
550 	if (drm_WARN_ON(&i915->drm, mask != engine_mask))
551 		gt->info.engine_mask = mask;
552 
553 	gt->info.num_engines = hweight32(mask);
554 
555 	intel_gt_check_and_clear_faults(gt);
556 
557 	intel_setup_engine_capabilities(gt);
558 
559 	intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
560 
561 	return 0;
562 
563 cleanup:
564 	intel_engines_free(gt);
565 	return err;
566 }
567 
568 void intel_engine_init_execlists(struct intel_engine_cs *engine)
569 {
570 	struct intel_engine_execlists * const execlists = &engine->execlists;
571 
572 	execlists->port_mask = 1;
573 	GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
574 	GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
575 
576 	memset(execlists->pending, 0, sizeof(execlists->pending));
577 	execlists->active =
578 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
579 
580 	execlists->queue_priority_hint = INT_MIN;
581 	execlists->queue = RB_ROOT_CACHED;
582 }
583 
584 static void cleanup_status_page(struct intel_engine_cs *engine)
585 {
586 	struct i915_vma *vma;
587 
588 	/* Prevent writes into HWSP after returning the page to the system */
589 	intel_engine_set_hwsp_writemask(engine, ~0u);
590 
591 	vma = fetch_and_zero(&engine->status_page.vma);
592 	if (!vma)
593 		return;
594 
595 	if (!HWS_NEEDS_PHYSICAL(engine->i915))
596 		i915_vma_unpin(vma);
597 
598 	i915_gem_object_unpin_map(vma->obj);
599 	i915_gem_object_put(vma->obj);
600 }
601 
602 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
603 				struct i915_gem_ww_ctx *ww,
604 				struct i915_vma *vma)
605 {
606 	unsigned int flags;
607 
608 	if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
609 		/*
610 		 * On g33, we cannot place HWS above 256MiB, so
611 		 * restrict its pinning to the low mappable arena.
612 		 * Though this restriction is not documented for
613 		 * gen4, gen5, or byt, they also behave similarly
614 		 * and hang if the HWS is placed at the top of the
615 		 * GTT. To generalise, it appears that all !llc
616 		 * platforms have issues with us placing the HWS
617 		 * above the mappable region (even though we never
618 		 * actually map it).
619 		 */
620 		flags = PIN_MAPPABLE;
621 	else
622 		flags = PIN_HIGH;
623 
624 	return i915_ggtt_pin(vma, ww, 0, flags);
625 }
626 
627 static int init_status_page(struct intel_engine_cs *engine)
628 {
629 	struct drm_i915_gem_object *obj;
630 	struct i915_gem_ww_ctx ww;
631 	struct i915_vma *vma;
632 	void *vaddr;
633 	int ret;
634 
635 	INIT_LIST_HEAD(&engine->status_page.timelines);
636 
637 	/*
638 	 * Though the HWS register does support 36bit addresses, historically
639 	 * we have had hangs and corruption reported due to wild writes if
640 	 * the HWS is placed above 4G. We only allow objects to be allocated
641 	 * in GFP_DMA32 for i965, and no earlier physical address users had
642 	 * access to more than 4G.
643 	 */
644 	obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
645 	if (IS_ERR(obj)) {
646 		drm_err(&engine->i915->drm,
647 			"Failed to allocate status page\n");
648 		return PTR_ERR(obj);
649 	}
650 
651 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
652 
653 	vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
654 	if (IS_ERR(vma)) {
655 		ret = PTR_ERR(vma);
656 		goto err_put;
657 	}
658 
659 	i915_gem_ww_ctx_init(&ww, true);
660 retry:
661 	ret = i915_gem_object_lock(obj, &ww);
662 	if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
663 		ret = pin_ggtt_status_page(engine, &ww, vma);
664 	if (ret)
665 		goto err;
666 
667 	vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
668 	if (IS_ERR(vaddr)) {
669 		ret = PTR_ERR(vaddr);
670 		goto err_unpin;
671 	}
672 
673 	engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
674 	engine->status_page.vma = vma;
675 
676 err_unpin:
677 	if (ret)
678 		i915_vma_unpin(vma);
679 err:
680 	if (ret == -EDEADLK) {
681 		ret = i915_gem_ww_ctx_backoff(&ww);
682 		if (!ret)
683 			goto retry;
684 	}
685 	i915_gem_ww_ctx_fini(&ww);
686 err_put:
687 	if (ret)
688 		i915_gem_object_put(obj);
689 	return ret;
690 }
691 
692 static int engine_setup_common(struct intel_engine_cs *engine)
693 {
694 	int err;
695 
696 	init_llist_head(&engine->barrier_tasks);
697 
698 	err = init_status_page(engine);
699 	if (err)
700 		return err;
701 
702 	engine->breadcrumbs = intel_breadcrumbs_create(engine);
703 	if (!engine->breadcrumbs) {
704 		err = -ENOMEM;
705 		goto err_status;
706 	}
707 
708 	err = intel_engine_init_cmd_parser(engine);
709 	if (err)
710 		goto err_cmd_parser;
711 
712 	intel_engine_init_active(engine, ENGINE_PHYSICAL);
713 	intel_engine_init_execlists(engine);
714 	intel_engine_init__pm(engine);
715 	intel_engine_init_retire(engine);
716 
717 	/* Use the whole device by default */
718 	engine->sseu =
719 		intel_sseu_from_device_info(&engine->gt->info.sseu);
720 
721 	intel_engine_init_workarounds(engine);
722 	intel_engine_init_whitelist(engine);
723 	intel_engine_init_ctx_wa(engine);
724 
725 	if (INTEL_GEN(engine->i915) >= 12)
726 		engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
727 
728 	return 0;
729 
730 err_cmd_parser:
731 	intel_breadcrumbs_free(engine->breadcrumbs);
732 err_status:
733 	cleanup_status_page(engine);
734 	return err;
735 }
736 
737 struct measure_breadcrumb {
738 	struct i915_request rq;
739 	struct intel_ring ring;
740 	u32 cs[2048];
741 };
742 
743 static int measure_breadcrumb_dw(struct intel_context *ce)
744 {
745 	struct intel_engine_cs *engine = ce->engine;
746 	struct measure_breadcrumb *frame;
747 	int dw;
748 
749 	GEM_BUG_ON(!engine->gt->scratch);
750 
751 	frame = kzalloc(sizeof(*frame), GFP_KERNEL);
752 	if (!frame)
753 		return -ENOMEM;
754 
755 	frame->rq.engine = engine;
756 	frame->rq.context = ce;
757 	rcu_assign_pointer(frame->rq.timeline, ce->timeline);
758 	frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
759 
760 	frame->ring.vaddr = frame->cs;
761 	frame->ring.size = sizeof(frame->cs);
762 	frame->ring.wrap =
763 		BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
764 	frame->ring.effective_size = frame->ring.size;
765 	intel_ring_update_space(&frame->ring);
766 	frame->rq.ring = &frame->ring;
767 
768 	mutex_lock(&ce->timeline->mutex);
769 	spin_lock_irq(&engine->active.lock);
770 
771 	dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
772 
773 	spin_unlock_irq(&engine->active.lock);
774 	mutex_unlock(&ce->timeline->mutex);
775 
776 	GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
777 
778 	kfree(frame);
779 	return dw;
780 }
781 
782 void
783 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
784 {
785 	INIT_LIST_HEAD(&engine->active.requests);
786 	INIT_LIST_HEAD(&engine->active.hold);
787 
788 	spin_lock_init(&engine->active.lock);
789 	lockdep_set_subclass(&engine->active.lock, subclass);
790 
791 	/*
792 	 * Due to an interesting quirk in lockdep's internal debug tracking,
793 	 * after setting a subclass we must ensure the lock is used. Otherwise,
794 	 * nr_unused_locks is incremented once too often.
795 	 */
796 #ifdef CONFIG_DEBUG_LOCK_ALLOC
797 	local_irq_disable();
798 	lock_map_acquire(&engine->active.lock.dep_map);
799 	lock_map_release(&engine->active.lock.dep_map);
800 	local_irq_enable();
801 #endif
802 }
803 
804 static struct intel_context *
805 create_pinned_context(struct intel_engine_cs *engine,
806 		      unsigned int hwsp,
807 		      struct lock_class_key *key,
808 		      const char *name)
809 {
810 	struct intel_context *ce;
811 	int err;
812 
813 	ce = intel_context_create(engine);
814 	if (IS_ERR(ce))
815 		return ce;
816 
817 	__set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
818 	ce->timeline = page_pack_bits(NULL, hwsp);
819 
820 	err = intel_context_pin(ce); /* perma-pin so it is always available */
821 	if (err) {
822 		intel_context_put(ce);
823 		return ERR_PTR(err);
824 	}
825 
826 	/*
827 	 * Give our perma-pinned kernel timelines a separate lockdep class,
828 	 * so that we can use them from within the normal user timelines
829 	 * should we need to inject GPU operations during their request
830 	 * construction.
831 	 */
832 	lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
833 
834 	return ce;
835 }
836 
837 static void destroy_pinned_context(struct intel_context *ce)
838 {
839 	struct intel_engine_cs *engine = ce->engine;
840 	struct i915_vma *hwsp = engine->status_page.vma;
841 
842 	GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
843 
844 	mutex_lock(&hwsp->vm->mutex);
845 	list_del(&ce->timeline->engine_link);
846 	mutex_unlock(&hwsp->vm->mutex);
847 
848 	intel_context_unpin(ce);
849 	intel_context_put(ce);
850 }
851 
852 static struct intel_context *
853 create_kernel_context(struct intel_engine_cs *engine)
854 {
855 	static struct lock_class_key kernel;
856 
857 	return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
858 				     &kernel, "kernel_context");
859 }
860 
861 /**
862  * intel_engines_init_common - initialize cengine state which might require hw access
863  * @engine: Engine to initialize.
864  *
865  * Initializes @engine@ structure members shared between legacy and execlists
866  * submission modes which do require hardware access.
867  *
868  * Typcally done at later stages of submission mode specific engine setup.
869  *
870  * Returns zero on success or an error code on failure.
871  */
872 static int engine_init_common(struct intel_engine_cs *engine)
873 {
874 	struct intel_context *ce;
875 	int ret;
876 
877 	engine->set_default_submission(engine);
878 
879 	/*
880 	 * We may need to do things with the shrinker which
881 	 * require us to immediately switch back to the default
882 	 * context. This can cause a problem as pinning the
883 	 * default context also requires GTT space which may not
884 	 * be available. To avoid this we always pin the default
885 	 * context.
886 	 */
887 	ce = create_kernel_context(engine);
888 	if (IS_ERR(ce))
889 		return PTR_ERR(ce);
890 
891 	ret = measure_breadcrumb_dw(ce);
892 	if (ret < 0)
893 		goto err_context;
894 
895 	engine->emit_fini_breadcrumb_dw = ret;
896 	engine->kernel_context = ce;
897 
898 	return 0;
899 
900 err_context:
901 	intel_context_put(ce);
902 	return ret;
903 }
904 
905 int intel_engines_init(struct intel_gt *gt)
906 {
907 	int (*setup)(struct intel_engine_cs *engine);
908 	struct intel_engine_cs *engine;
909 	enum intel_engine_id id;
910 	int err;
911 
912 	if (intel_uc_uses_guc_submission(&gt->uc))
913 		setup = intel_guc_submission_setup;
914 	else if (HAS_EXECLISTS(gt->i915))
915 		setup = intel_execlists_submission_setup;
916 	else
917 		setup = intel_ring_submission_setup;
918 
919 	for_each_engine(engine, gt, id) {
920 		err = engine_setup_common(engine);
921 		if (err)
922 			return err;
923 
924 		err = setup(engine);
925 		if (err)
926 			return err;
927 
928 		err = engine_init_common(engine);
929 		if (err)
930 			return err;
931 
932 		intel_engine_add_user(engine);
933 	}
934 
935 	return 0;
936 }
937 
938 /**
939  * intel_engines_cleanup_common - cleans up the engine state created by
940  *                                the common initiailizers.
941  * @engine: Engine to cleanup.
942  *
943  * This cleans up everything created by the common helpers.
944  */
945 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
946 {
947 	GEM_BUG_ON(!list_empty(&engine->active.requests));
948 	tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
949 
950 	intel_breadcrumbs_free(engine->breadcrumbs);
951 
952 	intel_engine_fini_retire(engine);
953 	intel_engine_cleanup_cmd_parser(engine);
954 
955 	if (engine->default_state)
956 		fput(engine->default_state);
957 
958 	if (engine->kernel_context)
959 		destroy_pinned_context(engine->kernel_context);
960 
961 	GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
962 	cleanup_status_page(engine);
963 
964 	intel_wa_list_free(&engine->ctx_wa_list);
965 	intel_wa_list_free(&engine->wa_list);
966 	intel_wa_list_free(&engine->whitelist);
967 }
968 
969 /**
970  * intel_engine_resume - re-initializes the HW state of the engine
971  * @engine: Engine to resume.
972  *
973  * Returns zero on success or an error code on failure.
974  */
975 int intel_engine_resume(struct intel_engine_cs *engine)
976 {
977 	intel_engine_apply_workarounds(engine);
978 	intel_engine_apply_whitelist(engine);
979 
980 	return engine->resume(engine);
981 }
982 
983 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
984 {
985 	struct drm_i915_private *i915 = engine->i915;
986 
987 	u64 acthd;
988 
989 	if (INTEL_GEN(i915) >= 8)
990 		acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
991 	else if (INTEL_GEN(i915) >= 4)
992 		acthd = ENGINE_READ(engine, RING_ACTHD);
993 	else
994 		acthd = ENGINE_READ(engine, ACTHD);
995 
996 	return acthd;
997 }
998 
999 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1000 {
1001 	u64 bbaddr;
1002 
1003 	if (INTEL_GEN(engine->i915) >= 8)
1004 		bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1005 	else
1006 		bbaddr = ENGINE_READ(engine, RING_BBADDR);
1007 
1008 	return bbaddr;
1009 }
1010 
1011 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1012 {
1013 	if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1014 		return 0;
1015 
1016 	/*
1017 	 * If we are doing a normal GPU reset, we can take our time and allow
1018 	 * the engine to quiesce. We've stopped submission to the engine, and
1019 	 * if we wait long enough an innocent context should complete and
1020 	 * leave the engine idle. So they should not be caught unaware by
1021 	 * the forthcoming GPU reset (which usually follows the stop_cs)!
1022 	 */
1023 	return READ_ONCE(engine->props.stop_timeout_ms);
1024 }
1025 
1026 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1027 				  int fast_timeout_us,
1028 				  int slow_timeout_ms)
1029 {
1030 	struct intel_uncore *uncore = engine->uncore;
1031 	const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1032 	int err;
1033 
1034 	intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1035 	err = __intel_wait_for_register_fw(engine->uncore, mode,
1036 					   MODE_IDLE, MODE_IDLE,
1037 					   fast_timeout_us,
1038 					   slow_timeout_ms,
1039 					   NULL);
1040 
1041 	/* A final mmio read to let GPU writes be hopefully flushed to memory */
1042 	intel_uncore_posting_read_fw(uncore, mode);
1043 	return err;
1044 }
1045 
1046 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1047 {
1048 	int err = 0;
1049 
1050 	if (INTEL_GEN(engine->i915) < 3)
1051 		return -ENODEV;
1052 
1053 	ENGINE_TRACE(engine, "\n");
1054 	if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1055 		ENGINE_TRACE(engine,
1056 			     "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1057 			     ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1058 			     ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1059 
1060 		/*
1061 		 * Sometimes we observe that the idle flag is not
1062 		 * set even though the ring is empty. So double
1063 		 * check before giving up.
1064 		 */
1065 		if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1066 		    (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1067 			err = -ETIMEDOUT;
1068 	}
1069 
1070 	return err;
1071 }
1072 
1073 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1074 {
1075 	ENGINE_TRACE(engine, "\n");
1076 
1077 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1078 }
1079 
1080 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1081 {
1082 	switch (type) {
1083 	case I915_CACHE_NONE: return " uncached";
1084 	case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1085 	case I915_CACHE_L3_LLC: return " L3+LLC";
1086 	case I915_CACHE_WT: return " WT";
1087 	default: return "";
1088 	}
1089 }
1090 
1091 static u32
1092 read_subslice_reg(const struct intel_engine_cs *engine,
1093 		  int slice, int subslice, i915_reg_t reg)
1094 {
1095 	struct drm_i915_private *i915 = engine->i915;
1096 	struct intel_uncore *uncore = engine->uncore;
1097 	u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1098 	enum forcewake_domains fw_domains;
1099 
1100 	if (INTEL_GEN(i915) >= 11) {
1101 		mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1102 		mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1103 	} else {
1104 		mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1105 		mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1106 	}
1107 
1108 	fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1109 						    FW_REG_READ);
1110 	fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1111 						     GEN8_MCR_SELECTOR,
1112 						     FW_REG_READ | FW_REG_WRITE);
1113 
1114 	spin_lock_irq(&uncore->lock);
1115 	intel_uncore_forcewake_get__locked(uncore, fw_domains);
1116 
1117 	old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1118 
1119 	mcr &= ~mcr_mask;
1120 	mcr |= mcr_ss;
1121 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1122 
1123 	val = intel_uncore_read_fw(uncore, reg);
1124 
1125 	mcr &= ~mcr_mask;
1126 	mcr |= old_mcr & mcr_mask;
1127 
1128 	intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1129 
1130 	intel_uncore_forcewake_put__locked(uncore, fw_domains);
1131 	spin_unlock_irq(&uncore->lock);
1132 
1133 	return val;
1134 }
1135 
1136 /* NB: please notice the memset */
1137 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1138 			       struct intel_instdone *instdone)
1139 {
1140 	struct drm_i915_private *i915 = engine->i915;
1141 	const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1142 	struct intel_uncore *uncore = engine->uncore;
1143 	u32 mmio_base = engine->mmio_base;
1144 	int slice;
1145 	int subslice;
1146 
1147 	memset(instdone, 0, sizeof(*instdone));
1148 
1149 	switch (INTEL_GEN(i915)) {
1150 	default:
1151 		instdone->instdone =
1152 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1153 
1154 		if (engine->id != RCS0)
1155 			break;
1156 
1157 		instdone->slice_common =
1158 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1159 		if (INTEL_GEN(i915) >= 12) {
1160 			instdone->slice_common_extra[0] =
1161 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1162 			instdone->slice_common_extra[1] =
1163 				intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1164 		}
1165 		for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1166 			instdone->sampler[slice][subslice] =
1167 				read_subslice_reg(engine, slice, subslice,
1168 						  GEN7_SAMPLER_INSTDONE);
1169 			instdone->row[slice][subslice] =
1170 				read_subslice_reg(engine, slice, subslice,
1171 						  GEN7_ROW_INSTDONE);
1172 		}
1173 		break;
1174 	case 7:
1175 		instdone->instdone =
1176 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1177 
1178 		if (engine->id != RCS0)
1179 			break;
1180 
1181 		instdone->slice_common =
1182 			intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1183 		instdone->sampler[0][0] =
1184 			intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1185 		instdone->row[0][0] =
1186 			intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1187 
1188 		break;
1189 	case 6:
1190 	case 5:
1191 	case 4:
1192 		instdone->instdone =
1193 			intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1194 		if (engine->id == RCS0)
1195 			/* HACK: Using the wrong struct member */
1196 			instdone->slice_common =
1197 				intel_uncore_read(uncore, GEN4_INSTDONE1);
1198 		break;
1199 	case 3:
1200 	case 2:
1201 		instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1202 		break;
1203 	}
1204 }
1205 
1206 static bool ring_is_idle(struct intel_engine_cs *engine)
1207 {
1208 	bool idle = true;
1209 
1210 	if (I915_SELFTEST_ONLY(!engine->mmio_base))
1211 		return true;
1212 
1213 	if (!intel_engine_pm_get_if_awake(engine))
1214 		return true;
1215 
1216 	/* First check that no commands are left in the ring */
1217 	if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1218 	    (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1219 		idle = false;
1220 
1221 	/* No bit for gen2, so assume the CS parser is idle */
1222 	if (INTEL_GEN(engine->i915) > 2 &&
1223 	    !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1224 		idle = false;
1225 
1226 	intel_engine_pm_put(engine);
1227 
1228 	return idle;
1229 }
1230 
1231 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1232 {
1233 	struct tasklet_struct *t = &engine->execlists.tasklet;
1234 
1235 	if (!t->callback)
1236 		return;
1237 
1238 	local_bh_disable();
1239 	if (tasklet_trylock(t)) {
1240 		/* Must wait for any GPU reset in progress. */
1241 		if (__tasklet_is_enabled(t))
1242 			t->callback(t);
1243 		tasklet_unlock(t);
1244 	}
1245 	local_bh_enable();
1246 
1247 	/* Synchronise and wait for the tasklet on another CPU */
1248 	if (sync)
1249 		tasklet_unlock_wait(t);
1250 }
1251 
1252 /**
1253  * intel_engine_is_idle() - Report if the engine has finished process all work
1254  * @engine: the intel_engine_cs
1255  *
1256  * Return true if there are no requests pending, nothing left to be submitted
1257  * to hardware, and that the engine is idle.
1258  */
1259 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1260 {
1261 	/* More white lies, if wedged, hw state is inconsistent */
1262 	if (intel_gt_is_wedged(engine->gt))
1263 		return true;
1264 
1265 	if (!intel_engine_pm_is_awake(engine))
1266 		return true;
1267 
1268 	/* Waiting to drain ELSP? */
1269 	synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
1270 	intel_engine_flush_submission(engine);
1271 
1272 	/* ELSP is empty, but there are ready requests? E.g. after reset */
1273 	if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1274 		return false;
1275 
1276 	/* Ring stopped? */
1277 	return ring_is_idle(engine);
1278 }
1279 
1280 bool intel_engines_are_idle(struct intel_gt *gt)
1281 {
1282 	struct intel_engine_cs *engine;
1283 	enum intel_engine_id id;
1284 
1285 	/*
1286 	 * If the driver is wedged, HW state may be very inconsistent and
1287 	 * report that it is still busy, even though we have stopped using it.
1288 	 */
1289 	if (intel_gt_is_wedged(gt))
1290 		return true;
1291 
1292 	/* Already parked (and passed an idleness test); must still be idle */
1293 	if (!READ_ONCE(gt->awake))
1294 		return true;
1295 
1296 	for_each_engine(engine, gt, id) {
1297 		if (!intel_engine_is_idle(engine))
1298 			return false;
1299 	}
1300 
1301 	return true;
1302 }
1303 
1304 void intel_engines_reset_default_submission(struct intel_gt *gt)
1305 {
1306 	struct intel_engine_cs *engine;
1307 	enum intel_engine_id id;
1308 
1309 	for_each_engine(engine, gt, id) {
1310 		if (engine->sanitize)
1311 			engine->sanitize(engine);
1312 
1313 		engine->set_default_submission(engine);
1314 	}
1315 }
1316 
1317 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1318 {
1319 	switch (INTEL_GEN(engine->i915)) {
1320 	case 2:
1321 		return false; /* uses physical not virtual addresses */
1322 	case 3:
1323 		/* maybe only uses physical not virtual addresses */
1324 		return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1325 	case 4:
1326 		return !IS_I965G(engine->i915); /* who knows! */
1327 	case 6:
1328 		return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1329 	default:
1330 		return true;
1331 	}
1332 }
1333 
1334 static struct intel_timeline *get_timeline(struct i915_request *rq)
1335 {
1336 	struct intel_timeline *tl;
1337 
1338 	/*
1339 	 * Even though we are holding the engine->active.lock here, there
1340 	 * is no control over the submission queue per-se and we are
1341 	 * inspecting the active state at a random point in time, with an
1342 	 * unknown queue. Play safe and make sure the timeline remains valid.
1343 	 * (Only being used for pretty printing, one extra kref shouldn't
1344 	 * cause a camel stampede!)
1345 	 */
1346 	rcu_read_lock();
1347 	tl = rcu_dereference(rq->timeline);
1348 	if (!kref_get_unless_zero(&tl->kref))
1349 		tl = NULL;
1350 	rcu_read_unlock();
1351 
1352 	return tl;
1353 }
1354 
1355 static int print_ring(char *buf, int sz, struct i915_request *rq)
1356 {
1357 	int len = 0;
1358 
1359 	if (!i915_request_signaled(rq)) {
1360 		struct intel_timeline *tl = get_timeline(rq);
1361 
1362 		len = scnprintf(buf, sz,
1363 				"ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1364 				i915_ggtt_offset(rq->ring->vma),
1365 				tl ? tl->hwsp_offset : 0,
1366 				hwsp_seqno(rq),
1367 				DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1368 						      1000 * 1000));
1369 
1370 		if (tl)
1371 			intel_timeline_put(tl);
1372 	}
1373 
1374 	return len;
1375 }
1376 
1377 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1378 {
1379 	const size_t rowsize = 8 * sizeof(u32);
1380 	const void *prev = NULL;
1381 	bool skip = false;
1382 	size_t pos;
1383 
1384 	for (pos = 0; pos < len; pos += rowsize) {
1385 		char line[128];
1386 
1387 		if (prev && !memcmp(prev, buf + pos, rowsize)) {
1388 			if (!skip) {
1389 				drm_printf(m, "*\n");
1390 				skip = true;
1391 			}
1392 			continue;
1393 		}
1394 
1395 		WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1396 						rowsize, sizeof(u32),
1397 						line, sizeof(line),
1398 						false) >= sizeof(line));
1399 		drm_printf(m, "[%04zx] %s\n", pos, line);
1400 
1401 		prev = buf + pos;
1402 		skip = false;
1403 	}
1404 }
1405 
1406 static const char *repr_timer(const struct timer_list *t)
1407 {
1408 	if (!READ_ONCE(t->expires))
1409 		return "inactive";
1410 
1411 	if (timer_pending(t))
1412 		return "active";
1413 
1414 	return "expired";
1415 }
1416 
1417 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1418 					 struct drm_printer *m)
1419 {
1420 	struct drm_i915_private *dev_priv = engine->i915;
1421 	struct intel_engine_execlists * const execlists = &engine->execlists;
1422 	u64 addr;
1423 
1424 	if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1425 		drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1426 	if (HAS_EXECLISTS(dev_priv)) {
1427 		drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1428 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1429 		drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1430 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1431 	}
1432 	drm_printf(m, "\tRING_START: 0x%08x\n",
1433 		   ENGINE_READ(engine, RING_START));
1434 	drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1435 		   ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1436 	drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1437 		   ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1438 	drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1439 		   ENGINE_READ(engine, RING_CTL),
1440 		   ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1441 	if (INTEL_GEN(engine->i915) > 2) {
1442 		drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1443 			   ENGINE_READ(engine, RING_MI_MODE),
1444 			   ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1445 	}
1446 
1447 	if (INTEL_GEN(dev_priv) >= 6) {
1448 		drm_printf(m, "\tRING_IMR:   0x%08x\n",
1449 			   ENGINE_READ(engine, RING_IMR));
1450 		drm_printf(m, "\tRING_ESR:   0x%08x\n",
1451 			   ENGINE_READ(engine, RING_ESR));
1452 		drm_printf(m, "\tRING_EMR:   0x%08x\n",
1453 			   ENGINE_READ(engine, RING_EMR));
1454 		drm_printf(m, "\tRING_EIR:   0x%08x\n",
1455 			   ENGINE_READ(engine, RING_EIR));
1456 	}
1457 
1458 	addr = intel_engine_get_active_head(engine);
1459 	drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1460 		   upper_32_bits(addr), lower_32_bits(addr));
1461 	addr = intel_engine_get_last_batch_head(engine);
1462 	drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1463 		   upper_32_bits(addr), lower_32_bits(addr));
1464 	if (INTEL_GEN(dev_priv) >= 8)
1465 		addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1466 	else if (INTEL_GEN(dev_priv) >= 4)
1467 		addr = ENGINE_READ(engine, RING_DMA_FADD);
1468 	else
1469 		addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1470 	drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1471 		   upper_32_bits(addr), lower_32_bits(addr));
1472 	if (INTEL_GEN(dev_priv) >= 4) {
1473 		drm_printf(m, "\tIPEIR: 0x%08x\n",
1474 			   ENGINE_READ(engine, RING_IPEIR));
1475 		drm_printf(m, "\tIPEHR: 0x%08x\n",
1476 			   ENGINE_READ(engine, RING_IPEHR));
1477 	} else {
1478 		drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1479 		drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1480 	}
1481 
1482 	if (intel_engine_in_guc_submission_mode(engine)) {
1483 		/* nothing to print yet */
1484 	} else if (HAS_EXECLISTS(dev_priv)) {
1485 		struct i915_request * const *port, *rq;
1486 		const u32 *hws =
1487 			&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1488 		const u8 num_entries = execlists->csb_size;
1489 		unsigned int idx;
1490 		u8 read, write;
1491 
1492 		drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1493 			   yesno(test_bit(TASKLET_STATE_SCHED,
1494 					  &engine->execlists.tasklet.state)),
1495 			   enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1496 			   repr_timer(&engine->execlists.preempt),
1497 			   repr_timer(&engine->execlists.timer));
1498 
1499 		read = execlists->csb_head;
1500 		write = READ_ONCE(*execlists->csb_write);
1501 
1502 		drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1503 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1504 			   ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1505 			   read, write, num_entries);
1506 
1507 		if (read >= num_entries)
1508 			read = 0;
1509 		if (write >= num_entries)
1510 			write = 0;
1511 		if (read > write)
1512 			write += num_entries;
1513 		while (read < write) {
1514 			idx = ++read % num_entries;
1515 			drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1516 				   idx, hws[idx * 2], hws[idx * 2 + 1]);
1517 		}
1518 
1519 		execlists_active_lock_bh(execlists);
1520 		rcu_read_lock();
1521 		for (port = execlists->active; (rq = *port); port++) {
1522 			char hdr[160];
1523 			int len;
1524 
1525 			len = scnprintf(hdr, sizeof(hdr),
1526 					"\t\tActive[%d]:  ccid:%08x%s%s, ",
1527 					(int)(port - execlists->active),
1528 					rq->context->lrc.ccid,
1529 					intel_context_is_closed(rq->context) ? "!" : "",
1530 					intel_context_is_banned(rq->context) ? "*" : "");
1531 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1532 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1533 			i915_request_show(m, rq, hdr, 0);
1534 		}
1535 		for (port = execlists->pending; (rq = *port); port++) {
1536 			char hdr[160];
1537 			int len;
1538 
1539 			len = scnprintf(hdr, sizeof(hdr),
1540 					"\t\tPending[%d]: ccid:%08x%s%s, ",
1541 					(int)(port - execlists->pending),
1542 					rq->context->lrc.ccid,
1543 					intel_context_is_closed(rq->context) ? "!" : "",
1544 					intel_context_is_banned(rq->context) ? "*" : "");
1545 			len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1546 			scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1547 			i915_request_show(m, rq, hdr, 0);
1548 		}
1549 		rcu_read_unlock();
1550 		execlists_active_unlock_bh(execlists);
1551 	} else if (INTEL_GEN(dev_priv) > 6) {
1552 		drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1553 			   ENGINE_READ(engine, RING_PP_DIR_BASE));
1554 		drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1555 			   ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1556 		drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1557 			   ENGINE_READ(engine, RING_PP_DIR_DCLV));
1558 	}
1559 }
1560 
1561 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1562 {
1563 	void *ring;
1564 	int size;
1565 
1566 	drm_printf(m,
1567 		   "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1568 		   rq->head, rq->postfix, rq->tail,
1569 		   rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1570 		   rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1571 
1572 	size = rq->tail - rq->head;
1573 	if (rq->tail < rq->head)
1574 		size += rq->ring->size;
1575 
1576 	ring = kmalloc(size, GFP_ATOMIC);
1577 	if (ring) {
1578 		const void *vaddr = rq->ring->vaddr;
1579 		unsigned int head = rq->head;
1580 		unsigned int len = 0;
1581 
1582 		if (rq->tail < head) {
1583 			len = rq->ring->size - head;
1584 			memcpy(ring, vaddr + head, len);
1585 			head = 0;
1586 		}
1587 		memcpy(ring + len, vaddr + head, size - len);
1588 
1589 		hexdump(m, ring, size);
1590 		kfree(ring);
1591 	}
1592 }
1593 
1594 static unsigned long list_count(struct list_head *list)
1595 {
1596 	struct list_head *pos;
1597 	unsigned long count = 0;
1598 
1599 	list_for_each(pos, list)
1600 		count++;
1601 
1602 	return count;
1603 }
1604 
1605 static unsigned long read_ul(void *p, size_t x)
1606 {
1607 	return *(unsigned long *)(p + x);
1608 }
1609 
1610 static void print_properties(struct intel_engine_cs *engine,
1611 			     struct drm_printer *m)
1612 {
1613 	static const struct pmap {
1614 		size_t offset;
1615 		const char *name;
1616 	} props[] = {
1617 #define P(x) { \
1618 	.offset = offsetof(typeof(engine->props), x), \
1619 	.name = #x \
1620 }
1621 		P(heartbeat_interval_ms),
1622 		P(max_busywait_duration_ns),
1623 		P(preempt_timeout_ms),
1624 		P(stop_timeout_ms),
1625 		P(timeslice_duration_ms),
1626 
1627 		{},
1628 #undef P
1629 	};
1630 	const struct pmap *p;
1631 
1632 	drm_printf(m, "\tProperties:\n");
1633 	for (p = props; p->name; p++)
1634 		drm_printf(m, "\t\t%s: %lu [default %lu]\n",
1635 			   p->name,
1636 			   read_ul(&engine->props, p->offset),
1637 			   read_ul(&engine->defaults, p->offset));
1638 }
1639 
1640 void intel_engine_dump(struct intel_engine_cs *engine,
1641 		       struct drm_printer *m,
1642 		       const char *header, ...)
1643 {
1644 	struct i915_gpu_error * const error = &engine->i915->gpu_error;
1645 	struct i915_request *rq;
1646 	intel_wakeref_t wakeref;
1647 	unsigned long flags;
1648 	ktime_t dummy;
1649 
1650 	if (header) {
1651 		va_list ap;
1652 
1653 		va_start(ap, header);
1654 		drm_vprintf(m, header, &ap);
1655 		va_end(ap);
1656 	}
1657 
1658 	if (intel_gt_is_wedged(engine->gt))
1659 		drm_printf(m, "*** WEDGED ***\n");
1660 
1661 	drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1662 	drm_printf(m, "\tBarriers?: %s\n",
1663 		   yesno(!llist_empty(&engine->barrier_tasks)));
1664 	drm_printf(m, "\tLatency: %luus\n",
1665 		   ewma__engine_latency_read(&engine->latency));
1666 	if (intel_engine_supports_stats(engine))
1667 		drm_printf(m, "\tRuntime: %llums\n",
1668 			   ktime_to_ms(intel_engine_get_busy_time(engine,
1669 								  &dummy)));
1670 	drm_printf(m, "\tForcewake: %x domains, %d active\n",
1671 		   engine->fw_domain, READ_ONCE(engine->fw_active));
1672 
1673 	rcu_read_lock();
1674 	rq = READ_ONCE(engine->heartbeat.systole);
1675 	if (rq)
1676 		drm_printf(m, "\tHeartbeat: %d ms ago\n",
1677 			   jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1678 	rcu_read_unlock();
1679 	drm_printf(m, "\tReset count: %d (global %d)\n",
1680 		   i915_reset_engine_count(error, engine),
1681 		   i915_reset_count(error));
1682 	print_properties(engine, m);
1683 
1684 	drm_printf(m, "\tRequests:\n");
1685 
1686 	spin_lock_irqsave(&engine->active.lock, flags);
1687 	rq = intel_engine_find_active_request(engine);
1688 	if (rq) {
1689 		struct intel_timeline *tl = get_timeline(rq);
1690 
1691 		i915_request_show(m, rq, "\t\tactive ", 0);
1692 
1693 		drm_printf(m, "\t\tring->start:  0x%08x\n",
1694 			   i915_ggtt_offset(rq->ring->vma));
1695 		drm_printf(m, "\t\tring->head:   0x%08x\n",
1696 			   rq->ring->head);
1697 		drm_printf(m, "\t\tring->tail:   0x%08x\n",
1698 			   rq->ring->tail);
1699 		drm_printf(m, "\t\tring->emit:   0x%08x\n",
1700 			   rq->ring->emit);
1701 		drm_printf(m, "\t\tring->space:  0x%08x\n",
1702 			   rq->ring->space);
1703 
1704 		if (tl) {
1705 			drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1706 				   tl->hwsp_offset);
1707 			intel_timeline_put(tl);
1708 		}
1709 
1710 		print_request_ring(m, rq);
1711 
1712 		if (rq->context->lrc_reg_state) {
1713 			drm_printf(m, "Logical Ring Context:\n");
1714 			hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1715 		}
1716 	}
1717 	drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1718 	spin_unlock_irqrestore(&engine->active.lock, flags);
1719 
1720 	drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1721 	wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1722 	if (wakeref) {
1723 		intel_engine_print_registers(engine, m);
1724 		intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1725 	} else {
1726 		drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1727 	}
1728 
1729 	intel_execlists_show_requests(engine, m, i915_request_show, 8);
1730 
1731 	drm_printf(m, "HWSP:\n");
1732 	hexdump(m, engine->status_page.addr, PAGE_SIZE);
1733 
1734 	drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1735 
1736 	intel_engine_print_breadcrumbs(engine, m);
1737 }
1738 
1739 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1740 					    ktime_t *now)
1741 {
1742 	ktime_t total = engine->stats.total;
1743 
1744 	/*
1745 	 * If the engine is executing something at the moment
1746 	 * add it to the total.
1747 	 */
1748 	*now = ktime_get();
1749 	if (READ_ONCE(engine->stats.active))
1750 		total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1751 
1752 	return total;
1753 }
1754 
1755 /**
1756  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1757  * @engine: engine to report on
1758  * @now: monotonic timestamp of sampling
1759  *
1760  * Returns accumulated time @engine was busy since engine stats were enabled.
1761  */
1762 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1763 {
1764 	unsigned int seq;
1765 	ktime_t total;
1766 
1767 	do {
1768 		seq = read_seqcount_begin(&engine->stats.lock);
1769 		total = __intel_engine_get_busy_time(engine, now);
1770 	} while (read_seqcount_retry(&engine->stats.lock, seq));
1771 
1772 	return total;
1773 }
1774 
1775 static bool match_ring(struct i915_request *rq)
1776 {
1777 	u32 ring = ENGINE_READ(rq->engine, RING_START);
1778 
1779 	return ring == i915_ggtt_offset(rq->ring->vma);
1780 }
1781 
1782 struct i915_request *
1783 intel_engine_find_active_request(struct intel_engine_cs *engine)
1784 {
1785 	struct i915_request *request, *active = NULL;
1786 
1787 	/*
1788 	 * We are called by the error capture, reset and to dump engine
1789 	 * state at random points in time. In particular, note that neither is
1790 	 * crucially ordered with an interrupt. After a hang, the GPU is dead
1791 	 * and we assume that no more writes can happen (we waited long enough
1792 	 * for all writes that were in transaction to be flushed) - adding an
1793 	 * extra delay for a recent interrupt is pointless. Hence, we do
1794 	 * not need an engine->irq_seqno_barrier() before the seqno reads.
1795 	 * At all other times, we must assume the GPU is still running, but
1796 	 * we only care about the snapshot of this moment.
1797 	 */
1798 	lockdep_assert_held(&engine->active.lock);
1799 
1800 	rcu_read_lock();
1801 	request = execlists_active(&engine->execlists);
1802 	if (request) {
1803 		struct intel_timeline *tl = request->context->timeline;
1804 
1805 		list_for_each_entry_from_reverse(request, &tl->requests, link) {
1806 			if (__i915_request_is_complete(request))
1807 				break;
1808 
1809 			active = request;
1810 		}
1811 	}
1812 	rcu_read_unlock();
1813 	if (active)
1814 		return active;
1815 
1816 	list_for_each_entry(request, &engine->active.requests, sched.link) {
1817 		if (__i915_request_is_complete(request))
1818 			continue;
1819 
1820 		if (!__i915_request_has_started(request))
1821 			continue;
1822 
1823 		/* More than one preemptible request may match! */
1824 		if (!match_ring(request))
1825 			continue;
1826 
1827 		active = request;
1828 		break;
1829 	}
1830 
1831 	return active;
1832 }
1833 
1834 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1835 #include "mock_engine.c"
1836 #include "selftest_engine.c"
1837 #include "selftest_engine_cs.c"
1838 #endif
1839