1 /* 2 * Copyright © 2016 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <drm/drm_print.h> 26 27 #include "gem/i915_gem_context.h" 28 29 #include "i915_drv.h" 30 31 #include "intel_breadcrumbs.h" 32 #include "intel_context.h" 33 #include "intel_engine.h" 34 #include "intel_engine_pm.h" 35 #include "intel_engine_user.h" 36 #include "intel_gt.h" 37 #include "intel_gt_requests.h" 38 #include "intel_gt_pm.h" 39 #include "intel_lrc.h" 40 #include "intel_reset.h" 41 #include "intel_ring.h" 42 43 /* Haswell does have the CXT_SIZE register however it does not appear to be 44 * valid. Now, docs explain in dwords what is in the context object. The full 45 * size is 70720 bytes, however, the power context and execlist context will 46 * never be saved (power context is stored elsewhere, and execlists don't work 47 * on HSW) - so the final size, including the extra state required for the 48 * Resource Streamer, is 66944 bytes, which rounds to 17 pages. 49 */ 50 #define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE) 51 52 #define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 53 #define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE) 54 #define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE) 55 #define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE) 56 #define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE) 57 58 #define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE) 59 60 #define MAX_MMIO_BASES 3 61 struct engine_info { 62 unsigned int hw_id; 63 u8 class; 64 u8 instance; 65 /* mmio bases table *must* be sorted in reverse gen order */ 66 struct engine_mmio_base { 67 u32 gen : 8; 68 u32 base : 24; 69 } mmio_bases[MAX_MMIO_BASES]; 70 }; 71 72 static const struct engine_info intel_engines[] = { 73 [RCS0] = { 74 .hw_id = RCS0_HW, 75 .class = RENDER_CLASS, 76 .instance = 0, 77 .mmio_bases = { 78 { .gen = 1, .base = RENDER_RING_BASE } 79 }, 80 }, 81 [BCS0] = { 82 .hw_id = BCS0_HW, 83 .class = COPY_ENGINE_CLASS, 84 .instance = 0, 85 .mmio_bases = { 86 { .gen = 6, .base = BLT_RING_BASE } 87 }, 88 }, 89 [VCS0] = { 90 .hw_id = VCS0_HW, 91 .class = VIDEO_DECODE_CLASS, 92 .instance = 0, 93 .mmio_bases = { 94 { .gen = 11, .base = GEN11_BSD_RING_BASE }, 95 { .gen = 6, .base = GEN6_BSD_RING_BASE }, 96 { .gen = 4, .base = BSD_RING_BASE } 97 }, 98 }, 99 [VCS1] = { 100 .hw_id = VCS1_HW, 101 .class = VIDEO_DECODE_CLASS, 102 .instance = 1, 103 .mmio_bases = { 104 { .gen = 11, .base = GEN11_BSD2_RING_BASE }, 105 { .gen = 8, .base = GEN8_BSD2_RING_BASE } 106 }, 107 }, 108 [VCS2] = { 109 .hw_id = VCS2_HW, 110 .class = VIDEO_DECODE_CLASS, 111 .instance = 2, 112 .mmio_bases = { 113 { .gen = 11, .base = GEN11_BSD3_RING_BASE } 114 }, 115 }, 116 [VCS3] = { 117 .hw_id = VCS3_HW, 118 .class = VIDEO_DECODE_CLASS, 119 .instance = 3, 120 .mmio_bases = { 121 { .gen = 11, .base = GEN11_BSD4_RING_BASE } 122 }, 123 }, 124 [VECS0] = { 125 .hw_id = VECS0_HW, 126 .class = VIDEO_ENHANCEMENT_CLASS, 127 .instance = 0, 128 .mmio_bases = { 129 { .gen = 11, .base = GEN11_VEBOX_RING_BASE }, 130 { .gen = 7, .base = VEBOX_RING_BASE } 131 }, 132 }, 133 [VECS1] = { 134 .hw_id = VECS1_HW, 135 .class = VIDEO_ENHANCEMENT_CLASS, 136 .instance = 1, 137 .mmio_bases = { 138 { .gen = 11, .base = GEN11_VEBOX2_RING_BASE } 139 }, 140 }, 141 }; 142 143 /** 144 * intel_engine_context_size() - return the size of the context for an engine 145 * @gt: the gt 146 * @class: engine class 147 * 148 * Each engine class may require a different amount of space for a context 149 * image. 150 * 151 * Return: size (in bytes) of an engine class specific context image 152 * 153 * Note: this size includes the HWSP, which is part of the context image 154 * in LRC mode, but does not include the "shared data page" used with 155 * GuC submission. The caller should account for this if using the GuC. 156 */ 157 u32 intel_engine_context_size(struct intel_gt *gt, u8 class) 158 { 159 struct intel_uncore *uncore = gt->uncore; 160 u32 cxt_size; 161 162 BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE); 163 164 switch (class) { 165 case RENDER_CLASS: 166 switch (INTEL_GEN(gt->i915)) { 167 default: 168 MISSING_CASE(INTEL_GEN(gt->i915)); 169 return DEFAULT_LR_CONTEXT_RENDER_SIZE; 170 case 12: 171 case 11: 172 return GEN11_LR_CONTEXT_RENDER_SIZE; 173 case 10: 174 return GEN10_LR_CONTEXT_RENDER_SIZE; 175 case 9: 176 return GEN9_LR_CONTEXT_RENDER_SIZE; 177 case 8: 178 return GEN8_LR_CONTEXT_RENDER_SIZE; 179 case 7: 180 if (IS_HASWELL(gt->i915)) 181 return HSW_CXT_TOTAL_SIZE; 182 183 cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE); 184 return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64, 185 PAGE_SIZE); 186 case 6: 187 cxt_size = intel_uncore_read(uncore, CXT_SIZE); 188 return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64, 189 PAGE_SIZE); 190 case 5: 191 case 4: 192 /* 193 * There is a discrepancy here between the size reported 194 * by the register and the size of the context layout 195 * in the docs. Both are described as authorative! 196 * 197 * The discrepancy is on the order of a few cachelines, 198 * but the total is under one page (4k), which is our 199 * minimum allocation anyway so it should all come 200 * out in the wash. 201 */ 202 cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1; 203 drm_dbg(>->i915->drm, 204 "gen%d CXT_SIZE = %d bytes [0x%08x]\n", 205 INTEL_GEN(gt->i915), cxt_size * 64, 206 cxt_size - 1); 207 return round_up(cxt_size * 64, PAGE_SIZE); 208 case 3: 209 case 2: 210 /* For the special day when i810 gets merged. */ 211 case 1: 212 return 0; 213 } 214 break; 215 default: 216 MISSING_CASE(class); 217 fallthrough; 218 case VIDEO_DECODE_CLASS: 219 case VIDEO_ENHANCEMENT_CLASS: 220 case COPY_ENGINE_CLASS: 221 if (INTEL_GEN(gt->i915) < 8) 222 return 0; 223 return GEN8_LR_CONTEXT_OTHER_SIZE; 224 } 225 } 226 227 static u32 __engine_mmio_base(struct drm_i915_private *i915, 228 const struct engine_mmio_base *bases) 229 { 230 int i; 231 232 for (i = 0; i < MAX_MMIO_BASES; i++) 233 if (INTEL_GEN(i915) >= bases[i].gen) 234 break; 235 236 GEM_BUG_ON(i == MAX_MMIO_BASES); 237 GEM_BUG_ON(!bases[i].base); 238 239 return bases[i].base; 240 } 241 242 static void __sprint_engine_name(struct intel_engine_cs *engine) 243 { 244 /* 245 * Before we know what the uABI name for this engine will be, 246 * we still would like to keep track of this engine in the debug logs. 247 * We throw in a ' here as a reminder that this isn't its final name. 248 */ 249 GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u", 250 intel_engine_class_repr(engine->class), 251 engine->instance) >= sizeof(engine->name)); 252 } 253 254 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask) 255 { 256 /* 257 * Though they added more rings on g4x/ilk, they did not add 258 * per-engine HWSTAM until gen6. 259 */ 260 if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS) 261 return; 262 263 if (INTEL_GEN(engine->i915) >= 3) 264 ENGINE_WRITE(engine, RING_HWSTAM, mask); 265 else 266 ENGINE_WRITE16(engine, RING_HWSTAM, mask); 267 } 268 269 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine) 270 { 271 /* Mask off all writes into the unknown HWSP */ 272 intel_engine_set_hwsp_writemask(engine, ~0u); 273 } 274 275 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id) 276 { 277 const struct engine_info *info = &intel_engines[id]; 278 struct drm_i915_private *i915 = gt->i915; 279 struct intel_engine_cs *engine; 280 281 BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH)); 282 BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH)); 283 284 if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine))) 285 return -EINVAL; 286 287 if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS)) 288 return -EINVAL; 289 290 if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE)) 291 return -EINVAL; 292 293 if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance])) 294 return -EINVAL; 295 296 engine = kzalloc(sizeof(*engine), GFP_KERNEL); 297 if (!engine) 298 return -ENOMEM; 299 300 BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES); 301 302 engine->id = id; 303 engine->legacy_idx = INVALID_ENGINE; 304 engine->mask = BIT(id); 305 engine->i915 = i915; 306 engine->gt = gt; 307 engine->uncore = gt->uncore; 308 engine->hw_id = engine->guc_id = info->hw_id; 309 engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases); 310 311 engine->class = info->class; 312 engine->instance = info->instance; 313 __sprint_engine_name(engine); 314 315 engine->props.heartbeat_interval_ms = 316 CONFIG_DRM_I915_HEARTBEAT_INTERVAL; 317 engine->props.max_busywait_duration_ns = 318 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT; 319 engine->props.preempt_timeout_ms = 320 CONFIG_DRM_I915_PREEMPT_TIMEOUT; 321 engine->props.stop_timeout_ms = 322 CONFIG_DRM_I915_STOP_TIMEOUT; 323 engine->props.timeslice_duration_ms = 324 CONFIG_DRM_I915_TIMESLICE_DURATION; 325 326 /* Override to uninterruptible for OpenCL workloads. */ 327 if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS) 328 engine->props.preempt_timeout_ms = 0; 329 330 engine->defaults = engine->props; /* never to change again */ 331 332 engine->context_size = intel_engine_context_size(gt, engine->class); 333 if (WARN_ON(engine->context_size > BIT(20))) 334 engine->context_size = 0; 335 if (engine->context_size) 336 DRIVER_CAPS(i915)->has_logical_contexts = true; 337 338 /* Nothing to do here, execute in order of dependencies */ 339 engine->schedule = NULL; 340 341 ewma__engine_latency_init(&engine->latency); 342 seqlock_init(&engine->stats.lock); 343 344 ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier); 345 346 /* Scrub mmio state on takeover */ 347 intel_engine_sanitize_mmio(engine); 348 349 gt->engine_class[info->class][info->instance] = engine; 350 gt->engine[id] = engine; 351 352 return 0; 353 } 354 355 static void __setup_engine_capabilities(struct intel_engine_cs *engine) 356 { 357 struct drm_i915_private *i915 = engine->i915; 358 359 if (engine->class == VIDEO_DECODE_CLASS) { 360 /* 361 * HEVC support is present on first engine instance 362 * before Gen11 and on all instances afterwards. 363 */ 364 if (INTEL_GEN(i915) >= 11 || 365 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 366 engine->uabi_capabilities |= 367 I915_VIDEO_CLASS_CAPABILITY_HEVC; 368 369 /* 370 * SFC block is present only on even logical engine 371 * instances. 372 */ 373 if ((INTEL_GEN(i915) >= 11 && 374 (engine->gt->info.vdbox_sfc_access & 375 BIT(engine->instance))) || 376 (INTEL_GEN(i915) >= 9 && engine->instance == 0)) 377 engine->uabi_capabilities |= 378 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 379 } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) { 380 if (INTEL_GEN(i915) >= 9) 381 engine->uabi_capabilities |= 382 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC; 383 } 384 } 385 386 static void intel_setup_engine_capabilities(struct intel_gt *gt) 387 { 388 struct intel_engine_cs *engine; 389 enum intel_engine_id id; 390 391 for_each_engine(engine, gt, id) 392 __setup_engine_capabilities(engine); 393 } 394 395 /** 396 * intel_engines_release() - free the resources allocated for Command Streamers 397 * @gt: pointer to struct intel_gt 398 */ 399 void intel_engines_release(struct intel_gt *gt) 400 { 401 struct intel_engine_cs *engine; 402 enum intel_engine_id id; 403 404 /* 405 * Before we release the resources held by engine, we must be certain 406 * that the HW is no longer accessing them -- having the GPU scribble 407 * to or read from a page being used for something else causes no end 408 * of fun. 409 * 410 * The GPU should be reset by this point, but assume the worst just 411 * in case we aborted before completely initialising the engines. 412 */ 413 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 414 if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display) 415 __intel_gt_reset(gt, ALL_ENGINES); 416 417 /* Decouple the backend; but keep the layout for late GPU resets */ 418 for_each_engine(engine, gt, id) { 419 if (!engine->release) 420 continue; 421 422 intel_wakeref_wait_for_idle(&engine->wakeref); 423 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 424 425 engine->release(engine); 426 engine->release = NULL; 427 428 memset(&engine->reset, 0, sizeof(engine->reset)); 429 } 430 } 431 432 void intel_engine_free_request_pool(struct intel_engine_cs *engine) 433 { 434 if (!engine->request_pool) 435 return; 436 437 kmem_cache_free(i915_request_slab_cache(), engine->request_pool); 438 } 439 440 void intel_engines_free(struct intel_gt *gt) 441 { 442 struct intel_engine_cs *engine; 443 enum intel_engine_id id; 444 445 /* Free the requests! dma-resv keeps fences around for an eternity */ 446 rcu_barrier(); 447 448 for_each_engine(engine, gt, id) { 449 intel_engine_free_request_pool(engine); 450 kfree(engine); 451 gt->engine[id] = NULL; 452 } 453 } 454 455 /* 456 * Determine which engines are fused off in our particular hardware. 457 * Note that we have a catch-22 situation where we need to be able to access 458 * the blitter forcewake domain to read the engine fuses, but at the same time 459 * we need to know which engines are available on the system to know which 460 * forcewake domains are present. We solve this by intializing the forcewake 461 * domains based on the full engine mask in the platform capabilities before 462 * calling this function and pruning the domains for fused-off engines 463 * afterwards. 464 */ 465 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt) 466 { 467 struct drm_i915_private *i915 = gt->i915; 468 struct intel_gt_info *info = >->info; 469 struct intel_uncore *uncore = gt->uncore; 470 unsigned int logical_vdbox = 0; 471 unsigned int i; 472 u32 media_fuse; 473 u16 vdbox_mask; 474 u16 vebox_mask; 475 476 info->engine_mask = INTEL_INFO(i915)->platform_engine_mask; 477 478 if (INTEL_GEN(i915) < 11) 479 return info->engine_mask; 480 481 media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE); 482 483 vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK; 484 vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >> 485 GEN11_GT_VEBOX_DISABLE_SHIFT; 486 487 for (i = 0; i < I915_MAX_VCS; i++) { 488 if (!HAS_ENGINE(gt, _VCS(i))) { 489 vdbox_mask &= ~BIT(i); 490 continue; 491 } 492 493 if (!(BIT(i) & vdbox_mask)) { 494 info->engine_mask &= ~BIT(_VCS(i)); 495 drm_dbg(&i915->drm, "vcs%u fused off\n", i); 496 continue; 497 } 498 499 /* 500 * In Gen11, only even numbered logical VDBOXes are 501 * hooked up to an SFC (Scaler & Format Converter) unit. 502 * In TGL each VDBOX has access to an SFC. 503 */ 504 if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0) 505 gt->info.vdbox_sfc_access |= BIT(i); 506 } 507 drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n", 508 vdbox_mask, VDBOX_MASK(gt)); 509 GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt)); 510 511 for (i = 0; i < I915_MAX_VECS; i++) { 512 if (!HAS_ENGINE(gt, _VECS(i))) { 513 vebox_mask &= ~BIT(i); 514 continue; 515 } 516 517 if (!(BIT(i) & vebox_mask)) { 518 info->engine_mask &= ~BIT(_VECS(i)); 519 drm_dbg(&i915->drm, "vecs%u fused off\n", i); 520 } 521 } 522 drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n", 523 vebox_mask, VEBOX_MASK(gt)); 524 GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt)); 525 526 return info->engine_mask; 527 } 528 529 /** 530 * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers 531 * @gt: pointer to struct intel_gt 532 * 533 * Return: non-zero if the initialization failed. 534 */ 535 int intel_engines_init_mmio(struct intel_gt *gt) 536 { 537 struct drm_i915_private *i915 = gt->i915; 538 const unsigned int engine_mask = init_engine_mask(gt); 539 unsigned int mask = 0; 540 unsigned int i; 541 int err; 542 543 drm_WARN_ON(&i915->drm, engine_mask == 0); 544 drm_WARN_ON(&i915->drm, engine_mask & 545 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES)); 546 547 if (i915_inject_probe_failure(i915)) 548 return -ENODEV; 549 550 for (i = 0; i < ARRAY_SIZE(intel_engines); i++) { 551 if (!HAS_ENGINE(gt, i)) 552 continue; 553 554 err = intel_engine_setup(gt, i); 555 if (err) 556 goto cleanup; 557 558 mask |= BIT(i); 559 } 560 561 /* 562 * Catch failures to update intel_engines table when the new engines 563 * are added to the driver by a warning and disabling the forgotten 564 * engines. 565 */ 566 if (drm_WARN_ON(&i915->drm, mask != engine_mask)) 567 gt->info.engine_mask = mask; 568 569 gt->info.num_engines = hweight32(mask); 570 571 intel_gt_check_and_clear_faults(gt); 572 573 intel_setup_engine_capabilities(gt); 574 575 intel_uncore_prune_engine_fw_domains(gt->uncore, gt); 576 577 return 0; 578 579 cleanup: 580 intel_engines_free(gt); 581 return err; 582 } 583 584 void intel_engine_init_execlists(struct intel_engine_cs *engine) 585 { 586 struct intel_engine_execlists * const execlists = &engine->execlists; 587 588 execlists->port_mask = 1; 589 GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists))); 590 GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS); 591 592 memset(execlists->pending, 0, sizeof(execlists->pending)); 593 execlists->active = 594 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 595 596 execlists->queue_priority_hint = INT_MIN; 597 execlists->queue = RB_ROOT_CACHED; 598 } 599 600 static void cleanup_status_page(struct intel_engine_cs *engine) 601 { 602 struct i915_vma *vma; 603 604 /* Prevent writes into HWSP after returning the page to the system */ 605 intel_engine_set_hwsp_writemask(engine, ~0u); 606 607 vma = fetch_and_zero(&engine->status_page.vma); 608 if (!vma) 609 return; 610 611 if (!HWS_NEEDS_PHYSICAL(engine->i915)) 612 i915_vma_unpin(vma); 613 614 i915_gem_object_unpin_map(vma->obj); 615 i915_gem_object_put(vma->obj); 616 } 617 618 static int pin_ggtt_status_page(struct intel_engine_cs *engine, 619 struct i915_vma *vma) 620 { 621 unsigned int flags; 622 623 if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt)) 624 /* 625 * On g33, we cannot place HWS above 256MiB, so 626 * restrict its pinning to the low mappable arena. 627 * Though this restriction is not documented for 628 * gen4, gen5, or byt, they also behave similarly 629 * and hang if the HWS is placed at the top of the 630 * GTT. To generalise, it appears that all !llc 631 * platforms have issues with us placing the HWS 632 * above the mappable region (even though we never 633 * actually map it). 634 */ 635 flags = PIN_MAPPABLE; 636 else 637 flags = PIN_HIGH; 638 639 return i915_ggtt_pin(vma, NULL, 0, flags); 640 } 641 642 static int init_status_page(struct intel_engine_cs *engine) 643 { 644 struct drm_i915_gem_object *obj; 645 struct i915_vma *vma; 646 void *vaddr; 647 int ret; 648 649 /* 650 * Though the HWS register does support 36bit addresses, historically 651 * we have had hangs and corruption reported due to wild writes if 652 * the HWS is placed above 4G. We only allow objects to be allocated 653 * in GFP_DMA32 for i965, and no earlier physical address users had 654 * access to more than 4G. 655 */ 656 obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE); 657 if (IS_ERR(obj)) { 658 drm_err(&engine->i915->drm, 659 "Failed to allocate status page\n"); 660 return PTR_ERR(obj); 661 } 662 663 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 664 665 vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL); 666 if (IS_ERR(vma)) { 667 ret = PTR_ERR(vma); 668 goto err; 669 } 670 671 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB); 672 if (IS_ERR(vaddr)) { 673 ret = PTR_ERR(vaddr); 674 goto err; 675 } 676 677 engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE); 678 engine->status_page.vma = vma; 679 680 if (!HWS_NEEDS_PHYSICAL(engine->i915)) { 681 ret = pin_ggtt_status_page(engine, vma); 682 if (ret) 683 goto err_unpin; 684 } 685 686 return 0; 687 688 err_unpin: 689 i915_gem_object_unpin_map(obj); 690 err: 691 i915_gem_object_put(obj); 692 return ret; 693 } 694 695 static int engine_setup_common(struct intel_engine_cs *engine) 696 { 697 int err; 698 699 init_llist_head(&engine->barrier_tasks); 700 701 err = init_status_page(engine); 702 if (err) 703 return err; 704 705 engine->breadcrumbs = intel_breadcrumbs_create(engine); 706 if (!engine->breadcrumbs) { 707 err = -ENOMEM; 708 goto err_status; 709 } 710 711 intel_engine_init_active(engine, ENGINE_PHYSICAL); 712 intel_engine_init_execlists(engine); 713 intel_engine_init_cmd_parser(engine); 714 intel_engine_init__pm(engine); 715 intel_engine_init_retire(engine); 716 717 /* Use the whole device by default */ 718 engine->sseu = 719 intel_sseu_from_device_info(&engine->gt->info.sseu); 720 721 intel_engine_init_workarounds(engine); 722 intel_engine_init_whitelist(engine); 723 intel_engine_init_ctx_wa(engine); 724 725 return 0; 726 727 err_status: 728 cleanup_status_page(engine); 729 return err; 730 } 731 732 struct measure_breadcrumb { 733 struct i915_request rq; 734 struct intel_ring ring; 735 u32 cs[2048]; 736 }; 737 738 static int measure_breadcrumb_dw(struct intel_context *ce) 739 { 740 struct intel_engine_cs *engine = ce->engine; 741 struct measure_breadcrumb *frame; 742 int dw; 743 744 GEM_BUG_ON(!engine->gt->scratch); 745 746 frame = kzalloc(sizeof(*frame), GFP_KERNEL); 747 if (!frame) 748 return -ENOMEM; 749 750 frame->rq.engine = engine; 751 frame->rq.context = ce; 752 rcu_assign_pointer(frame->rq.timeline, ce->timeline); 753 754 frame->ring.vaddr = frame->cs; 755 frame->ring.size = sizeof(frame->cs); 756 frame->ring.wrap = 757 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size); 758 frame->ring.effective_size = frame->ring.size; 759 intel_ring_update_space(&frame->ring); 760 frame->rq.ring = &frame->ring; 761 762 mutex_lock(&ce->timeline->mutex); 763 spin_lock_irq(&engine->active.lock); 764 765 dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs; 766 767 spin_unlock_irq(&engine->active.lock); 768 mutex_unlock(&ce->timeline->mutex); 769 770 GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */ 771 772 kfree(frame); 773 return dw; 774 } 775 776 void 777 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass) 778 { 779 INIT_LIST_HEAD(&engine->active.requests); 780 INIT_LIST_HEAD(&engine->active.hold); 781 782 spin_lock_init(&engine->active.lock); 783 lockdep_set_subclass(&engine->active.lock, subclass); 784 785 /* 786 * Due to an interesting quirk in lockdep's internal debug tracking, 787 * after setting a subclass we must ensure the lock is used. Otherwise, 788 * nr_unused_locks is incremented once too often. 789 */ 790 #ifdef CONFIG_DEBUG_LOCK_ALLOC 791 local_irq_disable(); 792 lock_map_acquire(&engine->active.lock.dep_map); 793 lock_map_release(&engine->active.lock.dep_map); 794 local_irq_enable(); 795 #endif 796 } 797 798 static struct intel_context * 799 create_pinned_context(struct intel_engine_cs *engine, 800 unsigned int hwsp, 801 struct lock_class_key *key, 802 const char *name) 803 { 804 struct intel_context *ce; 805 int err; 806 807 ce = intel_context_create(engine); 808 if (IS_ERR(ce)) 809 return ce; 810 811 __set_bit(CONTEXT_BARRIER_BIT, &ce->flags); 812 ce->timeline = page_pack_bits(NULL, hwsp); 813 814 err = intel_context_pin(ce); /* perma-pin so it is always available */ 815 if (err) { 816 intel_context_put(ce); 817 return ERR_PTR(err); 818 } 819 820 /* 821 * Give our perma-pinned kernel timelines a separate lockdep class, 822 * so that we can use them from within the normal user timelines 823 * should we need to inject GPU operations during their request 824 * construction. 825 */ 826 lockdep_set_class_and_name(&ce->timeline->mutex, key, name); 827 828 return ce; 829 } 830 831 static struct intel_context * 832 create_kernel_context(struct intel_engine_cs *engine) 833 { 834 static struct lock_class_key kernel; 835 836 return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR, 837 &kernel, "kernel_context"); 838 } 839 840 /** 841 * intel_engines_init_common - initialize cengine state which might require hw access 842 * @engine: Engine to initialize. 843 * 844 * Initializes @engine@ structure members shared between legacy and execlists 845 * submission modes which do require hardware access. 846 * 847 * Typcally done at later stages of submission mode specific engine setup. 848 * 849 * Returns zero on success or an error code on failure. 850 */ 851 static int engine_init_common(struct intel_engine_cs *engine) 852 { 853 struct intel_context *ce; 854 int ret; 855 856 engine->set_default_submission(engine); 857 858 /* 859 * We may need to do things with the shrinker which 860 * require us to immediately switch back to the default 861 * context. This can cause a problem as pinning the 862 * default context also requires GTT space which may not 863 * be available. To avoid this we always pin the default 864 * context. 865 */ 866 ce = create_kernel_context(engine); 867 if (IS_ERR(ce)) 868 return PTR_ERR(ce); 869 870 ret = measure_breadcrumb_dw(ce); 871 if (ret < 0) 872 goto err_context; 873 874 engine->emit_fini_breadcrumb_dw = ret; 875 engine->kernel_context = ce; 876 877 return 0; 878 879 err_context: 880 intel_context_put(ce); 881 return ret; 882 } 883 884 int intel_engines_init(struct intel_gt *gt) 885 { 886 int (*setup)(struct intel_engine_cs *engine); 887 struct intel_engine_cs *engine; 888 enum intel_engine_id id; 889 int err; 890 891 if (HAS_EXECLISTS(gt->i915)) 892 setup = intel_execlists_submission_setup; 893 else 894 setup = intel_ring_submission_setup; 895 896 for_each_engine(engine, gt, id) { 897 err = engine_setup_common(engine); 898 if (err) 899 return err; 900 901 err = setup(engine); 902 if (err) 903 return err; 904 905 err = engine_init_common(engine); 906 if (err) 907 return err; 908 909 intel_engine_add_user(engine); 910 } 911 912 return 0; 913 } 914 915 /** 916 * intel_engines_cleanup_common - cleans up the engine state created by 917 * the common initiailizers. 918 * @engine: Engine to cleanup. 919 * 920 * This cleans up everything created by the common helpers. 921 */ 922 void intel_engine_cleanup_common(struct intel_engine_cs *engine) 923 { 924 GEM_BUG_ON(!list_empty(&engine->active.requests)); 925 tasklet_kill(&engine->execlists.tasklet); /* flush the callback */ 926 927 cleanup_status_page(engine); 928 intel_breadcrumbs_free(engine->breadcrumbs); 929 930 intel_engine_fini_retire(engine); 931 intel_engine_cleanup_cmd_parser(engine); 932 933 if (engine->default_state) 934 fput(engine->default_state); 935 936 if (engine->kernel_context) { 937 intel_context_unpin(engine->kernel_context); 938 intel_context_put(engine->kernel_context); 939 } 940 GEM_BUG_ON(!llist_empty(&engine->barrier_tasks)); 941 942 intel_wa_list_free(&engine->ctx_wa_list); 943 intel_wa_list_free(&engine->wa_list); 944 intel_wa_list_free(&engine->whitelist); 945 } 946 947 /** 948 * intel_engine_resume - re-initializes the HW state of the engine 949 * @engine: Engine to resume. 950 * 951 * Returns zero on success or an error code on failure. 952 */ 953 int intel_engine_resume(struct intel_engine_cs *engine) 954 { 955 intel_engine_apply_workarounds(engine); 956 intel_engine_apply_whitelist(engine); 957 958 return engine->resume(engine); 959 } 960 961 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine) 962 { 963 struct drm_i915_private *i915 = engine->i915; 964 965 u64 acthd; 966 967 if (INTEL_GEN(i915) >= 8) 968 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW); 969 else if (INTEL_GEN(i915) >= 4) 970 acthd = ENGINE_READ(engine, RING_ACTHD); 971 else 972 acthd = ENGINE_READ(engine, ACTHD); 973 974 return acthd; 975 } 976 977 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine) 978 { 979 u64 bbaddr; 980 981 if (INTEL_GEN(engine->i915) >= 8) 982 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW); 983 else 984 bbaddr = ENGINE_READ(engine, RING_BBADDR); 985 986 return bbaddr; 987 } 988 989 static unsigned long stop_timeout(const struct intel_engine_cs *engine) 990 { 991 if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */ 992 return 0; 993 994 /* 995 * If we are doing a normal GPU reset, we can take our time and allow 996 * the engine to quiesce. We've stopped submission to the engine, and 997 * if we wait long enough an innocent context should complete and 998 * leave the engine idle. So they should not be caught unaware by 999 * the forthcoming GPU reset (which usually follows the stop_cs)! 1000 */ 1001 return READ_ONCE(engine->props.stop_timeout_ms); 1002 } 1003 1004 int intel_engine_stop_cs(struct intel_engine_cs *engine) 1005 { 1006 struct intel_uncore *uncore = engine->uncore; 1007 const u32 base = engine->mmio_base; 1008 const i915_reg_t mode = RING_MI_MODE(base); 1009 int err; 1010 1011 if (INTEL_GEN(engine->i915) < 3) 1012 return -ENODEV; 1013 1014 ENGINE_TRACE(engine, "\n"); 1015 1016 intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING)); 1017 1018 err = 0; 1019 if (__intel_wait_for_register_fw(uncore, 1020 mode, MODE_IDLE, MODE_IDLE, 1021 1000, stop_timeout(engine), 1022 NULL)) { 1023 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n"); 1024 err = -ETIMEDOUT; 1025 } 1026 1027 /* A final mmio read to let GPU writes be hopefully flushed to memory */ 1028 intel_uncore_posting_read_fw(uncore, mode); 1029 1030 return err; 1031 } 1032 1033 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine) 1034 { 1035 ENGINE_TRACE(engine, "\n"); 1036 1037 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 1038 } 1039 1040 const char *i915_cache_level_str(struct drm_i915_private *i915, int type) 1041 { 1042 switch (type) { 1043 case I915_CACHE_NONE: return " uncached"; 1044 case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped"; 1045 case I915_CACHE_L3_LLC: return " L3+LLC"; 1046 case I915_CACHE_WT: return " WT"; 1047 default: return ""; 1048 } 1049 } 1050 1051 static u32 1052 read_subslice_reg(const struct intel_engine_cs *engine, 1053 int slice, int subslice, i915_reg_t reg) 1054 { 1055 struct drm_i915_private *i915 = engine->i915; 1056 struct intel_uncore *uncore = engine->uncore; 1057 u32 mcr_mask, mcr_ss, mcr, old_mcr, val; 1058 enum forcewake_domains fw_domains; 1059 1060 if (INTEL_GEN(i915) >= 11) { 1061 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 1062 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 1063 } else { 1064 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 1065 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 1066 } 1067 1068 fw_domains = intel_uncore_forcewake_for_reg(uncore, reg, 1069 FW_REG_READ); 1070 fw_domains |= intel_uncore_forcewake_for_reg(uncore, 1071 GEN8_MCR_SELECTOR, 1072 FW_REG_READ | FW_REG_WRITE); 1073 1074 spin_lock_irq(&uncore->lock); 1075 intel_uncore_forcewake_get__locked(uncore, fw_domains); 1076 1077 old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR); 1078 1079 mcr &= ~mcr_mask; 1080 mcr |= mcr_ss; 1081 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 1082 1083 val = intel_uncore_read_fw(uncore, reg); 1084 1085 mcr &= ~mcr_mask; 1086 mcr |= old_mcr & mcr_mask; 1087 1088 intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr); 1089 1090 intel_uncore_forcewake_put__locked(uncore, fw_domains); 1091 spin_unlock_irq(&uncore->lock); 1092 1093 return val; 1094 } 1095 1096 /* NB: please notice the memset */ 1097 void intel_engine_get_instdone(const struct intel_engine_cs *engine, 1098 struct intel_instdone *instdone) 1099 { 1100 struct drm_i915_private *i915 = engine->i915; 1101 const struct sseu_dev_info *sseu = &engine->gt->info.sseu; 1102 struct intel_uncore *uncore = engine->uncore; 1103 u32 mmio_base = engine->mmio_base; 1104 int slice; 1105 int subslice; 1106 1107 memset(instdone, 0, sizeof(*instdone)); 1108 1109 switch (INTEL_GEN(i915)) { 1110 default: 1111 instdone->instdone = 1112 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1113 1114 if (engine->id != RCS0) 1115 break; 1116 1117 instdone->slice_common = 1118 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1119 if (INTEL_GEN(i915) >= 12) { 1120 instdone->slice_common_extra[0] = 1121 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA); 1122 instdone->slice_common_extra[1] = 1123 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2); 1124 } 1125 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) { 1126 instdone->sampler[slice][subslice] = 1127 read_subslice_reg(engine, slice, subslice, 1128 GEN7_SAMPLER_INSTDONE); 1129 instdone->row[slice][subslice] = 1130 read_subslice_reg(engine, slice, subslice, 1131 GEN7_ROW_INSTDONE); 1132 } 1133 break; 1134 case 7: 1135 instdone->instdone = 1136 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1137 1138 if (engine->id != RCS0) 1139 break; 1140 1141 instdone->slice_common = 1142 intel_uncore_read(uncore, GEN7_SC_INSTDONE); 1143 instdone->sampler[0][0] = 1144 intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE); 1145 instdone->row[0][0] = 1146 intel_uncore_read(uncore, GEN7_ROW_INSTDONE); 1147 1148 break; 1149 case 6: 1150 case 5: 1151 case 4: 1152 instdone->instdone = 1153 intel_uncore_read(uncore, RING_INSTDONE(mmio_base)); 1154 if (engine->id == RCS0) 1155 /* HACK: Using the wrong struct member */ 1156 instdone->slice_common = 1157 intel_uncore_read(uncore, GEN4_INSTDONE1); 1158 break; 1159 case 3: 1160 case 2: 1161 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE); 1162 break; 1163 } 1164 } 1165 1166 static bool ring_is_idle(struct intel_engine_cs *engine) 1167 { 1168 bool idle = true; 1169 1170 if (I915_SELFTEST_ONLY(!engine->mmio_base)) 1171 return true; 1172 1173 if (!intel_engine_pm_get_if_awake(engine)) 1174 return true; 1175 1176 /* First check that no commands are left in the ring */ 1177 if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) != 1178 (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR)) 1179 idle = false; 1180 1181 /* No bit for gen2, so assume the CS parser is idle */ 1182 if (INTEL_GEN(engine->i915) > 2 && 1183 !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE)) 1184 idle = false; 1185 1186 intel_engine_pm_put(engine); 1187 1188 return idle; 1189 } 1190 1191 void intel_engine_flush_submission(struct intel_engine_cs *engine) 1192 { 1193 struct tasklet_struct *t = &engine->execlists.tasklet; 1194 1195 if (!t->func) 1196 return; 1197 1198 /* Synchronise and wait for the tasklet on another CPU */ 1199 tasklet_kill(t); 1200 1201 /* Having cancelled the tasklet, ensure that is run */ 1202 local_bh_disable(); 1203 if (tasklet_trylock(t)) { 1204 /* Must wait for any GPU reset in progress. */ 1205 if (__tasklet_is_enabled(t)) 1206 t->func(t->data); 1207 tasklet_unlock(t); 1208 } 1209 local_bh_enable(); 1210 } 1211 1212 /** 1213 * intel_engine_is_idle() - Report if the engine has finished process all work 1214 * @engine: the intel_engine_cs 1215 * 1216 * Return true if there are no requests pending, nothing left to be submitted 1217 * to hardware, and that the engine is idle. 1218 */ 1219 bool intel_engine_is_idle(struct intel_engine_cs *engine) 1220 { 1221 /* More white lies, if wedged, hw state is inconsistent */ 1222 if (intel_gt_is_wedged(engine->gt)) 1223 return true; 1224 1225 if (!intel_engine_pm_is_awake(engine)) 1226 return true; 1227 1228 /* Waiting to drain ELSP? */ 1229 if (execlists_active(&engine->execlists)) { 1230 synchronize_hardirq(engine->i915->drm.pdev->irq); 1231 1232 intel_engine_flush_submission(engine); 1233 1234 if (execlists_active(&engine->execlists)) 1235 return false; 1236 } 1237 1238 /* ELSP is empty, but there are ready requests? E.g. after reset */ 1239 if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root)) 1240 return false; 1241 1242 /* Ring stopped? */ 1243 return ring_is_idle(engine); 1244 } 1245 1246 bool intel_engines_are_idle(struct intel_gt *gt) 1247 { 1248 struct intel_engine_cs *engine; 1249 enum intel_engine_id id; 1250 1251 /* 1252 * If the driver is wedged, HW state may be very inconsistent and 1253 * report that it is still busy, even though we have stopped using it. 1254 */ 1255 if (intel_gt_is_wedged(gt)) 1256 return true; 1257 1258 /* Already parked (and passed an idleness test); must still be idle */ 1259 if (!READ_ONCE(gt->awake)) 1260 return true; 1261 1262 for_each_engine(engine, gt, id) { 1263 if (!intel_engine_is_idle(engine)) 1264 return false; 1265 } 1266 1267 return true; 1268 } 1269 1270 void intel_engines_reset_default_submission(struct intel_gt *gt) 1271 { 1272 struct intel_engine_cs *engine; 1273 enum intel_engine_id id; 1274 1275 for_each_engine(engine, gt, id) 1276 engine->set_default_submission(engine); 1277 } 1278 1279 bool intel_engine_can_store_dword(struct intel_engine_cs *engine) 1280 { 1281 switch (INTEL_GEN(engine->i915)) { 1282 case 2: 1283 return false; /* uses physical not virtual addresses */ 1284 case 3: 1285 /* maybe only uses physical not virtual addresses */ 1286 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915)); 1287 case 4: 1288 return !IS_I965G(engine->i915); /* who knows! */ 1289 case 6: 1290 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */ 1291 default: 1292 return true; 1293 } 1294 } 1295 1296 static int print_sched_attr(const struct i915_sched_attr *attr, 1297 char *buf, int x, int len) 1298 { 1299 if (attr->priority == I915_PRIORITY_INVALID) 1300 return x; 1301 1302 x += snprintf(buf + x, len - x, 1303 " prio=%d", attr->priority); 1304 1305 return x; 1306 } 1307 1308 static void print_request(struct drm_printer *m, 1309 struct i915_request *rq, 1310 const char *prefix) 1311 { 1312 const char *name = rq->fence.ops->get_timeline_name(&rq->fence); 1313 char buf[80] = ""; 1314 int x = 0; 1315 1316 x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf)); 1317 1318 drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n", 1319 prefix, 1320 rq->fence.context, rq->fence.seqno, 1321 i915_request_completed(rq) ? "!" : 1322 i915_request_started(rq) ? "*" : 1323 "", 1324 test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, 1325 &rq->fence.flags) ? "+" : 1326 test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, 1327 &rq->fence.flags) ? "-" : 1328 "", 1329 buf, 1330 jiffies_to_msecs(jiffies - rq->emitted_jiffies), 1331 name); 1332 } 1333 1334 static struct intel_timeline *get_timeline(struct i915_request *rq) 1335 { 1336 struct intel_timeline *tl; 1337 1338 /* 1339 * Even though we are holding the engine->active.lock here, there 1340 * is no control over the submission queue per-se and we are 1341 * inspecting the active state at a random point in time, with an 1342 * unknown queue. Play safe and make sure the timeline remains valid. 1343 * (Only being used for pretty printing, one extra kref shouldn't 1344 * cause a camel stampede!) 1345 */ 1346 rcu_read_lock(); 1347 tl = rcu_dereference(rq->timeline); 1348 if (!kref_get_unless_zero(&tl->kref)) 1349 tl = NULL; 1350 rcu_read_unlock(); 1351 1352 return tl; 1353 } 1354 1355 static int print_ring(char *buf, int sz, struct i915_request *rq) 1356 { 1357 int len = 0; 1358 1359 if (!i915_request_signaled(rq)) { 1360 struct intel_timeline *tl = get_timeline(rq); 1361 1362 len = scnprintf(buf, sz, 1363 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ", 1364 i915_ggtt_offset(rq->ring->vma), 1365 tl ? tl->hwsp_offset : 0, 1366 hwsp_seqno(rq), 1367 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context), 1368 1000 * 1000)); 1369 1370 if (tl) 1371 intel_timeline_put(tl); 1372 } 1373 1374 return len; 1375 } 1376 1377 static void hexdump(struct drm_printer *m, const void *buf, size_t len) 1378 { 1379 const size_t rowsize = 8 * sizeof(u32); 1380 const void *prev = NULL; 1381 bool skip = false; 1382 size_t pos; 1383 1384 for (pos = 0; pos < len; pos += rowsize) { 1385 char line[128]; 1386 1387 if (prev && !memcmp(prev, buf + pos, rowsize)) { 1388 if (!skip) { 1389 drm_printf(m, "*\n"); 1390 skip = true; 1391 } 1392 continue; 1393 } 1394 1395 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos, 1396 rowsize, sizeof(u32), 1397 line, sizeof(line), 1398 false) >= sizeof(line)); 1399 drm_printf(m, "[%04zx] %s\n", pos, line); 1400 1401 prev = buf + pos; 1402 skip = false; 1403 } 1404 } 1405 1406 static const char *repr_timer(const struct timer_list *t) 1407 { 1408 if (!READ_ONCE(t->expires)) 1409 return "inactive"; 1410 1411 if (timer_pending(t)) 1412 return "active"; 1413 1414 return "expired"; 1415 } 1416 1417 static void intel_engine_print_registers(struct intel_engine_cs *engine, 1418 struct drm_printer *m) 1419 { 1420 struct drm_i915_private *dev_priv = engine->i915; 1421 struct intel_engine_execlists * const execlists = &engine->execlists; 1422 u64 addr; 1423 1424 if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7)) 1425 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID)); 1426 if (HAS_EXECLISTS(dev_priv)) { 1427 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n", 1428 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI)); 1429 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n", 1430 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO)); 1431 } 1432 drm_printf(m, "\tRING_START: 0x%08x\n", 1433 ENGINE_READ(engine, RING_START)); 1434 drm_printf(m, "\tRING_HEAD: 0x%08x\n", 1435 ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR); 1436 drm_printf(m, "\tRING_TAIL: 0x%08x\n", 1437 ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR); 1438 drm_printf(m, "\tRING_CTL: 0x%08x%s\n", 1439 ENGINE_READ(engine, RING_CTL), 1440 ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : ""); 1441 if (INTEL_GEN(engine->i915) > 2) { 1442 drm_printf(m, "\tRING_MODE: 0x%08x%s\n", 1443 ENGINE_READ(engine, RING_MI_MODE), 1444 ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : ""); 1445 } 1446 1447 if (INTEL_GEN(dev_priv) >= 6) { 1448 drm_printf(m, "\tRING_IMR: 0x%08x\n", 1449 ENGINE_READ(engine, RING_IMR)); 1450 drm_printf(m, "\tRING_ESR: 0x%08x\n", 1451 ENGINE_READ(engine, RING_ESR)); 1452 drm_printf(m, "\tRING_EMR: 0x%08x\n", 1453 ENGINE_READ(engine, RING_EMR)); 1454 drm_printf(m, "\tRING_EIR: 0x%08x\n", 1455 ENGINE_READ(engine, RING_EIR)); 1456 } 1457 1458 addr = intel_engine_get_active_head(engine); 1459 drm_printf(m, "\tACTHD: 0x%08x_%08x\n", 1460 upper_32_bits(addr), lower_32_bits(addr)); 1461 addr = intel_engine_get_last_batch_head(engine); 1462 drm_printf(m, "\tBBADDR: 0x%08x_%08x\n", 1463 upper_32_bits(addr), lower_32_bits(addr)); 1464 if (INTEL_GEN(dev_priv) >= 8) 1465 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW); 1466 else if (INTEL_GEN(dev_priv) >= 4) 1467 addr = ENGINE_READ(engine, RING_DMA_FADD); 1468 else 1469 addr = ENGINE_READ(engine, DMA_FADD_I8XX); 1470 drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n", 1471 upper_32_bits(addr), lower_32_bits(addr)); 1472 if (INTEL_GEN(dev_priv) >= 4) { 1473 drm_printf(m, "\tIPEIR: 0x%08x\n", 1474 ENGINE_READ(engine, RING_IPEIR)); 1475 drm_printf(m, "\tIPEHR: 0x%08x\n", 1476 ENGINE_READ(engine, RING_IPEHR)); 1477 } else { 1478 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR)); 1479 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR)); 1480 } 1481 1482 if (HAS_EXECLISTS(dev_priv)) { 1483 struct i915_request * const *port, *rq; 1484 const u32 *hws = 1485 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX]; 1486 const u8 num_entries = execlists->csb_size; 1487 unsigned int idx; 1488 u8 read, write; 1489 1490 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n", 1491 yesno(test_bit(TASKLET_STATE_SCHED, 1492 &engine->execlists.tasklet.state)), 1493 enableddisabled(!atomic_read(&engine->execlists.tasklet.count)), 1494 repr_timer(&engine->execlists.preempt), 1495 repr_timer(&engine->execlists.timer)); 1496 1497 read = execlists->csb_head; 1498 write = READ_ONCE(*execlists->csb_write); 1499 1500 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n", 1501 ENGINE_READ(engine, RING_EXECLIST_STATUS_LO), 1502 ENGINE_READ(engine, RING_EXECLIST_STATUS_HI), 1503 read, write, num_entries); 1504 1505 if (read >= num_entries) 1506 read = 0; 1507 if (write >= num_entries) 1508 write = 0; 1509 if (read > write) 1510 write += num_entries; 1511 while (read < write) { 1512 idx = ++read % num_entries; 1513 drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n", 1514 idx, hws[idx * 2], hws[idx * 2 + 1]); 1515 } 1516 1517 execlists_active_lock_bh(execlists); 1518 rcu_read_lock(); 1519 for (port = execlists->active; (rq = *port); port++) { 1520 char hdr[160]; 1521 int len; 1522 1523 len = scnprintf(hdr, sizeof(hdr), 1524 "\t\tActive[%d]: ccid:%08x%s%s, ", 1525 (int)(port - execlists->active), 1526 rq->context->lrc.ccid, 1527 intel_context_is_closed(rq->context) ? "!" : "", 1528 intel_context_is_banned(rq->context) ? "*" : ""); 1529 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 1530 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 1531 print_request(m, rq, hdr); 1532 } 1533 for (port = execlists->pending; (rq = *port); port++) { 1534 char hdr[160]; 1535 int len; 1536 1537 len = scnprintf(hdr, sizeof(hdr), 1538 "\t\tPending[%d]: ccid:%08x%s%s, ", 1539 (int)(port - execlists->pending), 1540 rq->context->lrc.ccid, 1541 intel_context_is_closed(rq->context) ? "!" : "", 1542 intel_context_is_banned(rq->context) ? "*" : ""); 1543 len += print_ring(hdr + len, sizeof(hdr) - len, rq); 1544 scnprintf(hdr + len, sizeof(hdr) - len, "rq: "); 1545 print_request(m, rq, hdr); 1546 } 1547 rcu_read_unlock(); 1548 execlists_active_unlock_bh(execlists); 1549 } else if (INTEL_GEN(dev_priv) > 6) { 1550 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n", 1551 ENGINE_READ(engine, RING_PP_DIR_BASE)); 1552 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n", 1553 ENGINE_READ(engine, RING_PP_DIR_BASE_READ)); 1554 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n", 1555 ENGINE_READ(engine, RING_PP_DIR_DCLV)); 1556 } 1557 } 1558 1559 static void print_request_ring(struct drm_printer *m, struct i915_request *rq) 1560 { 1561 void *ring; 1562 int size; 1563 1564 drm_printf(m, 1565 "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n", 1566 rq->head, rq->postfix, rq->tail, 1567 rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u, 1568 rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u); 1569 1570 size = rq->tail - rq->head; 1571 if (rq->tail < rq->head) 1572 size += rq->ring->size; 1573 1574 ring = kmalloc(size, GFP_ATOMIC); 1575 if (ring) { 1576 const void *vaddr = rq->ring->vaddr; 1577 unsigned int head = rq->head; 1578 unsigned int len = 0; 1579 1580 if (rq->tail < head) { 1581 len = rq->ring->size - head; 1582 memcpy(ring, vaddr + head, len); 1583 head = 0; 1584 } 1585 memcpy(ring + len, vaddr + head, size - len); 1586 1587 hexdump(m, ring, size); 1588 kfree(ring); 1589 } 1590 } 1591 1592 static unsigned long list_count(struct list_head *list) 1593 { 1594 struct list_head *pos; 1595 unsigned long count = 0; 1596 1597 list_for_each(pos, list) 1598 count++; 1599 1600 return count; 1601 } 1602 1603 void intel_engine_dump(struct intel_engine_cs *engine, 1604 struct drm_printer *m, 1605 const char *header, ...) 1606 { 1607 struct i915_gpu_error * const error = &engine->i915->gpu_error; 1608 struct i915_request *rq; 1609 intel_wakeref_t wakeref; 1610 unsigned long flags; 1611 ktime_t dummy; 1612 1613 if (header) { 1614 va_list ap; 1615 1616 va_start(ap, header); 1617 drm_vprintf(m, header, &ap); 1618 va_end(ap); 1619 } 1620 1621 if (intel_gt_is_wedged(engine->gt)) 1622 drm_printf(m, "*** WEDGED ***\n"); 1623 1624 drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count)); 1625 drm_printf(m, "\tBarriers?: %s\n", 1626 yesno(!llist_empty(&engine->barrier_tasks))); 1627 drm_printf(m, "\tLatency: %luus\n", 1628 ewma__engine_latency_read(&engine->latency)); 1629 if (intel_engine_supports_stats(engine)) 1630 drm_printf(m, "\tRuntime: %llums\n", 1631 ktime_to_ms(intel_engine_get_busy_time(engine, 1632 &dummy))); 1633 drm_printf(m, "\tForcewake: %x domains, %d active\n", 1634 engine->fw_domain, atomic_read(&engine->fw_active)); 1635 1636 rcu_read_lock(); 1637 rq = READ_ONCE(engine->heartbeat.systole); 1638 if (rq) 1639 drm_printf(m, "\tHeartbeat: %d ms ago\n", 1640 jiffies_to_msecs(jiffies - rq->emitted_jiffies)); 1641 rcu_read_unlock(); 1642 drm_printf(m, "\tReset count: %d (global %d)\n", 1643 i915_reset_engine_count(error, engine), 1644 i915_reset_count(error)); 1645 1646 drm_printf(m, "\tRequests:\n"); 1647 1648 spin_lock_irqsave(&engine->active.lock, flags); 1649 rq = intel_engine_find_active_request(engine); 1650 if (rq) { 1651 struct intel_timeline *tl = get_timeline(rq); 1652 1653 print_request(m, rq, "\t\tactive "); 1654 1655 drm_printf(m, "\t\tring->start: 0x%08x\n", 1656 i915_ggtt_offset(rq->ring->vma)); 1657 drm_printf(m, "\t\tring->head: 0x%08x\n", 1658 rq->ring->head); 1659 drm_printf(m, "\t\tring->tail: 0x%08x\n", 1660 rq->ring->tail); 1661 drm_printf(m, "\t\tring->emit: 0x%08x\n", 1662 rq->ring->emit); 1663 drm_printf(m, "\t\tring->space: 0x%08x\n", 1664 rq->ring->space); 1665 1666 if (tl) { 1667 drm_printf(m, "\t\tring->hwsp: 0x%08x\n", 1668 tl->hwsp_offset); 1669 intel_timeline_put(tl); 1670 } 1671 1672 print_request_ring(m, rq); 1673 1674 if (rq->context->lrc_reg_state) { 1675 drm_printf(m, "Logical Ring Context:\n"); 1676 hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE); 1677 } 1678 } 1679 drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold)); 1680 spin_unlock_irqrestore(&engine->active.lock, flags); 1681 1682 drm_printf(m, "\tMMIO base: 0x%08x\n", engine->mmio_base); 1683 wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm); 1684 if (wakeref) { 1685 intel_engine_print_registers(engine, m); 1686 intel_runtime_pm_put(engine->uncore->rpm, wakeref); 1687 } else { 1688 drm_printf(m, "\tDevice is asleep; skipping register dump\n"); 1689 } 1690 1691 intel_execlists_show_requests(engine, m, print_request, 8); 1692 1693 drm_printf(m, "HWSP:\n"); 1694 hexdump(m, engine->status_page.addr, PAGE_SIZE); 1695 1696 drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine))); 1697 1698 intel_engine_print_breadcrumbs(engine, m); 1699 } 1700 1701 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine, 1702 ktime_t *now) 1703 { 1704 ktime_t total = engine->stats.total; 1705 1706 /* 1707 * If the engine is executing something at the moment 1708 * add it to the total. 1709 */ 1710 *now = ktime_get(); 1711 if (atomic_read(&engine->stats.active)) 1712 total = ktime_add(total, ktime_sub(*now, engine->stats.start)); 1713 1714 return total; 1715 } 1716 1717 /** 1718 * intel_engine_get_busy_time() - Return current accumulated engine busyness 1719 * @engine: engine to report on 1720 * @now: monotonic timestamp of sampling 1721 * 1722 * Returns accumulated time @engine was busy since engine stats were enabled. 1723 */ 1724 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now) 1725 { 1726 unsigned int seq; 1727 ktime_t total; 1728 1729 do { 1730 seq = read_seqbegin(&engine->stats.lock); 1731 total = __intel_engine_get_busy_time(engine, now); 1732 } while (read_seqretry(&engine->stats.lock, seq)); 1733 1734 return total; 1735 } 1736 1737 static bool match_ring(struct i915_request *rq) 1738 { 1739 u32 ring = ENGINE_READ(rq->engine, RING_START); 1740 1741 return ring == i915_ggtt_offset(rq->ring->vma); 1742 } 1743 1744 struct i915_request * 1745 intel_engine_find_active_request(struct intel_engine_cs *engine) 1746 { 1747 struct i915_request *request, *active = NULL; 1748 1749 /* 1750 * We are called by the error capture, reset and to dump engine 1751 * state at random points in time. In particular, note that neither is 1752 * crucially ordered with an interrupt. After a hang, the GPU is dead 1753 * and we assume that no more writes can happen (we waited long enough 1754 * for all writes that were in transaction to be flushed) - adding an 1755 * extra delay for a recent interrupt is pointless. Hence, we do 1756 * not need an engine->irq_seqno_barrier() before the seqno reads. 1757 * At all other times, we must assume the GPU is still running, but 1758 * we only care about the snapshot of this moment. 1759 */ 1760 lockdep_assert_held(&engine->active.lock); 1761 1762 rcu_read_lock(); 1763 request = execlists_active(&engine->execlists); 1764 if (request) { 1765 struct intel_timeline *tl = request->context->timeline; 1766 1767 list_for_each_entry_from_reverse(request, &tl->requests, link) { 1768 if (i915_request_completed(request)) 1769 break; 1770 1771 active = request; 1772 } 1773 } 1774 rcu_read_unlock(); 1775 if (active) 1776 return active; 1777 1778 list_for_each_entry(request, &engine->active.requests, sched.link) { 1779 if (i915_request_completed(request)) 1780 continue; 1781 1782 if (!i915_request_started(request)) 1783 continue; 1784 1785 /* More than one preemptible request may match! */ 1786 if (!match_ring(request)) 1787 continue; 1788 1789 active = request; 1790 break; 1791 } 1792 1793 return active; 1794 } 1795 1796 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1797 #include "mock_engine.c" 1798 #include "selftest_engine.c" 1799 #include "selftest_engine_cs.c" 1800 #endif 1801